用户名: 密码: 验证码:
厄尔尼诺/南方涛动双模态的物理本质
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
热带太平洋海洋-大气相关作用是全球气候系统的重要组成部分,厄尔尼诺/南方涛动(El Ni o-Southern Oscillation, ENSO)又是其中最活跃的成分,长期以来得到科学界的极大关注。本文使用改进的Zebiak-Cane (ZC)模式,采用求解线性系统稳定性的方法,考察了ENSO的主模态在不同的背景态和海气耦合参数下的稳定性,并且分析了相应的不稳定主模态的海气变量特征和背后的控制因素。本文不仅证实前人有关ENSO有多个模态的结论,还得到了以下的创新性研究
     结果:
     1.充分认识到ZC模式在模拟ENSO方面的缺陷,即赤道东太平洋海面风异常过强,提出该缺陷是由ZC模式对赤道东太平洋大气热量异常经向尺度的错误模拟导致的。在ZC模式的大气模式中加入垂直动量混合和对流不稳定参数,修正赤道东太平洋海温异常对大气的加热效率及大气内对流激发的垂直动量混合,成功地模拟出与观测到的降水异常分布相似的大气热量异常,从而得到了较为理想的ENSO异常风场。改进后的大气模式中模拟的ENSO异常风的纬向、经向尺度和强度均比原模式更大,且更接近观测。
     2.将改进后的大气模式与ZC的海洋模式相耦合并作线性化处理,在不同的热带太平洋背景态下考察了该模式中海气相互作用的主模态,发现ENSO的主模态有两个:海温异常中心位于赤道东太平洋的准四年(quasi-quadrennial, QQ)振荡模态和海温异常中心位于赤道中太平洋的准两年(quasi-biennial, QB)振荡模态。且得益于海面风异常的水平尺度和强度的增加,这两个模态的强度均比前人研究过的更强。这两个模态在特定的背景态下可以共存,也可以独立存在。研究还发现,QQ(QB)模态随着温跃层反馈的增强而增强(减弱),且QQ模态对海气耦合强度、海面热力耗散及海洋波速的敏感性小于QB模态。这说明,QQ(QB)模式是受次表层(表层)海洋动力影响较大的模态。
     3. QQ和QB模态的海温变化热量收支平衡的分析进一步证实了上述观点,在QQ模态中,温跃层反馈(次表层海温异常在气候平均的上升流的输运下对表层海温的影响)提供海温异常发展和衰减的动力,而在QB模态中,起这一作用的物理过程是纬向平流反馈(异常海流对海温的纬向梯度的改变)。
     4.综合考虑模式中的QQ和QB模态的海气变量时空特征和海温变化主要控制因子,我们认为本模式揭示的QQ模态正位相其实就对应着传统研究的El Ni o,而QB模态的正位相则为近年来发现的新型El Ni o。
The air-sea interaction in the tropical Pacific is the key element of the globalclimate system, in which the El Ni o-Southern Oscillation (ENSO) behaviors as amajor contributor. ENSO has been long investigated for its diversity of oscillations inthe scientific community. In this thesis, instability analysis is performed to alinearized modified Zebiak-Cane (ZC) model, which is improved by the author, todetect the most unstable modes under continuous varying basic states and physicalparameters. The main results, in one hand, support the earlier conclusions on thistopic, and, in the other hand, are enlightened by the following unique findings.
     1. The defects of the ZC model in simulating the ENSO winds anomalies are longblamed for the unreasonable strong winds variation over the tropical eastern Pacific. Itis the failure of simulating the right pattern of atmospheric heating that should beresponsible for such defects. In order to reproduce the atmospheric heating whichshares a similar pattern as the observed precipitation anomalies, the parameterizationof the vertical momentum mixing and the parameter of convective instability areadopted to improve the atmospheric component of ZC model. And it is shown that theENSO winds are greatly improved, in particular over the tropical eastern Pacific,which is represented by wind anomalies with broader horizontal scales and strongeramplitude than those from the original model. In total, the ENSO wind anomaliesfrom the modified model resemble the observation more.
     2. The improved atmospheric model is coupled with the original ocean model to setup a new ZC model, and after it is linearized, the ENSO modes are investigated. It is found that the most unstable modes are the quasi-quadrennial (QQ) and quasi-biennial(QB) modes, whose peak SST anomalies are centered in the tropical eastern Pacificand central Pacific, respectively. Due to the enhancement of the wind anomalies, theboth modes are stronger than those in an earlier and similar study. The two modes caneither coexsist or exsist independently in some typical mean states. The results alsoshow that the QQ (QB) mode increases (decreases) as the increasement of thethermocline feedback, and the QQ mode is less sensitive to the strength of the air-seacoupling and thermal damping, as well as the oceanic wave speed. In general, the QQ(QB) mode depends more on the oceanic dynamics in the sub-surface (surface) layer.
     3. The heat budget analysis of the QQ and QB modes confirms the above-mentionedresults. For the QQ mode, the thermocline feedback (the vertical advection of theanomalous subsurface temperature by the mean upwelling) contributes to thedevelopment and phase transition of the SST anomalies. However, For the QB mode,it is the zonal advective feedback (the zonal advection of the mean SST gradient bythe anomalous zonal currents).
     4. Taking the spatial-temporal pattern of the QQ and QB modes and theircontrolling mechanism, we conclude that the QQ mode in this mode corresponses tothe conventional El Ni o and the QB mode the new type of El Ni o.
引文
1Neelin J. D. Climate change and climate modeling. New York: Cambridge University Press,2011.1-282.
    [1] An, S.-I., and B. Wang,2000. Interdecadal change of the structure of the ENSOmode and its impact on the ENSO frequency. Journal of Climate,13:2044-2055.
    [2] An, S.-I., and F.-F. Jin,2000. An eigen analysis of the interdecadal changes inthe structure and frequency of ENSO mode. Geophysical Research Letters,27,2573-2576.
    [3] Anderson, D. L. T., E. S. Sarachik, P. J. Webster, and L. M. Rothstein,1998. TheTOGA Decade: Reviewing the progress of El Ni o research and prediction.Journal of Geophysical Research,103:14167-14510.
    [4] Ashok, K., S. Behera, A. S. Rao, H. Weng, and T. Yamagata,2007. El Ni oModoki and its teleconnection. Journal of Geophysical Research,112: C11007.
    [5] Ashok, K. and T. Yamagata,2009. The El Ni o with a difference. Science,461:481-484.
    [6] Battisti, D. S.,1988. Dynamics and thermodynamics of a warming event in acoupled tropical atmosphere–ocean model. Journal of the Atmospheric Sciences,45:2889–2919.
    [7] Battisti, D. S. and A. C. Hirst,1989. Interannual variability in the tropicalatmosphere ocean model: influence of the basic state, ocean geometry andnonlinearity. Journal of the Atmospheric Sciences,45:1687–1712.
    [8] Bejarano, L. F. Coexistence of leading equatorial coupled modes for ENSO.Ph.D. thesis, The Florida State University,2006,118pp.
    [9] Bejarano, L. and F.-F. Jin,2008. Coexistence of Equatorial Coupled Modes ofENSO. Journal of Climate,21:3051–3067.
    [10] Berlage, H. P.,1957. Fluctuations in the general atmospheric circulation of morethan one year, their nature and prognostic value. Koninklijk NederlandsMeteorologisch Instituut, Mededelingen en verhandelingen,69:1–152.
    [11] Berlage, H. P.,1966. The Southern Oscillation and world weather. KoninklijkNederlands Meteorologisch Instituut, Mededelingen en verhandelingen,88:1–152.
    [12] Bjerknes, J.,1966. A possible response of the atmospheric Hadley circulation toequatorial anomalies of ocean temperature. Tellus,18:820–829.
    [13] Bjerknes, J.,1969.Atmospheric teleconnections from the equatorial Pacific.Monthly Weather Review,97:163–172.
    [14] Bjerknes, J.,1961. El Ni o study based on analysis of ocean surfacetemperatures. Inter. Am. Trop. Tuna Comm. Bull.,5:217-234.
    [15] Boulanger, J.-P., S. Cravatte, and C. Menkes,2003. Reflected and locallywind-forced interannual equatorial Kelvin waves in the western Pacific Ocean.Journal of Geophysical Research,108(C10),3311.
    [16] Busalacchi, A., and M. A. Cane,1985. Hindcast of sea level variations during1982/3El Ni o. Journal of Physical Oceanography,15:213-221.
    [17] Busalacchi, A., and J. J. O.Brien,1981. Interannual variability of the equatorialPacific in the1960s. Journal of Geophysical Research,86:10901-10907.
    [18] Cane, M. A.,1984. Modeling sea level during El Ni o. Journal of PhysicalOceanography,14:1864-1874.
    [19] Cane, M., A. C. Clement, A. Kaplan, Y. Kushnir, D. Pozdnyakov, R. Seager, S.E. Zebiak and R. Murtugudde,1997. Twentieth-century sea surface temperaturetrends. Science,275:957-960.
    [20] Cane, M. A., M. Munnich, and S. E. Zebiak,1990. A study of self-excitedoscillations of the tropical ocean–atmosphere system. Part I: Linear analysis.Journal of the Atmosphere Science,47,1562–1577.
    [21] Cane, M. A., and S. E. Zebiak,1985. A theory for El Ni o and the SouthernOscillation. Science,228:1084-1087.
    [22] Cane, M. A., S. E. Zebiak and S. C. Dolan,1986. Experimental forecasts of ElNi o. Nature,321:827-832.
    [23] Clarke, A. J., J. Wang, and S. Van Gorder,2000. A simple warm-pooldisplacement ENSO model. Journal of Physical Oceanography,30:1679–1691.
    [24] Delcroix, T., J. P. Boulanger, F. Masia and C. Menkes,1994. Geosat-derived sealevel and surface current anomalies in the equatorial Pacific during the1986-1989El Ni o and La Ni a. Journal of Geophysical Research,99,25093-25107.
    [25] Delcroix, T., B. Dewitte, Y. duPenhoat, F. Masia and J. Picaut,2000. Equatorialwaves and warm pool displacement during the199-1998El Ni o SouthernOscillation events: observation and modeling. Journal of Geophysical Research,105,26045-26062.
    [26] Dima, I. M., J. M. Wallace, and I. Kraucunas,2005. Tropical zonal momentumbalance in the NCEP reanalyses. Journal of the Atmosphere Science,62:2499-2513.
    [27] DiNezio, P. N., A. C. Clement, G. A. Vecchi, B. J. Solden and B. P. Kirtman,2009. Climate response of the equatorial Pacific to global warming. Journal ofClimate,22:4873-4892.
    [28] Fedorov, A. V., and S. G. Philander,2000. Is El Ni o changing? Science,288:1997-2002.
    [29] Fedorov, A. V. and S. G. Philander,2001. A stability analysis of tropicalocean-atmosphere interactions: bridging measurements and theory for El Ni o.Journal of Climate,14:3086-3101.
    [30] Gill, A. E.,1980. Some simple solutions for heat induced tropical circulation.Quart. J. Roy. Meteor. Soc.,106:447-462.
    [31] Gill, A. E. An Estimation of sea-level and surface-current anomalies during the1972El Ni o and consequent thermal effects. Journal of Physical Oceanography,1983,12:586-606.
    [32] Gill, A. E., and E. M. Rasmussen,1983. The1982-83climate anomaly in theequatorial Pacific. Nature,306:229-234.
    [33] Guilyardi, E.,2006. El Ni o–mean state–seasonal cycle interactions in amulti-model ensemble. Climate Dynamics,26:329-348.
    [34] Gutzler D. S. and T. M. Wood,1990. Structure of large-scale convectiveanomalies over tropical oceans. Journal of Climate,3:483-495.
    [35]Held, I. M., and B. J. Soden,2006. Robust response of the hydrological cycle toglobal warming. Journal of Climate,19,5686–5699.
    [36] Hirst, A. C.,1986. Unstable and damped equatorial modes in simple coupledocean atmosphere models. Journal of the Atmospheric Science,43,606-630.
    [37] Horii, T., I. Ueki, and K. Hanawa,2012. Breakdown of ENSO predictors in the2000s: Decadal changes of recharge/discharge-SST phase relation andatmospheric intraseasonal forcing, Geophysical Research Letters,39, L10707.
    [38] Jin, F.-F.,1996. Tropical ocean-atmosphere interaction, the Pacific cold tongue,and the El Ni o-Southern Oscillation. Science,274:76–78.
    [39] Jin, F.-F.,1997. An equatorial ocean recharge paradigm for ENSO. Part I:Conceptual model. Journal of the Atmospheric Sciences,54:811–829.
    [40] Jin, F.-F.,1997. An equatorial ocean recharge paradigm for ENSO. Part II: Astripped-down coupled model. Journal of the Atmospheric Sciences,54:830–847.
    [41] Kalnay et al.,1996. The NCEP/NCAR40-year reanalysis project. Bull. Amer.Meteor. Soc.,77:437-470.
    [42] Kang, I.-S., S.-I. An, and F.-F. Jin,2001. A systematic approximation of the SSTanomaly equation for ENSO. Journal of Meteorology Society of Japan,79:1-10.
    [43] Kang, I., and I. Held.,1986. Linear and nonlinear diagnostic models of stationaryeddies in the upper troposphere during northern summer. Journal of theAtmospheric Sciences,43:3045–3057.
    [44] Kang, I.-S., D. Kim, and J.-S. Kug,2010. Mechanism for northward propagationof boreal summer intraseasonal oscillation: Convective momentum transport.Geophysical Research Letters,37, L24804.
    [45] Kao, H.-Y., and J.-Y. Yu,2009. Contrasting eastern-Pacific and central Pacifictypes of El Ni o. Journal of Climate,22:615–632.
    [46] Kim, D., J.-S. Kug, I.-S., Kang, F.-F., Jin and A. T. Witternberg,2008. Tropicalpacific impacts of convective momentum transport in the SNU coupled GCM.Climate Dynamics,31:213-226.
    [47] Kleeman, R.,1991. A simple model of the atmospheric response to ENSO seasurface temperature anomalies. Journal of the Atmospheric Sciences,48:3-18.
    [48] Kug, J.-S., F.-F. Jin, and S.-I. An,2009. Two types of El Ni o events: Coldtongue El Ni o and warm pool El Ni o. Journal of Climate,22:1499-1515.
    [49] Kug, J.-S., J. Choi, S.-I. An, F.-F. Jin, and A. T. Wittenberg,2010. Warm Pooland Cold Tongue El Nino events as simulated by the GFDL2.1coupled GCM.Journal of Climate,23,1226-1239.
    [50] Lau, N. C., S. G. H. Philander, and M. J. Nath,1992. Simulation of ENSO-likephenomena with a low-resolution coupled GCM of the global ocean andatmosphere. Journal of Climate,5:284-307.
    [51]Lee, T., and M. J. McPhaden,2010. Increasing intensity of El Ni o in thecentral-equatorial Pacific. Geophysical Research Letters,37, L14603.
    [52] Larkin, N. K., and D. E. Harrison,2005. Global seasonal temperature andprecipitation anomaly during El Ni o autumn and winter. Geophysical ResearchLetters,32: L16705.
    [53] Latif, M. and N. S. Keenlyside,2008. El Ni o/Southern Oscillation response toglobal warming. PNAS,106,20578–20583.
    [54] Lin, J.-L., B. E. Mapes and Weiqing Han,2008. What Are the Sources ofMechanical Damping in Matsuno–Gill-Type Models? Journal of Climate,21:165-179.
    [55] McPhaden, M. J.,2012. A21st century shift in the relationship between ENSOSST and warm water volume anomalies, Geophysical Research Letters,39,L09706.
    [56] Murphy, R. C.,1926Oceanic and climatic phenomena along the west coast ofSouth America during1925. Geographical Review,16:25–54.
    [57] Neale, R. The role of convective moisture sensitivity in improving majorsystematic biases in the Community Climate System Model (CCSM). WGNEWorkshop on Systematic Errors, San Francisco, February2007
    [58] Neelin, J. D., andI. M. Held,1987. Modelling tropical convergence based on themoist static energy budget. Monthly Weather Review,115:3-12.
    [59] Perigaud, C., and B. Dewitte,1996. El Ni o--La Ni a events simulated withCane and Zebiak’s model and observed with satellite or in situ data. Part I:Model data comparison. Journal of Climate,9:66-84.
    [60] Philander, G. J. H., T. Yamagata and R. C. Pacanowski,1984. Unstable air-seainteractions in the tropics. Journal of the Atmospheric Sciences,41:604-613.
    [61] Philander, S. G.,1985. El Ni o and La Ni a. Journal of the AtmosphericSciences,42:2652–2662.
    [62] Picaut, J., M. Ioualalen, C. Menkes, T. Delcroix and M. J, McPhaden,1996.Mechanism of the zonal displacements of the Pacific warm pool: Implicationsfor ENSO. Science,274:1486–1489.
    [63] Picaut, J., F. Masia, and Y. du Penhoat,1997. An advective-reflective conceptualmodel for the oscillatory mature of the ENSO. Science,277:663-666.
    [64] Qi, Q., Q. Zhang and Y. Hou,2010. Dynamic mechanism of interannual zonaldisplacements of the eastern edge of the western Pacific warm pool. ChineseJournal of Oceanology and Limnology,28:387-397.
    [65] Rasmusson, E. M., and T. H. Carpenter,1982. Variations in tropical sea surfacetemperature and surface wind fields associated with the Southern Oscillation/ElNi o. Monthly Weather Review,110:354–384.
    [66] Ren, H.-L., and F.-F. Jin,2011. Ni o indices for two types of ENSO.Geophysical Research Letters,38, L04704.
    [67] Smith, T. M., R. W. Reynolds, T. C. Peterson, and J. Lawrimore,2008.Improvements to NOAA's Historical Merged Land-Ocean Surface TemperatureAnalysis (1880-2006). Journal of Climate,21:2283-2296.
    [68] Stevens, D. E.,1979. Vorticity, momentum and divergence budgets ofsynoptic-scale wave disturbances in the Tropical Eastern Atlantic. MonthlyWeather Review,107,535-550.
    [69] Suarez, M. J. and P. S. Schopf,1988. A delayed action oscillator for ENSO.Journal of the Atmospheric Sciences,45,3283–3287.
    [70] Trenberth, K. E., and D. P. Stepaniak,2001. Indices of El Ni o evolution.Journal of Climate,14,1697-1701.
    [71] Tung, W. W., and M. Yanai,2002. Convective momentum transport observedduring the TOGA COARE IOP. Part I: General features. Journal of theAtmospheric Sciences,59:1857-1871.
    [72] van Oldenborgh, G. J., Philip, S. Y., and Collins, M,2005. El Ni o in a changingclimate: a multi-model study. Ocean Science,1,81-95.
    [73] Vecchi, G. A., B. J. Soden, A. T. Wittenberg, I. M. Held, A. Leetmaa and M.J.Harrison,2006. Weakening of tropical Pacific atmospheric circulation due toanthropogenic forcing. Science,441:73-76.
    [74] Vecchi, G. A. and B. J. Solden,2007. Global warming and the weakening of thetropical circulation. Journal of Climate,20:4316-4340.
    [75] Waliser, D. E., N. E. Graham, and C. Gautier,1993. Comparison of the highlyreflective cloud and outgoing longwave radiation datasets for use in estimatingtropical deep convection. Journal of Climate,6:331–353.
    [76] Walker, G. T.,1923. Correlation in seasonal variations of weather VIII: Apreliminary study of world weather. Memoirs of the Indian MeteorologicalDepartment,24:75–131.
    [77] Walker, G. T.,1924. Correlation in seasonal variations of weather IX: A furtherstudy of world weather. Memoirs of the Indian Meteorological Department,24:275–332.
    [78] Walker, G. T.,1928. World weather III. Memoirs of the Royal MeteorologicalSociety,2:97–106.
    [79] Walker, G. T. and E. Bliss,1932. World Weather V. Memoirs of the RoyalMeteorological Society,4:53–84.
    [80] Wang, B., and S.-I. An,2001. Why the properties of El Ni o changed during thelate1970s. Geophysical Research Letters,28,3709-3712.
    [81] Wang, B., and S.-I. An,2002. A mechanism for decadal changes of ENSObehavior: Roles of background wind changes. Climate Dynamics,18,475-486.
    [82] Wang, C., and P. C. Fielder,2006. ENSO variability and the eastern tropicalPacific: a review. Progress in Oceanography,69:239-266.
    [83] Wang, W., and M. J. McPhaden,2000. The surface layer heat balance in theequatorial Pacific Ocean, part II: Interannual variability. Journal of PhysicalOceanography,30,2989-3008.
    [84] Webster, P. J.,1981. Mechanisms determining the atmospheric response to seasurface temperature anomalies. Journal of the Atmospheric Sciences,38:554-571.
    [85] Wentz, F., L., Ricciardulli, K. Hilburn and C. Mears,2007. How much more rainwill global warming bring? Science,317:233-235.
    [86] Wittenberg, A. T., T. Rosati and I. Held. ENSO in the GFDL coupled model.Eighth annual CCSM workshop, Breckenridge,24June,2003
    [87] Wyrtki, K.,1975. El Ni o–The dynamic response of the equatorial PacificOcean to atmospheric forcing. Journal of Physical Oceanography,5:572–584.
    [88] Xiang, B.-Q., B. Wang and T. Li,2012. A new paradigm for the predominanceof standing Central Pacific Warming after the late1990s. Climate Dynamics.(on-line print) Doi:10.1007/s00382-012-1427-8.
    [89] Xie, S.-P., and S.G.H. Philander,1994. A coupled ocean-atmosphere model ofrelevance to the ITCZ in the eastern Pacific. Tellus,46:340-350.
    [90] Xie, R.-H., F. Huang and H.-L. Ren,2013. Subtropical Air-sea interaction anddevelopment of central Pacific El Ni o. Journal of Ocean University of China.In press.
    [91] Yeh, S.-W., J.-S. Kug, B. Dewitte, M.-H. Kwon, B. P. Kirtman and F.-F. Jin,2009. El Ni o in a changing climate. Science,461:511-515.
    [92] Zebiak, S. E. A simple atmospheric model of relevance to El Ni o,1982.Journal of the Atmospheric Sciences,39:2017-2027.
    [93] Zebiak, S. E.,1986. Atmospheric convergence feedback in a simple model forEl Ni o. Monthly Weather Review,114:1263-1271.
    [94] Zebiak, S. E., and M. A. Cane,1987. A model El Ni o and Southern Oscillation.Monthly Weather Review,115,2262-2278.
    [95] Zebiak, S. E.,1990. Diagnostic studies of the Pacific surface winds. Journal ofClimate,3,1016-1031.
    [96] Zhang, W., J. Li, and F.-F. Jin,2009. Spatial and temporal features of ENSOmeridional scales, Geophysical Research Letters,36, L15605.
    [97] Zhang, M., and H. Song,2006. Evidence of deceleration of atmospheric verticaloverturning circulation over the tropical Pacific, Geophysical Research Letters,33, L12701.
    [98] Zhang, Y., J. M. Wallace and D. S. Battisti,1997. ENSO-like interdecadalvariability. Journal of Climate,10:1004-1020.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700