用户名: 密码: 验证码:
活动断层的地震地表永久位移研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来的汶川地震、集集地震、昆仑山口地震、土尔其伊兹米特地震等都引起了大规模的地表破裂,其可能对道路、桥梁、隧道、大坝、输油(气)管网、通讯电缆等大型工程造成严重破坏,导致巨大资产损失。因此,活动断层的地震地表破裂研究已经成为岩土地震工程中关注的焦点课题之一,地表永久位移的分布特征研究对防震减灾具有十分重要的工程意义和理论价值。
     本文首先剖析了地震发生的机理和发生过程。认为地震发生的物理过程可以描述为断层及其分割的地块组成的不稳定系统在地质作用下发生的局部失稳过程或界面材料破坏的过程,并从数学、力学等理论角度作了描述。
     构造应力与强震活动具有密切联系。文中综述了GPS在地球动力学研究中的应用和成果,介绍了我国大陆及周边动力学环境。在此基础上,选择鲜水河断裂带、龙门山断裂带和东昆仑断裂带及其分割的活动地块为研究对象,应用地壳运动动力学模拟了研究区域内最近三次破坏性地震—昆仑山口地震、汶川地震、玉树地震发生前后的断层—活动地块的运动状态。结果表明应力、应变、位移状态与地震发生可能存在一定的联系,初步推断研究区域内未来可能发生强震的地段为鲜水河断裂带西北段、映秀-北川断裂的西南段和东北段。
     某区域内活动构造发生地震有一定的规律性。文中比较分析了现今常用地震发生模型的方法及其适宜性。借鉴以往研究成果,提出了指定活动断层的地震发生模型选定的方法和步骤。联合历史地震和探槽确定的古地震增补的地震序列,给出了几条断裂的特征地震,即:鲜水河断裂带上M≥7.0级地震平均复发间隔为41年,特征地震震级为712;小江断裂带上M≥7.0级地震平均复发间隔为58年,特征地震震级为712。
     联合构造应力作用下地壳运动动力学的模拟结果和断层的特征地震发生模型,可以估计断层未来一段时间内的地震危险性。地震引起的地表位移评估方法分近断层场地和远离断层场地两部分来处理,近断层场地采用了基于Cornell地震动框架的地表永久位移的概率分析方法和设定地震分析方法,其中考虑了震级—破裂尺度关系、永久位移分布模式和位移衰减模型。统计了汶川地震中沿断裂的永久位移分布,论证了永久位移分布模式的适用性。应用上述方法分析了鲜水河断裂带上的最大永久位移,得到其近场的最大永久位移估值。
     对于远离断层场地,提出了基于Mindlin解的地震地表永久位移估计方法,并以鲜水河断裂为例,对活动断层有限范围内的地表位移场进行了数值模拟。结果显示,在震中距为26km处的场址处,位移分布已比较均匀,且相对平缓,三个方向相距100m的相对位移分别为1、1和2cm。
     总之,本文剖析了地震发生的物理过程,对断层附近的地震、地震地质、构造应力、GPS观测数据进行综合分析,应用地壳运动动力学模拟估计了发震的敏感部位;依据历史地震、现代地震和古地震的统计关系,确定地震发生模型,估计了断层在未来一段时间内的地震危险性,进而评估了活动断层地震地表破裂永久位移。以大岗山水坝工程为应用背景进行了实例验证,提出了一套应用于工程地震的活动断层地震地表破裂永久位移的评估体系。
Large-scale surface rupture is caused by the recent earthquakes such asWenchuan earthquake,Jiji earthquake,Kunlunshan earthquake and Turkey izmitEarthquake. Huge losses were caused because of the great damage to thebridges, roads, dams and so on. So,research of surface rupture of active fault isthe focus in the field of geotechnical earthquake engineering. Research ondistribution of permanent surface displacement has great engineeringsignificance and theoretical value to earthquake preparedness and disasterreduction.
     The mechanism and process of earthquake occurrence are analyzed in thispaper.Physical process of earthquake occurrence is described in mathematicaland physical way, which is the process of local buckling or material damage ofinterface of unstable system composed by faults and septate block affected bygeological processes.
     Tectonic stress and strong earthquake are closely related. In this paper,application and achievements of GPS in the research of geodynamics aresummarized and dynamic environment of mainland China and nearby regionsis introduced. Xianshuihe fault,Longmenshan fault and Dongkunlun fault arechosen as the research objects, then dynamics of crustal movement is applied tosimulate the motion state of fault before and after the nearest destructiveearthquakes---Kunlunshan earthquake,Wenchuan earthquake and Yushuearthquake. The results show that there is relation between stress, strain anddeformation behavior and earthquake and strong earthquakes may happen inthe northwest of Xianshuihe fault, southwest and northwest ofYingxu-beichuan fault according to preliminary inference.
     There is regularity for earthquake occurrence in active structure of oneregion. The common model of earthquake occurrence and its scope ofapplication is analyzed comparatively. Basing on the former research results,the method and steps to choose earthquake occurrence model are put forwardfor the appointed active fault. Considering the historical earthquakeand supplementary earthquake sequence confirmed by trial trench, models ofearthquake occurrence of several rupture are given as follows: the averagerecurrence time interval of eartahquake which magnitude is greater than orequal to7.0in Xianshuihe fault is41years and the magnitude of characteristicearthquake is712. The average recurrence time interval of eartahquake whichmagnitude is greater than or equal to7.0in Xiaojiang fault is58years and themagnitude of characteristic earthquake is712.
     Seismic risk of fault in the future can be estimated considering thesimulation results of dynamics of crustal movement and earthquake occurrence model of fault. The method to evaluate the surface displacement caused byearthquake can be considered in the ways of near field and far field. For nearfield, probability analysis method of permanent surface displacement is usedbasing on Cornell vibration framework of surface. And also, the relationbetween magnitude and rupture scale, the distribution model of permanentdisplacement and the method to evaluate the maximum permanentdisplacement of surface based on the Lee displacement attenuation model areall considered. Then, permanent displacement along rupture zone of theWenchuan earthquake is studied with statistics and the applicability ofdistribution model of permanent displacement is demonstrated. Then, themethod is applied to analyze the Xianshuihe fault and the value of themaximum permanent displacement of near field is obtained.
     The method to evaluate the permanent displacement of the fault in the farfield is put forward based on Mindlin solution. It is applied to the XianshuiheFault.And displacement field of surface is calculated in a limited range of thefault. The results showed that the displacement distribution of the site which isfar26km from the fault is relatively homogeneous.The relative displacement ofthree directs are1cm,1cm,2cm.
     In a word, physical process of earthquake occurrence is analyzed andearthquake of fault, seismic geology, tectonic stress and GPS observation dataare also analyzed comprehensively. The key point of earthquake occurrence iscalculated by using the geodynamics. Earthquake occurrence model isconfirmed and then its risk is confirmed in the future according to the statisticalrelation among the paleoseismic, historical and modern earthquakes. In thispaper taken Dagangshan dam as engineering background, surface permanentdisplacement of fault is evaluated. At last, a set of evaluation system is putforward for permanent surface displacement of active fault which can beapplied to the engineering seismology.
引文
[1]安美建,石耀林,李方全.用遗传有限单元反演法研究东亚部分地区现今构造应力场的力源和影响因素[J].地震学报,1998,20(3):225-231.
    [2]蔡守志,马百财.罗湖断裂带工程性质分析及其对深圳地铁工程影响与对策研究[J].岩土工程界,2000,3(6):41-47.
    [3]曹娟娟,刘百箎,闻学泽.西秦岭北缘断裂带特征地震平均复发间隔的确定和地震危险性评价[J].地震研究,2003,26(4):372-381.
    [4]陈连旺.构造应力场动态演化图像与强震活动关系的研究[D].中国地震局工程力学所,2003.
    [5]陈鲁皖.基于GIS的活断层灾害危险性评价—以海原活动断裂带为例[D].西安:长安大学,2007.
    [6]邓起东,张裕明,许桂林等.中国构造应力场特征及其与板块运动的关系[J].地震地质,1979,1(1):11-22.
    [7]丁国瑜主编.中国岩石圈动力学概论[M].北京:地震出版社,1991.
    [8]丁国瑜.有关活断层分段的一些问题[J].中国地震,1992,8(2):1-10.
    [9]丁国瑜,田勤俭,孔凡臣等.活断层分段—原则、方法与应用[M].北京:地震出版社,1993.
    [10]丁国瑜.有关西藏高原活动构造的一些问题[J].西北地震学报,1998,10(增刊):1-11.
    [11]杜义,谢富仁,张效亮等.汶川MS8.0级地震断层滑动机制研究[J].地球物理学报,2009,52(2):464-473.
    [12]范俊喜,马谨,甘卫军.鄂尔多斯地块运动的整体性与不同方向边界活动的交替性[J].中国科学(D辑),2003,33(增):119-128.
    [13]冯德益,顾瑾平,虞雪君等.模糊数学方法在地震危险性估计方面的应用[J].地震学刊.1984,(3):l-8.
    [14]冯德益.地震危险性分析中确定、概率和模糊方法的综合应用[C].中国地震学会第三次全国地震科学学术讨论会论文摘要汇编.1986.
    [15]傅容珊,黄建华,徐耀民等.印度与欧亚板块碰撞的数值模拟和现代中国大陆形变[J].地震学报,2000,22(1):l-7.
    [16]甘卫军,刘百篪,黄雅虹.板内大震原地准周期复发间隔的概率分布[J].西北地震学报,1999,21(1):7-16.
    [17]龚平,曾心传.地震危险性分析中常见地震发生概率模型的合理性及局限性研究[J].地震研究,2000,23(1):57-63.
    [18]龚平.地震发生概率模型多参数组检验研究[J].地震研究,2002,25(3):267-274.
    [19]郭宝玲,率和状态相关摩擦律与地震复发周期的研究[D].哈尔滨:中国地震局工程力学研究所,2012.
    [20]国家地震局科技发展司.中国近代地震目录[M],北京:中国科学技术出版社,1999.
    [21]国家地震局震害防御司.中国历史强震目录[M],北京:地震出版社,1995.
    [22]国家质量监督检验检疫总局,中国地震动参数区划图(GB18306-2001)[M],2001.
    [23]郭增建,马宗晋.中国特大地震研究[M].北京:地震出版社,1988.
    [24]韩渭宾,蒋国芳.川青块体及其向南东方向运动的新证据[J].西北地震学报,2003,2(25):175-179.
    [25]环文林,张晓东,吴宣等.中国地震区、带划分研究.中国地震区划学术讨论会文集[C].北京:地震出版社,1998:129-139.
    [26]金严,胥广银.弱震和中等强度地震活动区地震活动性模型研究[C].中国地震区划学术讨论会论文集.北京:地震出版社:1998.
    [27]李传友.龙门山断裂带北段晚第四纪活动性讨论[J],地震地质,2004(2).
    [28]李方全,刘光勋.我国现今地应力状态及有关问题[J].地震学报,1986,8(2):156-171.
    [29]李红.构造应力场、活动断裂及区域地震活动性的数值模拟研究[D].北京:中国地震局地壳应力研究所,2008.
    [30]李鹏.活动断层区公路隧道抗错断结构设计的研究[D].重庆:重庆交通大学,2009.
    [31]李玶.鲜水河—小江断裂带[M].地震出版社,1993.
    [32]梁明剑.兰州市活断层地震危险性评价[D].兰州:中国地震局兰州地震研究所,2008.
    [33]刘爱文.海底光缆的地震影响分析[J].国际地震动态,2007,338(2):19-23.
    [34]刘必灯.断层场地对地震动影响研究[D].哈尔滨:中国地震局工程力学研究所,2011.
    [35]刘艳琼,赵纪生,周正华.发震断层附近场点的最大永久位移估计[J].应用基础及工程科学,2010.7(18):212-218.
    [36]罗利锐,刘志刚.断层对隧道围岩稳定性的影响[J].地质力学学报,2009,15(3):226-232.
    [37]罗灼礼,孟国杰.关于地震丛集特征、成因及临界状态的讨论[J].地震,2002,22(3):2-14.
    [38]马杏垣.中国岩石圈动力学图.北京,地图出版社,1989.
    [39]牛之俊.祁连山中东段强震复发概率模型及未来强震地点预测[J].西北地震学报,2004,(3).
    [40]牛之俊.用全球定位系统(GPS)研究中国大陆现今地壳运动模式[D].武汉:华中科技大学,2006.
    [41]乔学军,王琪,杜瑞林等.昆仑山口西Ms8.1的地震的地壳变形特征[J].大地测量与地球动力学,2002,22(4):6-11.
    [42]冉永康.我国几个典型地点的古地震细研究和大地震重复行为探讨[D].北京;国家地震局地质研究所,1997.
    [43]宋淑丽.GPS应用于地球动力学研究的进展[J].天文学进展,2003,(2)
    [44]松泽畅.地震预报的战略与展望(之一)[J].国际地震动态,2003,4:19-22.
    [45]帅平,吴云,周硕愚.用GPS测量数据模拟中国大陆现今地壳水平速度场及应变场[J].地壳形变与地震,1999,19(2):1-18.
    [46]万永革,王敏,沈正康等.利用GPS和水准测量资料反演2001年昆仑山口西8.1级地震的同震滑动分布[J].2004,26(3):393-404.
    [47]王国新,梁树霞.改进的确定性地震危险性分析方法及其应用[J].世界地震工程,2009,25(2):24-29.
    [48]王凯英.川滇地区现今应力场与断层相互作用研究[D].中国地震局地质研究所,2003.
    [49]王仁,黄杰藩,孙荀英等.华北地震构造应力场的模拟[J].中国科学,1982,4:337-344.
    [50]王仁,梁海华.用叠加法反演东亚应力场[C].国际交流地质学术论文集(2),北京:地质出版社,1983,29-36.
    [51]王士杰,张梅,张吉占.Mindlin应力解的应用理论研究[J].工程力学,2001,18(6):141-148.
    [52]汪素云,陈陪善.中国及邻区现代构造应力场的数值模拟[J].地球物理学报,1980,23(1):35-45.
    [53]汪素云,许忠淮.中国东部大陆的地震构造应力场[J].地震学报,1985,7(1):17-31.
    [54]汪素云,许忠淮,俞言祥等.中国及邻区现代构造应力场的数值模拟[J].地球物理学报,1996,39(6):764-771.
    [55]闻学泽.则木河断裂的第四纪构造活动模式[J].地震研究,1983,6(1):41-50.
    [56]闻学泽.鲜水河断裂带未来三十年内地震复发的条件概率[J].中国地震,1990,6(4):8-16.
    [57]闻学泽.小江断裂带的破裂分段与地震潜势概率估计,地震学报[J],1993a,15(4).
    [58]闻学泽.准时间可预报复发行为与断裂带分段发震概率估计[J].中国地震.1993b,9(4):289-300.
    [59]闻学泽.活动断裂地震潜势的定量评估[M].北京:地震出版社,1995.
    [60]闻学泽.中国大陆活动断裂段破裂地震复发间隔的经验分布[J].地震学报,1999a,21(6):616-622.
    [61]闻学泽.中国大陆活动断裂的段破裂地震复发行为地震学报[J].1999b,21(4):411-418.
    [62]闻学泽.四川西部鲜水河-安宁-则木河断裂带的地震破裂分段特征[J].地震地质,2000,22(3):239-249.
    [63]闻学泽,徐锡伟.福州盆地的地震环境与主要断层潜在地震的最大震级评价[J].地震地质,2003,25(4):509-524.
    [64]闻学泽.中强-弱及隐伏活动断层的现今活动习性与地震危险性评价方法[R].中国地震局震害防御司制,四川省地震局,2007a.
    [65]闻学泽,徐锡伟,龙锋等.中国大陆东部中-弱活动断层潜在地震最大震级评估的震级-频度关系模型[J].地震地质,2007b,2(29):236-253.
    [66]吴景发.汶川地震灾后重建断层避让距离研究[D].哈尔滨:中国地震局工程力学研究所,2009.
    [67]吴梦遥.汶川地震对周围非发震断层的影响研究[D].哈尔滨:中国地震局工程力学研究所,2012.
    [68]吴忠良.由宽频带辐射能量目录和地震矩目录给出的视应力及其地震学意义[J].中国地震,2001,17(1):8-15.
    [69]吴忠良,黄静,张东宁.地震矩张量元素空间分布与中国大陆岩石层地块[J].地震地质,2003,25(1):33-38.
    [70]谢富仁,祝景忠,梁海庆等.中国西南地区现代构造应力场基本特征[J].地震学报,1993,15(4):407-417.
    [71]谢富仁,刘光勋,梁海庆.滇西北及邻区现代构造应力场[J].地震地质,1994,16(4):329-338.
    [72]谢富仁,张世民,窦素芹等.青藏高原北、东边缘第四纪构造应力环境演化特征[J].地震学报,1999,21(5):501-512.
    [73]谢富仁,崔效锋,赵建涛等.中国大陆及邻区现代构造应力场分区[J].地球物理学,2004,47(4):654-662.
    [74]谢富仁,张红艳,崔效锋,杜义.中国大陆现代构造应力场与强震活动[J].国际地震动态,2011,1(385):4-12.
    [75]许忠淮,汪素云,黄雨蕊等.由多个小震推断的青甘和川滇地区地壳应力场的方向特征[J].地球物理学报,1987,30(5):476-486.
    [76]许忠淮,汪素云,黄雨蕊等.由大量的地震资料推断的我国大陆构造应力场[J].地球物理学报,1989,32(6):636-647.
    [77]许忠淮,汪素云,俞言祥等.根据观测的应力方向利用有限单元法反演板块边界作用力[J].地震学报[J],1992,14(4):446-455.
    [78]许忠淮.东亚地区现今构造应力图的编制[J].地震学报,2001,23(5):492-501.
    [79]薛景宏,吕培培.跨断层埋地管道研究评述[J].油气田地面工程,2007,26(5):27-28.
    [80]严聪等.振冲碎石桩与充水预压联合处理地震区深厚软土地基[J].中南大学学报(自然科学版),2009,40(3):822-527.
    [81]杨勇,史保平,孙亮.基于华北区域地震活动性分布的地震危险性评价模型[J].地震学报.2008,30(2):195-205.
    [82]杨振法.大渡河金川水电站外围抚边河断层的活动性研究[D].成都:成都理工大学,2006.
    [83]易桂喜,闻学泽.时间-震级可预报模式在南北地震带分段危险性评估中的应用[J].地震,2000,20(1):71-79.
    [84]易桂喜,闻学泽,徐锡伟.川滇地区若干活动断裂带整体的强地震复发特征研究[J].中国地震,2002,18(3):267-276.
    [85]游兆新.中国大陆地壳现今运动的GPS测量结果与初步分析.地壳形变与地震,2001.
    [86]余成华.深圳市断层活动性和地震危险性研究[D].杭州:浙江大学,2010.67
    [87]于泳.地块变形与断层地震的耦合数值模拟[D].博士学位论文,北京:中国地震局地质研究所,2002.
    [88]臧绍先,宁杰远,刘宝诚等.中国周边板块的相互作用及其对中国应力场的影响—I,太平洋板块、菲律宾海板块的影响[C].北京:学术期刊出版社,1989:293-306.
    [89]臧绍先,吴忠良,宁杰远等.中国周边板块的相互作用及其对中国应力场的影响—II,印度板块的影响[J].地球物理学报,1992,35(4):428-440.
    [90]张东宁,高龙生.东亚地区应力场的三维数值模拟[J].中国地震,1989,15(4):24-32.
    [91]张东宁,许忠淮.中国大陆地壳应变能密度年变化图像与强震活动关系的初步探讨[J].地震,1999a,19(1):26-32.
    [92]张东宁,许忠淮.中国大陆岩石层动力学数值模拟的边界条件[J].地震学报,1999b,21(2):133-139.
    [93]张国民,李丽,黎凯武.强震成组活动与潮汐力调制触发[J].中国地震,2000,17(2):110-120.
    [94]张培震.海原活动断裂带的古地震与强震复发规律[J].中国科学,2003,l33(8):705-713.
    [95]张培震,邓起东等.中国大陆的强震活动与活动地块[J].中国科学(D辑),2003,33(增):12-20.
    [96]张秋文.地震中长期预测研究的进展和方向[J].地球科学进展,1992,(2).
    [97]张秋文,张培震,王乘等.中国大陆若干地震构造带的地震准周期丛集复发行为[J].大地测量与地球动力学,2002,22(1):56-62.
    [98]张瑞斌,赵培林,陈玉华.东昆仑活动断裂带的强震构造条件及未来强震危险区分析[J].高原地震,1996,8(3):12-21.
    [99]张晓莉.青藏高原GPS速度场的形变特征及岩石圈形变动力机制[D].长安大学,2003.
    [100]章在墉.地震危险性分析及其应用[M].上海:同济大学出版社,1997.
    [101]赵纪生,刘艳琼,师黎静等.基于第四代地震区划的跨越发震断层永久位移概率分析方法[J].地震工程与工程振动,2008,24(4):22-27.
    [102]赵纪生,陶夏新,师黎静.地震地表破裂特征及其对应得分析方法[J].世界地震工程,2007,23(3):68-73.
    [103]赵纪生,吴景发,师黎静,刘艳琼.汶川8.0级地震地表破裂迹线附近建筑物的震害分布[J].地球科学前沿,2012,2:1-15.
    [104]赵纪生,周正华.发震断层的永久位移概率评估方法[J].岩土力学与工程学报,2009,28(2):3349-3356.
    [105]赵真.基于工程特性的设定地震确定方法[D].大连:大连理工大学,2007.
    [106]中国地震局震害防御司.中国近代地震目录(公元1912-1990)[M].北京:中国科学出版社,1999.
    [107]中华人民共和国石油天然气行业标准,输油(气)埋地钢质管道抗震设计规范[M](SY/T0450-2004),2004.
    [108]钟菊芳,胡晓,易立新等.重大工程设定地震方法研究进展[J].水力发电,2005,31(4):22-24.
    [109]周硕愚,张跃刚,丁国瑜等.依据GPS数据建立中国大陆板内块体现时运动模型的初步研究[J].地震学报,1998,20(4):347-355.
    [110]朱爱斓,川西地区主干活动断裂间震期滑动习性与运动状态的地震学初步研究[D].2006.
    [111]朱守彪.中国大陆及邻区构造应力场的遗传有限单元法反演[D].北京:中国科学院研究生院,2003.
    [112] Al-Tarazi E,Sendvol E.Alternative models of seismic hazard evaluation alongthe Jordan-Dead Sea Transform[J].Earthquake Speetra,2007,23(l)11-19.
    [113] Bakun W.H.,McEvilly T.V.Recurrence models and Parkfield,California,earthquake[J].Geophys.Res.Lett,1984,B89:051-3058.
    [114] Beeler,N.M.,T.E. Tullis,J.D.Weeks.The roles of time and displacement in theevolution effect in rock friction[J].Geophys.Res.Lett.,1994,21:1987-1990.
    [115] Bott,M.H.P..The mechanism of obilique slip faulting[J].Geological Magazine,1959,96(2):109-117.
    [116] Brace,W.F.,and J.D.Byerlee,Stick-slip as a mechanism for earthquakes[J].Science,153,990-992,1966.
    [117] Cornell C A. Engineering seismic risk analysis[J].Bull Seism.Soc Am,1968,58:1583-1606.
    [118] Dieterich,J.H., Modeling of rock friction,1,Experimental results and constitutiveequations [J].Geoph-ys.Res.,1979,84:2161-2168.
    [119] Dieterich,J.H..Constitutive properties of faults with simulated gouge,inMec-hanical Behavior of Crustal Rocks[J].Geophys.1981,24:103-120.
    [120] Ellsworth W.L.A physically based earthquake recurrence model for estimate oflong-term earthquake probabilities[J].U.S.Geol.Surv.Open-File Rep:1999,99-552.
    [121] Foteva G,Hieva M,Botev E.Spatially smoothed seismicity modeling of seismichazard in the Sofia area[DB/OL].71-82[2007-06-12].http://www.Phys.uni-sofia.Bg/annual/arch/99/full/99-09-full.pdf.
    [122] Frankel A. MapPing seismic hazard in the Central and Eastern United States[J].Seism Res Lett.1995,66(4):8-21.
    [123] Gusev AA. Descriptive statistical model of earthquake source radiation and itsapplication to an estimation of short-period strong motion[J].Geophys.J.RoyalAstr.Soc1983,74(3):787-808.
    [124] Kagan Y Y and Jackson D D.Seismic gap hypothesis:ten years after[J].JGeophys Res,1991,96:21419-21431.
    [125] Kagan Y Y and Jack son D. Long2term earthquake clus2tering[J].Geophys JInt.1991,104:117-133.
    [126] Kagan Y Y.Statistics of characteristic earthquakes[J].Bull Seism Soc Am,1993,83:7-24.
    [127] Lapajne J K,Momikar B S.Zabukovec B,Zupancic P.Spatially smoothedseismieity modelling of seismic hazard in Slovenia[J].J Seism,1997,l:73-85.
    [128] Lapqine J K.Motnikar B S.Zupancie P.Probabilistic seismic hazard assessmentmethodology for distributed seismicity[J].Bull Seism Soc Amer.2003,93(6):2502-2515.
    [129] Lapusta,N.,and J.R.Rice,Nucleation and early seismic propagation of small andlarge events in a crustal earthquake model[J].J.Geophys.Res.,2003,108(B4):8-18.
    [130] Lee VW,Trifunac MD,Todorovska MI, Novikova EI. Empirical equationsdescribing attenuation of the peaks of strong ground motion, in terms ofmagnitude, distance, path effects and site conditions. Report No.95-02,Department of Civil Engineering,University of Southern California,Los Angeles,California,1995.
    [131] Lee VW,Trifunac MD.Frequency dependent attenuation function and Fourieramplitude spectra of strong earthquake ground motion in California.Report No.CE95-03,Department of Civil Engineering,University of Southern California,Los Angeles,California,1995.
    [132] Lee VW,Trifunac MD.Pseudo relative velocity spectra of strong earthquakeground motion in California. Department of Civil Engineering,Report No.CE95-04,University of Southern California,Los Angeles,California,1995.
    [133] M.G. Bonilla,R.K.Mark,J.J.Lienkaemper,Statistical Relations Among EarthquakeMagnitude,Surface Rupture Length,and Surface Fault Displacement,USGS,Open-File Report84-256.
    [134] M.I.Todorovska,M.D.Trifunac,V.W.Lee,Shaking hazard compatible methodo-logy for probabilistic assessment of permanent ground displacement acrossearthquake faults[J],Soil Dynamics and Earthquake Engineering,2007,27(6):586–597.
    [135] Magghews M.V.,Ellsworth W.L.and Reasenberg P.A. A Brownian model forrecurrent earthquakes[J].Bull l.Seis.Soc.Am.,2002,92:2233-2250.
    [136] Mc Guire R K. Probabilistic seismic hazard analysis and design earthquake[J].Closing the loop,BSSA,1995,85(5):1275-1284.
    [137] Nishenko,S.P.and Buland,R.A generic recurrence interval distribution forearthquake forecasting[J].Bull.Seism.Soc.Am.,1987,77:1382-1399.
    [138] Paneha A,Anderson J G,Louie J N.Charaeterization of near-fault geologyatstrong-motion stations in the vinieity of Reno,Nevada[J].Bull Seism SocAmer,2007,97:2096-2117.
    [139] Papazachos C.B. A time and magnitude predictable model for generation ofshallow earthquakes in the Aegean area[J].Pure Appl Geophys,1990,138(2):287-308.
    [140] Pelaez JA.,Lopez C C.Seismic hazard estimate at the Iberian Peninsula[J].PureAPPL GeoPhys,2002,159(11/12):2699-2713.
    [141] Pelaez J A.Hamdache M.LoPez C C.Seismic hazard in Northern Algeria usingspatial]y smoothed seismieity:Resuits for peak ground acceleration[J].Tectonophysics,2003,372:105-119.
    [142] R D Mindlin. Force at a point in the interior of a semi-infinite solid[J].Physics,1936,7(5):195-202.
    [143] Robert R. Youngs,M.EERI,Walter J.Arabasz.A Methodology for ProbabilisticFault Displacement Hazard Analysis (PFDHA)[J],Earthquake Spectra,2003,19(1):191-219.
    [144] Ruina,A.L.,Slip instability and state variable friction laws [J].Geophys Res.,1983,88(10):359-370.
    [145] Schw artz D P,et al.Fault behavior and characteristic earthquake:examples fromthe Wasatch and San Andress fault zones[J].J Geophys Res,1984,89:5681-5698.
    [146] Shimazaki K,Nakada T.Time-predictable recurrence model for large earthquakes[J].Geophys.Res.Lett,1980,7:279-282.
    [147] The National Seismic Hazard Mapping Project..Preliminary Documentation.http://earthquake.usgs.gov/researeh/azmaps/products_data/2007/doeumentation/index.Php.
    [148] Todorovska MI,Trifunac MD,Lee VW.Shaking hazard compatible methodologyfor probabilistic assessment of permanent ground displacement acrossearthquake faults[J].Soil Dynamics and Earthquake Engineering,2007,27(6):586-597..
    [149] Ward S N.Methods for evaluating earthquake Potential and likelihood in andaround California[J].Seism Res Lett,2007,78:121-133.
    [150] Wells DL,Coppersmith KJ.New empirical relationships among magnitude,rupture length,rupture width,rupture area,and surfacedisplacement[J].Bull.Seism. Soc.Am.1994,84(4):974-1002.
    [151] Wen Xueze.Quantitative assessment of active fault seismic potential[M].Beijing:Seismological Press,1995.
    [152] Working Group on California Earthquake Probabilities,Probabilities of largeearthquakes occurring in California on the San Andresa fault, U.S.Geol.Surv.Open-File Rep:1988,88-398.
    [153] Working Group on California Earthquake Probabilities,Probabilities of largeearthquakes in the San Francisco Bay Region,California. U.S.Geol.Surv.Circ:1990,1053-1103.
    [154] Working Group on California Earthquake Probabilities,Seismic hazards inSouthern California:probable earthquakes,1994-2024.Bull.Seis.Soc.Am.,1995,85:379-439.
    [155] Working Group on California Earthquake Probabilities,Earthquake probabilitiesin the San the San Francisco Bay Region,2000-2031.U.S.Geological Open-FileRep:2003,3-214.
    [156] Zhao Jisheng,Tao Xiaxin,HI L J.An approach to evaluate ground surface rupturecaused by reverse fault movement[J].Earthquake Engineering and EngineeringVibration,2006,5(1):27-39.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700