用户名: 密码: 验证码:
EPS混凝土试验、本构模型及节能评价研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
发泡聚苯乙烯(Expanded Polystyrene,简称EPS)混凝土是一种新型节能建筑材料。由于利用废弃的塑料泡沫作为主要骨料代替混凝土中的部分沙石,所以具有轻质、保温、节能、利废、环保的特性,EPS混凝土的材料研发与工程应用在建筑领域和环境科学领域中固体废弃物回收利用方面逐渐成为研究热点。本文在国内外EPS混凝土前期工作的基础上,针对东北地区建筑高能耗问题,从宏观、粗观、细观、微观四个层次对EPS混凝土的材料组成、结构及性能进行了深入的研究,制备一种适用于东北地区的EPS混凝土材料,进行EPS混凝土的配比及各项性能试验,并建立了该EPS混凝土的损伤本构模型,为EPS混凝土在东北地区的工程应用奠定了理论基础。针对东北地区的气候环境,构建了适用于东北严寒地区的建筑节能评价指标体系,对东北地区的建筑节能做出更加科学的评价提供了有利工具,有利于促进建筑节能技术和新型建筑节能材料在东北地区的推广应用。本文的研究对实现国家节能降耗和可持续发展具有重要意义。
     首先,对不同配比的EPS混凝土进行了力学性能试验。通过试验数据回归分析得出EPS混凝土抗压强度与EPS混凝土密度之间的函数关系。对EPS混凝土的各组成成分对其力学性能的影响分别进行了研究。分析了不同EPS颗粒粒径大小(2~3mm、3~6mm),不同体积含量(56%、64%、67%)对EPS混凝土性能的影响。研究了不同硅灰掺量(1%、10%、18%)对EPS混凝土抗压强度的影响。加入不同比例的聚丙烯纤维的EPS混凝土的试验结果表明,聚丙烯纤维最优掺入量为1.3~2.0kg/m3。基于不同水灰比对抗压强度影响的分析结果,建立了可用于配合比设计的EPS混凝土强度模型。对不同强度的EPS混凝土单轴受压应力-应变关系特征进行了分析,对于强度较低的EPS混凝土的整个压缩曲线表现出明显的三个不同的阶段:弹性阶段、坍塌平台阶段、应变软化阶段;对于强度大于3MPa的EPS混凝土,其应力-应变曲线可以概括为弹性、强化、软化三个阶段。通过扫描电镜试验对EPS混凝土的微观形貌进行表征,揭示了EPS混凝土受力破坏机理以及聚丙烯纤维的增强作用机理。通过快速冻融试验与湿迁移试验对EPS混凝土的耐久性能进行了研究。通过X射线衍射化学成分分析试验确定了EPS混凝土的主要化学成分。
     其次,在连续介质损伤力学和经典塑性力学的理论框架下,基于混凝土损伤本构模型的研究基础,给出了EPS混凝土弹塑性损伤本构模型。通过确定合适的损伤变量,基于弹性Helmholtz自由能建立损伤本构方程,在有效应力空间定义屈服面来考虑塑性变形,进行了弹塑性损伤本构模型的基本公式的推导,用试验结果确定模型参数,给出了单轴受压\受拉情况下EPS混凝土材料的损伤演化方程、塑性变形的计算公式和损伤本构方程,通过与EPS混凝土单调加载作用下的试验结果进行对比,对EPS混凝土弹塑性损伤模型的有效性进行了验证,EPS混凝土材料的损伤演化行为可以被该模型较好地描述。
     再次,把EPS混凝土看作由EPS圆形骨料和砂浆基体组成的两相复合材料进行细观数值模拟研究,建立两种不同的EPS骨料分布模型,分析EPS骨料的变形和相对位置对EPS混凝土应力分布的影响。通过数值模拟与理论公式的推导揭示了EPS混凝土单轴受压破坏的机理。根据不同时间步的应力分布图,分析了EPS混凝土在强化阶段、软化阶段的裂缝形式。
     最后,运用模糊综合评定的系统工程方法,考虑新型节能材料在现代建筑中的使用和对建筑节能的影响,依据东北地区气候特征,进行建筑节能指标分析,建立东北严寒地区建筑节能评价指标体系,通过对现有建筑进行试评价说明该评价方法的可操作性。
EPS (Expanded Polystyrene) concrete is a new type of energy-savingbuilding materials. Due to the use of waste plastic foam as main parts of theconcrete aggregate to replace sand, EPS concrete has the characteristic of lightweight, thermal insulation, energy saving, waste recycling and environmentalprotection. Materials research and engineering application of EPS concrete havegradually become a research hotspot in the construction and environmentalscience about solid waste recycling. In this paper, based on domestic andinternational previous research work,aiming at the problems of high energyconsumption in northeast China, a kind of EPS concrete suitable for thenortheast area was presented through the profound study of material composition,structure and properties of EPS concrete on the grand, macro, sub-micro andmicro four levels. The mix proportion design and the properties of EPS concretewere researched experimentally, and the damage constitutive model of EPSconcrete was established as theoretical basis of the engineering application ofEPS concrete in the northeast. According to the climate environment of northeast,energy-saving evaluation index system for severe cold area of Northeast wasproposed as tool of building energy-saving assessment. This assessment indexsystem was favorable to promote the popularization and application of buildingenergy-saving technology and new type energy-saving building materials in thenortheast. The research of this paper has important significance for realization ofnational energy-saving and sustainable development.
     First of all, mechanical performance tests of EPS concrete with differentproportion had been carried out. Through regressive analysis of the test data,thefunction relationship between the compressive strength and the density of EPSconcrete was established. The influence of the components of EPS concrete onthe mechanical performance was studied respectively.The effect of EPS particleswith different size (2~3mm,3~6mm), different volume contents(56%,64%,67%)on the mechanical property of EPS concrete was analyzed; The influence ofdifferent content of silica fume (1%,10%,18%) on EPS concrete compressivestrength was investigated; The different dosage of polypropylene fiber added inEPS concrete was experimented, results showed that the optimal mixing contentof polypropylene fiber is1.3~2.0kg/m3. Based on analysis results of the effect ofdifferent water-cement ratio on compressive strength, the strength model of EPSconcrete applied to mix design was established. The stress-strain relationshipcharacteristics of EPS concrete with different uniaxial compressive strength wasanalyzed, the compression curve of EPS concrete with the lower strengthexhibited obviously three different phases: linear-elasticity, platform as result ofplastic buckling and collapse of cells, strain softening; The stress-strain curve ofEPS concrete with strength more than3MPa was summarized as elasticity, strengthening and softening stages. Microstructure characterization of EPSconcrete by scanning electron microscopy test revealed that the damagemechanism of EPS concrete and polypropylene fiber enhancement mechanism.The fast freeze-thaw and the moisture migration experiments were carried out fordurability of EPS concrete. The chemical composition of EPS concrete wasdetermined by X-ray diffraction method.
     Secondly, under the theory framework of the continuum damage mechanicsand the classic plastic mechanics,based on damage constitutive model ofconcrete, elastic-plastic damage constitutive model of EPS concrete was proposed.By determining the appropriate damage variable, establishing damageconstitutive equation based on the elastic Helmholtz free energy, defining yieldsurface in the effective stress space for considering plastic deformation, the basicformula of the elastic-plastic damage constitutive model was derived. Parametersof the model were determined according to the experimental data. The damageevolution equations, plastic deformation and the damage constitutive equations ofEPS concrete under uniaxial compressive and tensile was presented. The EPSconcrete elastic-plastic damage model is proved to be effective for describing theprocess of the damage evolution of EPS concrete by the test results.
     Thirdly, EPS concrete be considering as a two-phase composite material wasstudied on numerical simulation of Meso-level Structure. Two types model ofdifferent EPS aggregate distribution were established to analyze the effect of thedeformation and the relative position of the EPS aggregate on stress distributionof EPS concrete. The failure mechanism of EPS concrete under uniaxialcompression was revealed through analysis of numerical simulation andderivation of theoretical formula. According to the stress distribution of differenttime steps, crack mode of the EPS concrete in strengthening and softening stagewas analyzed.
     Finally, according to climate characteristics in northeast China,energy-saving evaluation index system for severe cold area of Northeast wasestablished by the fuzzy comprehensive evaluation method of system engineering,considering the impact of new energy-saving materials on modern buildingenergy efficiency, and maneuverability of it was verified through evaluation ofexisting building.
引文
[1]白卫峰.混凝土损伤机理及饱和混凝土力学性能研究[D],大连理工博士学位论文,2008
    [2]陈兵,陈龙珠. EPS混凝土力学性能研究[J].混凝土与水泥制品,2004(3):50-55
    [3]陈兵,涂思炎,翁友法.EPS轻质混凝土性能研究[J].建筑材料学报,2007,10(1):26-31
    [4]程从密,张传镁,焦楚杰,等.EPS轻集料混凝土研究进展[J].广东建材,2009(1):12-16
    [5]陈惠苏,孙伟, Stroeven P.水泥基复合材料集料与浆体界面研究综述Ⅰ:试验技术[J].硅酸盐学报,2004,32(1):63-70
    [6]陈惠苏,孙伟, Stroeven P.水泥基复合材料集料与浆体界面研究综述Ⅱ:界面微观结构的形成、劣化机理及其影响因素[J].硅酸盐学报,2004,32(1):71-81
    [7]陈惠苏,孙伟, Stroeven P,等.混凝土中邻近集料表面最近间距分布的计算机模拟[J].硅酸盐学报,2004,32(4):422-427
    [8]陈惠苏,孙伟, Stroeven P.水泥基复合材料界面对材料宏观性能的影响[J].建筑材料学报,2005,8(1):51-62
    [9]陈惠苏,孙伟,蒋金洋,等.砂浆中邻近集料表面最近间距分布的数值模拟[J].复合材料学报,2005,22(4):100-107
    [10]陈惠发著,余天庆等译.混凝土和土的本构方程.中国建筑工业出版社,2004
    [11]陈惠发著,余天庆等译.土木工程材料的本构方程[M].武汉:华中科技大学出版社,2001
    [12]陈卫东,张国侠,刘嫄春.EPS新型节能墙体外保温材料[J].新型建筑材料.2007,6:41-43
    [13]董毓利.混凝土非线性力学基础[M].北京:中国建筑工业出版社,1997
    [14]冯西桥,余寿文.脆性材料的各向异性损伤及其测量方法[J].清华大学学报,1995,35(2):1-6
    [15]甘伟,张传镁,徐诚坤等.中密度级轻珠商品混凝土在填充工程中的应用[J].新型建筑材料,2006(9):1-3
    [16]过镇海.混凝土的强度和本构关系[M].北京:中国建筑工业出版社,2004
    [17]过镇海.混凝土的强度和本构关系—原理与应用[M].北京:中国建筑工业出版社,200
    [18]高政国,刘光廷.二维混凝土随机骨料模型研究[J].清华大学学报(自然科学版),2003,43(5):710-714
    [19]黄恒栋,谯京旭.建筑热环境与建筑节能相关控制法应用研究[J].重庆建筑大学学报.2000,22(4):20-26
    [20]黄克智,黄永刚.固体本构关系[M].北京:清华大学出版社,1999
    [21]黄克智,肖纪美.材料的损伤断裂机理和宏微观力学理论[M].北京:清华大学出版社,2000
    [22]金虹,赵华.严寒地区低密度住宅节能设计策略[J].哈尔滨工业大学学报.2006,38(9):1500-1503
    [23]金虹,赵华,王秀萍.严寒地区村镇住宅冬季室内热舒适环境研究[J].哈尔滨工业大学学报.2006,38(12):2108-2111
    [24]姜璐,郑建军.混凝土界面体积百分比的计算方法[J].浙江工业大学学报,2004,32(2):163-167
    [25] J.勒迈特著,倪金刚等译.损伤力学教程[M].北京:科学出版社,1996
    [26]金伟良,徐波,王海龙.混凝土材料的细观结构数值模拟与性能分析[J].建筑科学与工程学报,2008,25(4):19-22
    [27]库马﹒梅塔,保罗J. M.蒙特罗著,覃维祖等译.混凝土微观结构、性能和材料[M].中国电力出版社,2008
    [28]林皋,刘军,胡志强.混凝土损伤类本构关系研究现状与进展[J].大连理工大学学报,2010,50(6):1055-1064
    [29]刘光廷,高政国.三维凸型混凝土骨料随机投放算法[J].清华大学学报(自然科学版),2003,43(8):1120-1123
    [30]李杰,卢朝辉,张其云.混凝土随机损伤本构关系—单轴受压分析[J].同济大学学报,2003,31(5):505-509
    [31]李杰.混凝土随机损伤力学的初步研究[J].同济大学学报,2004,32(10):1270-1277
    [32]李杰,杨卫忠.混凝土弹塑性随机损伤本构关系研究[J].土木工程学报,2009,42(2):31-38
    [33]李杰,吴建营.混凝土弹塑性损伤本构模型研究Ⅰ:基本公式[J].土木工程学报,2005,38(9):14-20
    [34]李杰,吴建营.混凝土弹塑性损伤本构模型研究Ⅱ:数值计算和试验验证[J].土木工程学报,2005,38(9):21-27
    [35] Lorna J. Gibson著,刘培生译.多孔固体结构与性能[M].清华大学出版社,2003
    [36]刘数华,冷发光,李丽华.混凝土辅助胶凝材料[M].中国建材工业出版社,2010
    [37]刘永健,李新辉,张雪姣.建筑节能评价指标体系的探讨[J].建筑节能,2010,10:71-73
    [38]李兆霞.损伤力学及其应用[M].北京:科学出版社,2002
    [39]李祚华.高层钢筋混凝土结构损伤模型及地震损伤描述[D].哈尔滨工业大学博士论文,2009
    [40]李中华,巴恒静,邓宏卫.混凝土抗冻性试验方法及评价参数的研究评述[J],混凝土,2006(6):9-11
    [41] Mario Collepardi著,刘数华等译.混凝土新技术[M].中国建材工业出版社,2008
    [42]马怀发,陈厚群,黎保琨.混凝土试件细观结构的数值模拟[J].水利学报,2004,10:27-35.
    [43]马怀发,陈厚群,黎保琨.混凝土细观力学研究进展及评述[J].中国水利水电科学研究院学报,2004,6:124-130
    [44]彭家惠,陈明凤,彭志辉,等.EPS保温砂浆研制及施工工艺[J].施工技术,2001(8):8-10.
    [45]彭家惠,陈明凤.废聚苯乙烯泡沫塑料作保温砂浆轻骨料的研究[J].建筑材料学报,2002(2):166-171
    [46]潘武略,邓德华,原通鹏.EPS颗粒混凝土组成对其和易性与强度的影响[J].粉煤灰综合利用,2006(1):9-11
    [47]潘武略,邓德华,原通鹏,等. EPS轻混凝土配合比对其流动性与力学性能的影响[J].混凝土,2006(2):63-65
    [48]钱济成,周建方.混凝土的两种损伤模型及其应用[J].河海大学学报,1989,3:40-47.
    [49]苏红兵,张天明.复杂气候条件下的建筑节能评价[J].节能经济.2009,6:1-4
    [50]沈新普,王琛元,周琳.钢筋混凝土损伤塑性模型与ABAQUS计算[J].工程力学,2006(6):155-159
    [51]宋玉普.多种混凝土材料的本构关系和破坏准则[M].北京:中国水利水电出版社,2002
    [52]唐春安,朱万成.混凝土损伤与断裂——数值试验[M].北京:科学出版社,2003
    [53]唐明.混凝土受压损伤本构模型试验研究及应用[D].重庆大学硕士论文,2010
    [54]唐雪松,郑健龙,蒋持平.连续损伤理论与应用[M].长沙:人民交通出版社,2005
    [55]王宝庭,宋玉普,赵国藩.混凝土随机颗粒模型的网格自动剖分方法[J].大连理工大学学报,1999,39(3):107-112
    [56]吴成东,丛娜,孙常春.基于混沌神经网络的建筑节能综合评价[J].沈阳建筑大学学报(自然科学版).2010.26(1):188-192
    [57]汪绯,杨娟,郭长海.提高聚苯乙烯混凝土强度的措施[J].低温建筑技术,2002(3):72-74
    [58]吴建营.基于损伤能释放率的混凝土弹塑性损伤本构模型及其在结构非线性分析中的应用[D].同济大学博士学位论文,2004
    [59]王立久,曹庆坚.基于网格模型的混凝土细观结构数值模拟[J].建材技术与应用,2005(6):8-10
    [60]吴秋生,余其俊,韦江雄等.EPS轻骨料混凝土工作性能改善与评价方法研究[J].新型建筑材料,2007(11):63-66
    [61]吴中伟.怎样做好混凝土工程[M],科技出版社,1951
    [62]吴中伟,廉慧珍.水泥基复合材料科学研究中的辩证思维[J].混凝土.2000,4:3-7
    [63]吴震.EPS多孔混凝土力学性能试验及三维数值模拟研究[D].上海交通大学硕士学位论文,2012
    [64]王竹,贺勇,魏秦等.关于绿色建筑评价的思考[J].浙江大学学报.2002,36(6):559-663
    [65]谢和平.岩石混凝土损伤力学[M].徐州:中国矿业大学出版社,1990
    [66]肖建庄,杜江涛,刘琼.基于格构模型再生混凝土单轴受压数值模拟[J].建筑材料学报,2009,12(5):511-514
    [67]徐至均著.纤维混凝土技术及应用[M].中国建筑工业出版社,2003
    [68]夏晓舟,章青,汤书军.混凝土细观损伤破坏过程的数值模拟[J].河海大学学报(自然科学版),2007,(3):319-325
    [69]于纪寿,葛勇,唐民辉,等.发泡聚苯乙烯混凝土[J].新型建筑材料,1996(9):16-18
    [70]杨强,程勇刚,张浩.基于格构模型的岩石类材料开裂数值模拟[J],工程力学,2003,20(1):117-120.
    [71]杨强,张浩,周维垣.基于格构模型的岩石类材料破坏过程的数值模拟[J].水利学报,2002(4):46-50
    [72]杨强,任继承,张浩.岩石中锚杆拔出试验的数值模拟[J].水利学报,2002,(12):68-73
    [73]余天庆,钱济成.损伤理论及其应用[M].北京:国防工业出版社,1993
    [74]余寿文,冯西桥.损伤力学[M].北京:清华大学出版社,1999
    [75]余天庆.混凝土的分段线性损伤模型[J].岩石、混凝土断裂与强度,1985,2:14-16.
    [76]中华人民共和国国家标准,公共建筑节能设计标准(GB50189-2005)[S],中国建筑工业出版社,2005
    [77]中华人民共和国行业标准,膨胀聚苯板薄抹灰外墙外保温系统(JG149-2003)[S],中国建筑工业出版社,2003
    [78]中华人民共和国行业标准,胶粉聚苯颗粒外墙外保温系统(JG158-2004)[S],中国建筑工业出版社,2004
    [79]中华人民共和国国家标准,节能建筑评价标准(GB/T50668-2011)[S],中国建筑工业出版社,2011
    [80]中华人民共和国行业标准,严寒和寒冷地区居住建筑节能设计标准(JGJ26-2010)[S],中国建筑工业出版社,2010
    [81]中华人民共和国国家标准,建筑节能工程施工质量验收规范(GB50411-2007)[S],中国建筑工业出版社,2007
    [82]中华人民共和国行业标准,采暖居住建筑节能检验标准(JGJ132-2001)[S],中国建筑工业出版社,2001
    [83]中华人民共和国行业标准,外墙外保温工程技术规程(JGJ144-2004)[S],中国建筑工业出版社,2004
    [84]中华人民共和国行业标准,公共建筑节能检测标准(JGJ/T177-2009)[S],中国建筑工业出版社,2009
    [85]中华人民共和国国家标准,建筑外窗保温性能分级及检测方法(GB/T8484-2008)[S],中国建筑工业出版社,2008
    [86]中华人民共和国行业标准,民用建筑绿色设计规范(JGJ/T229-2010)[S],中国建筑工业出版社,2008
    [87]中华人民共和国国家标准,建筑隔声评价标准(GB/T50121-2005)[S],中国建筑工业出版社,2005
    [88]中华人民共和国国家标准,综合能耗计算通则(GB/T2589-2008)[S],中国建筑工业出版社,2008
    [89]中华人民共和国国家标准,普通混凝土长期性能和耐久性能试验方法(GBT50082-2009)[S],中国建筑工业出版社,2010
    [90]张骥.混凝土塑性—损伤本构模型研究[D].华中科技大学博士论文,2010
    [91]张劲,王庆扬,胡守营,王传甲.ABAQUS混凝土损伤塑性模型参数验证[J].建筑结构,2008,38(8):127-130
    [92]周可可. EPS轻质混凝土的实验研究与数值模拟[D],上海交通大学硕士论文,2010
    [93]郑琴.西安地区住宅建筑节能综合评价及支持系统的研究与开发[D].西安建筑科技大学硕士论文,2008
    [94]张我华,金荑.各向异性损伤力学中的弹塑性分析[J].固体力学学报,2000,21(1):1719-1734
    [95]朱万成,唐春安,赵文,滕锦光.混凝土试样在静态载荷作用下断裂过程的数值模拟研究[J].工程力学,2002,19(6):148-153
    [96]朱万成.混凝土断裂的细观数值模型及应用[D].东北大学博士学位论文,2000
    [97]郑秀华,葛勇,于纪寿等.EPS混凝土配合比的研究[J].哈尔滨建筑大学学报,1998(6):42-44
    [98]赵晓艳,田稳苓,周明杰.莫磊.EPS轻集料混凝土配合比及性能试验研究[J].新型建筑材料.2009(2):59-62
    [99]赵晓艳,田稳苓,姜忻良,周明杰.EVA改性EPS混凝土微观结构及性能研究[J].建筑材料学报,2010,13(2):243-246
    [100]庄茁,张帆,芩松. ABAQUS非线性有限元分析与实例[M].科学出版社,2005:49-51
    [101]ACI Committee213R-0.3. Guide for structural lightweight aggregate concrete.American Concrete Institute, Farmington Hills, MI,2003
    [102]A. C. Chen, W. F. Chen. Constitutive relations for concrete[J]. Journal of EngineeringMechanics Division, ASCE.1975,101(4):465–481
    [103]A.D. Jefferson. Craft-a plastic damage contact model for concrete-I: Model theory andthermodynamic considerations[J]. International Journal of Solids and Structures,2003,40:5973–5999
    [104]A. Sadrmomtazi, J. Sobhani, M.A. Mirgozar, M. Najimi.Properties of multi-strengthgrade EPS concrete containing silica fume and rice husk ash[J]. Construction andBuilding Materials2012(35):211–219
    [105]Attiogbe E K. Darwin D. Submicrocracking in Cement Paste and Mortar. ACI Journal,1987,84(6):491-500
    [106]Bagon C, Frondistou-Yannas S. Marine floating concrete made with polystyreneexpanded beads[J]. Mag Concr Res1976, Vol.28:225–233
    [107]Bazant Z P,Kim SS. Plastic-fracturing theory for concrete[J].Journal of EngineeringMechanics Div. ASCE,1979,105(6):407–428
    [108]Bazant Z P,Bhat PD.Endochronic theory of inelasticity and failure of concrete. Journalof Engineering Mechanics Div.ASCE,1976,102(5):701–722
    [109]Bazant Z P, Tabbara M R, KazemiM T, Pijaudier Cabot G. Random particle models forfracture of aggregate or fiber composites[J]. ASCE J. Engng. Mech,1990,116(8):1686-1705
    [110]By Dr. Richard Boser, Mr. Tory Ragsdale, and Dr. Charles Duvel. Recycled Foam andCement Composites in Insulating Concrete Forms[J],Journal of Industrial Technology,2002,Vol.18(3):1–5
    [111]Beaudoin J J, Feldman R F, Tumidajski P J. Pore structure of hardened Portland cementpastes and its influence on properties[J], Adv. Cem. Based Mater,1994(1):224-236
    [112]Bischoff PH, Yamura K, Perry SH. Polystyrene aggregate concrete subjected to hardimpact[J]. Proc Inst Civil Eng1990,89(2):225–264
    [113]B. Luccioni, S. Oller, R. Danesi. Coupled plastic damaged model[J]. Computer methodsin Applied Mechanics and Engineering,1996,129:81–89
    [114]Buyukozturk O,Nilson AH, Slate F O. Stress-Strain Response and Fracture of aConcrete Model in Biaxial loading[J]. ACI Journal,1971,68(8):590-599
    [115]Buyukozturk O,Nilson AH, Slate F O.Deformation and Fracture of ParticulateComposite[J]. Journal Engineering Mechanics Division, ASCE,1972,98(3):581-593
    [116]Chen B,Liu JY. Properties of lightweight expanded polystyrene concrete reinforced withsteel fiber[J].Cement and Concrete Research,2004,34(7):1259–1263
    [117]Chen B,Liu JY. Mechanical properties of polymer-modified concretes containingexpanded polystyrene beads[J].Construction and Building Materials,2007,21(1):7–11
    [118]Chen WF. Plasticity in Reinforced Concrete[M]. New York, NY:McGraw-Hill,1982
    [119]Chen WF.Concrete Plasticity: Past,Present and future [A].Strength Theory: Application,Developmet and Prospect for the21st Century[C].Beijing,China: SciencePress,1998.7–48
    [120]Chaboche J L. Continuum damage mechanics: present state and future trends[J]. Nucl.Eng.Design,1987,105(6):19–33
    [121]Chaboche J L.Continuous damage mechanics-a tool to describe phenomena beforecrack initiation[J]. Nucl. Eng.Design,1981,64,233–247
    [122]Chaboche J L.Anisotropic creep damage in the framework of continuum damagemechanics[J], Nucl. Eng. Design,1984,79,309–319
    [123]Chaboche J L. The concept of effective stress applied to elasticity and viscoplasticity inthe presence of anisotropic damage. in: Mechanical Behavior of AnisotropicSolids(Edited by Boehler J-P). Martinus Nijhoff,The Hague,1982,737–760
    [124]Chow C L,Wang J.An anisotropic theory of elasticity for continuum damagemechanics[J]. International Journal of Fracture,1987,33(1):3–16
    [125]Chow C L,ChenXF. An anisotropic model of damage mechanics based on end chronictheory of plasticity[J]. International Journal of Fracture,1992,55(2):115–130.
    [126]Cook D J. Expanded polystyrene beads as lightweight aggregate for concrete[J].PrecastConcr,1973,4(4):691–693
    [127]Cook D J. Expanded polystyrene concrete[A].Swamy R N.Concrete Technology andDesign:(1).New Concrete Materials[C].London:Surrey University Press,1983.41–69.
    [128]D. Bouvard, J.M. Chaix, R. Dendievel, A. Fazekas, J.M. Létang, G. Peix, D. Quenard.Characterization and simulation of microstructure and properties of EPS lightweightconcrete[J]. Cement and Concrete Research.2007,37:1666–1673
    [129]De Larrard F. Concrete Mixture Proportionning[M]. A Scientific Approach, E&FNSpon. London,1999
    [130]D. J. Han, W. F. Chen. Constitutive modeling in analysis of concrete structures[J].Journal of Engineering Mechanics Division ASCE.1987,113(4):577–593
    [131]E. Dvorkin, R. Torrent, A. Alvaredo. A constitutive relation for concrete[C]. Proceedingof International Conference on Computational Plasticity (Barcelona), Part2, PineridgePress, Swansea,1987:1415–1430
    [132]F. A. Leckie, D.R. Hayhurst. Creep rapture of structure[C]. Proc. R. Soc. A340,1974
    [133]F. Armero, S. Oller.A general framework for continuum damage models-I: Infinitesimalplastic damage models in stress space[J]. International Journal of Solids and Structures,2000,37:7409–7436
    [134]F. Gatuingt, G. Pijaudier-Cabot. Coupled damage and plasticity modeling in transientdynamic analysis of concrete[J]. International Journal of Numerical and AnalyticalMethods in Geomechanics.2002,26:1–24
    [135]F. Sidoroff. Description of anisotropic damage application to elasticity[C]. Proceedingof IUTAM Colloquium. Physical Nonlinearities in Structural Analysis,1981:237–244
    [136]F. Supartono, F. Sidoroff. Anisotropic Damage modeling for Brittle elastic materials[C].Symposium of Franc-Poland,1984
    [137]Ganesh Babu K,Saradhi Babu D. Behaviour of lightweight expanded polystyreneconcrete containing silica fume[J].Cement and Concrete Research,2003,33:755–762
    [138]Ganesh Babu K,Saradhi Babu D. Performance of fly ash concretes containinglightweight EPS aggregates[J]. Cement and Concrete Composites.2004,26:605–611
    [139]Godwin A. Versatile concrete blocks for the third world [J]. Indian Concr,1982:240-241
    [140]Hanna AN. Properties of expanded polystyrene concrete and applications for pavementsub-bases. Research and Development Bulletin, Portland Cement Association,1978(Rd055.01P)
    [141]J. Hult. Introduction and overview. In: Continuum Damage Mechanics: Theory andApplications[R]. Wien-New York, Springer-Verlag,1989
    [142]J. Janson, J. Hult. Fracture mechanics and damage mechanics, a combined approach[J].Journal of Applied Mechanics,1997,1(1):59-64
    [143]J. Lubliner, J. Oliver and S. Oller. A Plastic-Damage Model for Concrete[J].International Journal of Solids and Structures,1989,25(3):299–326
    [144]J. Lee, G. L. Fenves. Plastic-damage model for cyclic loading of concretestructures[J].Journal of Engineering Mechanics Division, ASCE,1998,124(8):892–900
    [145]J. P. Cordebois, F. Sidoroff. Damaged induced elastic anisotropic[C]. ColloqueEuromech115, Mechanical Behaviour of Anisotropic Solids. Villard de Lans,1982:761–774
    [146]J. W. Ju. On energy-based coupled elastoplastic damage theories: constitutive modelingand computational aspects[J]. International Journal of Solids and Structures,1989,25(7):803–833
    [147]Kayyali, O., Haque, M., A new generation of structural lightweight concrete. Universityof New South Wales, Australia. Concrete Technology SP.1996,171-27,569–588
    [148]Kachanov LM.On the creep fracture time[A].Proeeedings of the Academy of Sciencesof the USSR, Division of Engineering Science[C].Moscow,1958,8:26–31
    [149]Kachanov M. Effective elastic properties of crack solids,critical review of some basicconcepts. Appl.Mech.Review,1992,45(7):304–335
    [150]Kearsley EP, Wainwright PJ. Porosity and permeability of foamed concrete[J]. CemConcr Res2001;31:805–817
    [151]Krajcinovic D. Constitutive equations for damaging materials[J]. Journal of AppliedMechanics,1983,50:355–360
    [152]Krajcinovic D.Damage mechanics. Amsterdam:Elsevier,1997
    [153]Krajcinovic D, Fonseka GU.The continuous damage theory of brittle materials,PartⅠand PartⅡ [J].Joumalof Applied Mechanics,ASME,1981,48:809–824
    [154]Krajcinovic D.Continuum damage mechanics[J].Applied MechanicsReview,1984,37(l):1–6
    [155]Krajcinovic D.Selection of damage parameter: art or science?[J].Mechanics ofMaterials,1998,28(3):165–179
    [156]Krajcinovic D. Damage mechanics:accomplishments,trends,and needs[J]. InternationalJournal of Solids Structure,2000,37:267–277
    [157]Lemaitre J,Chaboehe J.Aspect phenomenological delay rupture pareendommagement[J]. Journal of Applied Mechanics,1978,12:317–365
    [158]Lemaitre J,Plumtree J. Application of damage concepts to predict creep-fatiguefailures[J]. Journal of Engineering Materials and Technology,ASME,1979,101:284–292
    [159]Lemaitre J. A continuous damage mechanics model for ductile fracture[J],Journal ofEngineering Materials and Technology,1985,107(l):83–89
    [160]Lemaitre J. A course on damage mechanics.Berlin:Springer-verlag,1992
    [161]Lemaitre J. Anisotropic damage law of evolution. European[J], Journal of MechanicsA/Solids,2000,19(2):187–208
    [162]Litewka A. Effective material constants for orthotropically damaged elasticsolid[J].Arehive of Applied Mechanics,1985,37(6):631–643
    [163]L. Janson, A. Huerta, G. Pijaudier-Cabot, S. Ghavamian. An elastic plastic damageformulation for concrete: application to elementary tests and comparison with anisotropic damage model[J]. Computer methods in Applied Mechanics and Engineering,2006,195:7077–7092
    [164]Loland K E. Continuum damage model for load response estimation of conerete[J].Cement and Conerete Researeh,1980,10:395–402
    [165]Mazars J. Application de la mecanique de l`endommagement au comprtement nonlinear et à la rupture du beton de structure[D]. Doctor Dissertation of University of Paris,France,1984
    [166]Mazars J. A Model of a Unilateral Elastic Damageable Material and Its Application toConcrete. Fracture Toughness and Fracture Energy of Concrete, Edited by F HWittmann, Elsevier Science Publishers, Amsterdam,1986:61-71
    [167]Magnan JP, Serratrice JF. Propriétés mécaniques du polystyrène expansé pour sesapplications en remblai routier. Bulletin Liaison Laboratoire Ponts et Chausse′es, LCPC,1989(164):25-31
    [168]Miled K,Roy R L,Sab K,etc.Compressive behavior of an idealized EPS lightweightconcrete: size effects and failure mode[J].Mechanics of Materials,2004,36:1031–1046
    [169]Miled K,Sab K,Roy R L. Particle size effect on EPS lightweight concrete compressivestrength:Experimental investignation and modeling[J].Mechanics ofMaterials,2007,39:222–240
    [170]M. N. Fardis, E. S. Chen. A cyclic multiaxial model for concrete[J]. ComputationalMechanics,1986,(1):301–305
    [171]Mohamed A R, Hansen W. Micro mechanical modeling of concrete response understatic loading Part1: Model development and validation [J]. ACI Materials Journal,1999,96(2):196-203
    [172]M.R. Salari, S. Saeb, K. J. Willam, S. J. Patchet, R. C. Carrasco, A coupled elastoplasticdamage model for geomaterials[J]. Computer methods in Applied Mechanics andEngineering,2004,193:2625–2643
    [173]Nemat-Nasser S and Hori M. Micromechanics: Overall Properties of HeterogeneousMaterials. Elsevier, The Netherlands,1993
    [174]N. R. Hansen, H. L. Schreyer. Thermodynamically consistent theories forelastoplasticity coupled with damage[R]. J.W. Ju et al.(Eds.), Damage Mechanics andLocalization, AMD vol.142/MD vol.34, ASME Publications,1992:53–67
    [175]Perry SH, Bischaff PH, Yamura K. Mix details and material behaviour of polystyreneaggregate concrete[J]. Mag Concr Res1991,Vol.43:71–77
    [176]R. Faria, J. Oliver, M. Cervera. A strain-based plastic viscous damage model formassive concrete structures[J]. International Journal of Solids and Structures,1998,35(14):1533–1558
    [177]Rice J R. Continuum mechanics and thermodynamics of plasticity in relation tomicroscale deformations mechanisms. In:Edited by Argon A S.Constitutive Equations inPlasticity MIT Press.Cambrige,1975
    [178]Roy R L,Parant E,Boulay C.Taking into account the inclusions’s size in lightweightconcrete compressive strength prediction[J]. Cement and ConcreteResearch,2005,35:770–775
    [179]Robotnov YN. Creep rupture[A]. Proceedings of the12th International Congress ofApplied Mechanics[C]. Stanford,CA,1968.342–349
    [180]Saradhi Babu D, Ganesh Babu K. Properties of lightweight expanded polystyeneaggregate concretes containing fly ash[J].Cement and Concrete Research,2003,35(6):1218–1223
    [181]Saradhi Babu D,Ganesh Babu K,Wee T H. Effect of polystyrene aggregate size onstrength and moisture migration characheristics of lightweight concrete[J].Cement andConcrete Composites,2006,28:520–527
    [182]Schlangen E, Garbocai E J.Fracture simulations of concrete using lattice models:computational aspects [J]. Engineering Fracture Mechanics,1997,57(2/3):319-322
    [183]Schlangen E, van Mier J G M. Lattice model for numerical simulation of concretefracture. International conference on dam fracture[C]. Denver, Colorado, USA,1991.513-527
    [184]S. Fichant, C. La Borderie, G. Pijaudier-Cabot. Isotropic and anisotropic descriptions ofdamage in concrete structures[J]. Int. J. Mech. Cohesive Frictional Mater.1999,4:339–359
    [185]Short A, Kinniburgh W. Lightweight concrete.3rd ed. London, Applied SciencePublishers Ltd.1978
    [186] Simo JC, Ju JW. Strain and stress based continuum damage models-I: Formulation[J].International Journal of Solids and Structures,1987,23:821–840
    [187]Simo JC, Ju JW. Strain and stress based continuum damage models-II: Computationalaspects[J]. International Journal of Solids and Structures,1987,23:841–869
    [188]Sri Ravindrarajah, R., Tuck, A.. Properties of hardened concrete containing treatedexpanded polystyrene beads. Cement and Concrete Composites [J].1994,Vol.16:273–277
    [189]Sussman V. Lightweight plastic aggregate concrete.[J] Am Concr Inst Proc.1975,Vol.72:321–324
    [190]Sussman V, Baumann GH. Expanded polystyrene beads lighten the load[J]. Soc PlasticEng.1972,Vol.28:18–21
    [191]S. Yazdani, H. L. Schreyer. Combined plasticity and damage mechanics model for plainconcrete[J]. Journal of Engineering Mechanics Division, ASCE.1990,116:1435–1450
    [192]UK BREEAM.BREEAM98for offices-an environmental assessment method for officebuilding,Building Research Establishment(BRE),Garston,Wellford,2000
    [193]US Green Building Council.Leadership in Enegry and Environmental Design RatingSystem.June2001
    [194]W. F. Chen. Plasticity in reinforced concrete[M]. McGraw-Hill, New York.1982
    [195]Wittman F H. Structure and mechanical properties of concrete [J].[日]东北大学建筑学报,1983,22(3):93–111
    [196]Yang W and Lee W. B. Mesoplasticity and its Applications. Spring-Verlag,Berlin,1993
    [197]Yang CC. Huang R.A two phase model for predicting the compressive strength ofconcrete[J], Cem. Concr. Res.1996(26):1567-1577
    [198]Yamaguchi E. Chen W F. Microcrack Propagation Study of Concrete underCompression[J]. Journal of Engineering Mechanics, ASCE.1991,117(3):653-673
    [199]Y. Ohtani, W. F. Chen. Multiple hardening Plasticity for concrete materials[J]. Journalof Engineering Mechanics Division, ASCE.1988,114(11):1890–1910
    [200]Zaitsev Y V. Crack Propagation in a Composite Material. Fracture Mechanics ofConcrete [M].Amsterdam Printed in The Netherlands,1983.251-299

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700