用户名: 密码: 验证码:
两层网络学习控制系统的快速优化调度策略、分布式计算及扩展应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
飞速发展的网络和通信技术,与传统控制相互融合,应运而生了适合新世纪需求的网络控制系统。网络控制系统具有设计灵活、资源共享和实用性强等诸多优点,已经逐步应用于先进自动化制造、电力、航天和机器人等领域。然而,由通信网络所支撑的网络控制系统,受到网络容量和通信参量的约束,系统性能不仅取决于控制算法,很大程度上还取决于网络通信资源的合理有效调度。此外,随着控制需求的不断深化,控制算法和优化调度方法也趋于复杂,对有限的计算资源提出了严峻的挑战,系统无法满足算法的快速计算要求,影响整体性能。于是,本文在网络通信和计算资源有限的条件下,针对系统实时性的目标要求,提出基于快速计算平台的两层网络学习控制系统架构,研究公平优化调度策略,设计快速计算平台。主要工作概括如下:
     首先,提出了基于快速计算平台的控制系统架构,分析了与传统网络控制系统相比所具有的不同特点,并在通信约束下,建立了具有公平性的多目标带宽优化调度模型。针对用户需求提高造成算法复杂的发展趋势和网络控制系统的实时性要求,在传统网络学习控制系统基础上引入快速计算平台,不但可以保证底层网络本地控制的高可靠性要求,也为计算资源的共享、控制优化的计算实时性提供架构保障。在此基础上,考虑通信约束下两层网络学习控制系统带宽调度问题,提出了具有公平性的非合作博弈模型,同时结合专家知识,设计了适合此控制系统架构的带宽调度效用函数,形成了兼具控制、网络多约束的多目标带宽调度优化策略方案。
     其次,针对上述最优网络带宽调度问题的求解,提出了一种新的基于量子演化的优化方法。与传统的智能优化方法不同,基于量子演化的优化方法通过引入研究微观粒子的量子力学理论,使用量子态概率幅对搜索群的当前位置进行编码,由此增加解空间的遍历性;采用量子旋转门实现对群位置的变异和最优位置的搜索,这样可以进一步增加搜索种群的多样性,以避免优化算法早熟收敛,得到网络带宽调度问题的全局最优解;同时,通过适当设置量子旋转门的转角步长函数,可使算法实现任意精度的搜索。
     第三,针对最优网络带宽调度的快速求解,提出了两种新的优化算法解决方案带有加速因子的混合蛙跳算法和分层阶级市场竞争算法。由于带有量子演化的优化方法虽能很好的提升最优解的质量,但其计算时间不稳定,仅适合两层网络学习控制系统带宽调度的离线优化。因此,提出了一种新的基于模因演化的加速混合蛙跳算法,模因演化用于进行个体和全局之间的信息交流,该算法集遗传模因算法和基于全局行为的粒子群算法的优点于一身,在保证解的质量的基础上,实现快速收敛。但是带有加速因子的混合蛙跳算法对重约束、尤其是大规模电力系统应用中的维度困境无能为力。受到微观经济学市场理论启发,由此提出了一种新的分层阶级市场竞争算法,通过分层的市场竞争过程,有效降低优化问题的维度和复杂度,同时又能保证解的质量和计算时间,适合快速求解大规模、重约束优化问题。
     第四,为了进一步提高两层网络学习控制系统中复杂算法的计算速度,在本地计算资源有限的条件下,提出了基于合作博弈的网格并行计算与负载均衡策略。将网格计算融入两层网络学习控制系统,建立了计算任务并行化的计算模型,包含自私网格数学模型和外来作业计算成本模型,然后利用合作博弈理论进行模型的公平性分析,验证了负载均衡为全局最优策略;同时,提出了一种新的基于合作博弈的有界迭代负载均衡算法,给出了多集群自私网格负载的均衡方案,解决异构负载集群在自私网格中的负载均衡难题;最后,利用网格技术将分布式计算资源整合为高性能计算环境,通过计算任务的有效调度,来满足系统的实时计算要求。仿真结果验证了所提方案的有效性。
     第五,提出了一种新的基于弹性计算云的两层网络学习控制系统的快速虚拟化计算方案。由于自私网格仍需要消耗一定的本地计算资源,同时整合分布式计算资源对整体系统的要求高,带来了居高不下的计算成本。因此,本文根据两层网络学习控制系统可变的计算需求,提出了一种高性能的具有虚拟化特征的集群架构,该架构支持设计灵活、成本低廉、通用性和可扩展性强的云计算,能动态地提供异构计算环境和集群负载均衡,并且能够避免对实际复杂分布式物理架构的讨论;其次,提出了一种新的弹性集群云资源性能评价模型,该模型能有效的计划分配集群来满足计算性能需求和成本要求;最后,设计了虚拟化外部弹性计算云平台,灵活地管理计算资源,同时满足可靠性和实时性要求,高效地完成两层网络学习控制系统中的动态计算任务。
     最后,在上述理论研究和仿真结果验证所提方案有效性的基础上,将各项性能最优的分层阶级市场竞争算法结合专家系统的方法来解决电力系统中的难题
     机组组合调度问题。首先分析了电力系统机组组合调度的优化需求,确定总成本目标函数和优化约束,结合多条专家规则组成专家系统来处理机组组合调度问题的多个复杂约束,并通过决策发电机组的初始运行状态的预调度处理,保证所有搜索区域为靠近最优解的可行解集,提高搜索效率,减少执行时间。通过在虚拟化弹性计算云仿真平台上对10台至100台机组的电力系统调度进行实验,表明提出的分层阶级市场竞争算法结合专家系统的新方法能更快更优的解决机组组合调度问题,不仅大大节省了计算时间,对机组组合调度成本的减少也十分有效,具有良好的应用前景。
With the rapid development of network and communication technology,intergrating with the traditional control theory, networked control systems (NCS)emerge as the times require. Networked control system has been gradually applied tothe field of advanced automatic manufacturing, electric power, aerospace and robot,due to various advantages including flexible design, resources sharing, andpracticability. However, network control system, which is supported by commoncommunication network, is subject to many constraints of network capacity andcommunication parameters. To some extent, the performance of the system not onlydepends on control algorithms, but on reasonably effective scheduling of networkcommunication resources as well. In the meanwhile, control algorithms andoptimization scheduling methods trend to be more complex in order to meet thedeepening needs of control. Also, it is really a severe challenge to meet the fastcomputational requirements with limited computing resources, which can further affectthe overall system performance. Therefore, under the limited network communicationbandwidth and computing resources, a two-layer networked learning control system(NLCS) architecture based on fast computing platform is proposed to reach the goal ofsystem real-time requirements. The focus of this paper is on the development of fairoptimization scheduling strategy and the design of fast computing platform. The mainwork is summarized as follows:
     Firstly, a two-layer NLCS architecture based on fast computing platform ispresented and the differences with NCS are analyzed. A fair multi-objective bandwidthoptimization scheduling model with communication constraints is formulated. For thecomplexity of the algorithms caused by increasing demand of users and the real-timerequirements in networked control system, we introduced a fast computing platforminto the traditional networked learning control system. This new architecture not onlycan guarantee the high reliability of the local control network, but also ensure real-timerequirement of computing resources sharing and calculations control and optimization.Furthermore, considering the bandwidth scheduling problem with communicationconstraints in a two-layer networked learning control system, a fair non-cooperativegame model combined with expert knowledge is proposed. A suitable utility functionis also designed, forming multi-constrained network bandwidth scheduling optimization strategy.
     Secondly, for solving the optimal network bandwidth scheduling problem, a newoptimization method based on quantum evolution is proposed. Unlike traditionalintelligent optimization methods, by introducing microscopic particles in the theory ofquantum mechanics, quantum state probability amplitude is used in quantum-inspiredoptimization method to encode the current position of the search group for increasingthe diversification of the solution space. Moreover, quantum rotation gates are utilizedfor the variability of group position and the search of the optimal location, which canfurther increase the diversity of search population. The quantum-inspired optimizationmethod can gain the convergence to a global optimal solution to the networkbandwidth scheduling problem, avoiding sticking into local optimal solution.Meanwhile, through setting of proper value for step function of quantum gate, we canachieve algorithm search with arbitrary precision.
     Thirdly, two new optimization algorithm solutions are proposed for fast solvingthe optimal network bandwidth scheduling problem accelerating factor basedshuffled frog leaping algorithm (SFLA) and two-layer hierarchical market competitionalgorithm (THMCA). Although quantum-inspired optimization method is able toenhance the quality of the optimal solution, its calculation time is instability. Thismethod is only suitable for offline optimization. Consequently, a new meta-heuristicoptimization method with accelerating factor called SFLA is proposed, which isefficient in finding global solutions. The SFLA combines the advantages of the boththe genetic-based memetic algorithm (MA) and the social behavior-based PSOalgorithm. The most distinguished advantage of SFLA is its fast convergence speed.However SFLA suffers from the curse of dimensionality problem, especially in solvingheavy constrains, large scale optimization problem in power system. Inspired bycompetitions among enterprises in economic activities, a novel two-layer hierarchicalmarket competition algorithm (THMCA) is proposed. Market competitions amongthese conglomerates lead to the convergence to a monopoly at the end, resulting in anoptimal solution of the above problem. The algorithm can effectively reduce thedimensions and complexity of the optimization problem, ensuring the quality ofsolutions and computing time, which is suitable for seeking fast solution of large-scaleconstrained optimization problem.
     Fourthly, in order to further improve the calculation speed of complex algorithmsin two-layer NLCS with limited local computing resources, cooperative game based parallel grid computing and load balancing strategy are established. Integrating gridcomputing into the two-layer NLCS, the computational model of parallel computingtasks is formulated, including selfish grid mathematical models and foreign job costmodel. And cooperative game theory based fair analysis of the model verify that loadbalancing is the global optimal strategy. Furthermore, a novel load balancing scheme,cooperative game based bounded iterative load balancing algorithm, is proposed forheterogeneous load clusters in the multi-cluster selfish grid. Finally, distributedcomputing resources are intergrated as high-performance computing platform.Effective scheduling of computing tasks is used to meet the real-time computingrequirements.
     Fifthly, we investigate a flexible elastic cloud computing based fast virtualdeployment scheme for a two-layer NLCS. Selfish grid still needs to consume a certainamount of local computing resources. And integrating distributed computing resourceshave high computing costs of the overall system. Therefore, high performance clusterarchitecture with virtual properties that hide the complexity of distributed physicalinfrastructures is presented. The architecture is support for cloud computing todynamically deliver heterogeneous computational environments and partition thecluster capacity, adapting to variable demands in a networked control system. Also, aperformance model employing cloud resources for elastic clusters is developed, whichplans the capacity of the cluster to meet a performance policy and cost request tocomplete a given work load. The performance of model has been evaluated in theexecution of heuristic computing workloads. Finally, the comparison experimentalresults have demonstrated that the virtualization based elastic clusters constitute afeasible and high performing computing platform for a two-layer NLCS.
     Finally, after the theoretical research and simulation results gain the effectiveverification of the proposed scheme, the best two-layer hierarchical marketcompetition algorithm (THMCA) combined with expert system is applied for solvingthe unit commitment problem in power systems under the fast elastic cloud computingplatform. Expert system are used to produce several expert rules for heavy constraintshandling not only in the prescheduling process and in the THMCA process as well,ensuring that the positions of all companies are feasible and near-optimal solutions tothe UC problem. The algorithm running on fast elastic cloud computing platform isshown to have a fast execution speed for UC application and the comparisonsimulation results on a power system with up to100generating units have demonstrated the effectiveness on cost reduction of the proposed method.
引文
[1] N. Wiener. Cybernetics [M]. MIT Press,1948.
    [2] P. Antsaklis, J. Baillieul. Special issue on networked control systems [J]. IEEE Transactionon Automatic Control,49(9):1421-1423,2004.
    [3] T. C. Yang. Networked control system: a brief survey [J]. IEE Proceedings Control Theoryand Applications,153(4):403-412,2006.
    [4] P. Antsaklis, J. Baillieul. Special issue on technology of networked control systems [J].Proceedings of the IEEE,95(1):5-8,2007.
    [5] J. Baillieul, P. Antsaklis. Control and communication challenges in networked real-timesystems [J]. Proceedings of the IEEE,95(1):9-28,2007.
    [6] J. P. Hespanha, P. Naghshtabrizi, Y. Xu. A survey of recent results in networked controlsystems [J]. Proeeedings of the IEEE,95(1):138-162,2007.
    [7] M. C. Thomas, J. A. Thomas. Elements of Information Theory [M]. John Wiley and Sons,Inc.,1991.
    [8]费敏锐,李力雄.基于网络学习的控制系统[C].中国智能自动化会议论文集,2003.
    [9]易军,费敏锐.基于三次样条滚动优化多步预测算法的网络学习控制[J].信息与控制,35(1):1-5,2006.
    [10] M. R. Fei, J. Yi, H. Hu. Robust stability analysis of a class of uncertain nonlinearnetworked control system, International Journal of Control [J]. Automation and Systems,4(2):172-177,2006.
    [11] D. J. Du, M. R. Fei, K. Li. A two-layer networked learning control system usingactor-critic neural network [J]. Applied Mathematics and Computation,205(1):26-36,2008.
    [12] D. J. Du, M. R. Fei, H. S. Hu. Two-layer networked learning control using self-learningfuzzy control algorithms [J].仪器仪表学报,28(12):2124-3131,2007.
    [13] M. R. Fei, D. J. Du. Two-layer networked learning control of a nonlinear HVAC system.Lecture Notes in Computer Science,4688:697-709,2007.
    [14] A. Grimshaw, M. Morgan. An Open Grid Services Architecture Primer [J]. IEEEComputer.Vol42, Issue2,27-34,2009.
    [15] N. Ranaldo. Time and Cost-Driven Scheduling of Data Parallel Tasks in Grid Workflows[J]. IEEE Systems Journal, Vol.3, No.1,2009.
    [16] K. Rzadca, D. Trystram. Promoting cooperation in selfish computational grids [J].European Journal of Operational Research.199,647-657,2009.
    [17]胡寿松,朱其新. Stochastic optimal control and analysis of stability of networked controlsystems with long delay [J]. Automatica,39(11):1877-1884,2003.
    [18] D. Yue, Q. L. Han, J. Lam. Network-based robust H∞control of systems with uncertainty[J]. Automatica,41(6):999-1007,2005.
    [19] H. Li, M. Y. Chow, Z. Sun. State feedback stabilisation of networked control systems [J].IET Control Theory and Applications,3(7):929-940,2009.
    [20] G. P. Liu, Y. Q. Xia, D. Rees, W. Hu. Design and stability criteria of networked predictivecontrol systems with random network delay in the feedback channel [J]. IEEE Transactionson Systems, Man, and Cybernetics-Part C: Applications and Reviews,37(2):173-184,2007.
    [21] M. Sahebsara, T. W. Chen, S. L. Shah. Optimal H2filtering in networked control systemswith multiple packet dropout [J]. IEEE Transactions on Automatic Control,52(8):1508-1513,2007.
    [22] G. R. Matias, B. Antonio. Analysis of networked control systems with drops and variabledelays[J]. Automatica,2007,43(3):2054–2059,2007.
    [23] H. J. Gao, T. W. Chen. A new delay system approach to network based control [J].Automatica,44(3):39–52,2008.
    [24] H. J. Gao, T. W. Chen. Network-based H∞output tracking control [J]. IEEE Transactionson Automatic control,53(3):655–667,2008.
    [25]周祖德,陈本源,刘泉,龙毅宏.网络控制系统时延分布研究[J].控制与决策,25(4):592-592,2010.
    [26]褚红燕,费树岷,岳东.基于T2S模型的非线性网络控制系统的量化保成本控制[J].控制与决策,25(1):31-42,2010.
    [27]陈青,吴敏.具有网络丢包和时延的网络控制系统设计[J].控制与决策,26(2):293-296,2011.
    [28]谢成祥,胡维礼.一类具有数据包丢失的长时延网络控制系统的分析与设计[J].控制理论与应用,27(9):1208-1223,2010.
    [29]谢成祥,胡维礼.一类多包传输网络控制系统的H∞鲁棒控制[J].控制理论与应用,27(2):216-220,2010.
    [30]周映江,李训铭,梁华.不确定时滞网络控制系统的状态反馈控制[J].控制理论与应用,27(2):221-225,2010.
    [31]邓玮璍,费敏锐.带有执行器故障的网络控制系统的自适应容错H∞控制[J].控制理论与应用,27(2):269-272,2010.
    [32]郭亚锋,李少远.网络控制系统的H∞状态反馈控制器设计[J].控制理论与应用,25(3):414–420,2008.
    [33]岳东,彭晨,韩清龙.网络控制系统的分析与综合[M].北京:科学出版社,2006.
    [34] T. C. Yang, H. Yu, M. R. Fei, L. X. Li. Networked control systems: a historical review andcurrent research topics [J]. Measurement and Control,38(1):12-16,2005.
    [35] D. J. Du, M. R. Fei, K. Li. A two-layer networked learning control system usingactor-critic neural network [J]. Applied Mathematics and Computation,205(1):26-36,2008.
    [36] D. J. Du, M. R. Fei, H. S. Hu. Two-layer networked learning control using self-learningfuzzy control algorithms [J].仪器仪表学报,28(12):2124-3131,2007.
    [37] M. R. Fei, D. J. Du. Two-layer networked learning control of a nonlinear HVAC system [J].Lecture Notes in Computer Science,4688:697-709,2007.
    [38]杜大军.适于两层网络学习控制系统的学习和控制策略及实验研究[D],上海大学,2010.
    [39] https://eb.automation.siemens.com/
    [40]宗群,王鹤,李然.一种网络控制系统的随机通信逻辑设计与分析[J],控制与决策,22(7):795-799,2007.
    [41] M. M. Gaid, A. Cela, Y. Hamam. Optimal Integrated Control and Scheduling of NetworkedControl Systems with Communication Constraints: Application to a Car SuspensionSystem [J]. IEEE Transaction on Control Systems Technology,14(4):776-787,2006.
    [42]宋洪波,俞立,张文安.存在通信约束和时延的多输入多输出网络控制系统镇定研究[J],信息与控制,36(3):334-339,2007.
    [43] L. Zhang, Dimitrios Hristu-Varsakelis. Communication and control co-design fornetworked control systems [J]. Automatica,42(6):953-958,2006.
    [44] S. Tatikonda, S. Mitter, Control under Communication Constraints[J], IEEE Transactionson Automatic Control,49(7):1056-1068,2004.
    [45] G. N. Nair, R. J. Evans. Stabilizability of stochastic linear systems with finite feedback datarates [J]. SIAM J. CONTROL OPTIM,43(2):413–436,2004.
    [46] G. N. Nair, F. Fagnani, S. Zampieri and R. J. Evans. Feedback control under data rateconstraints: an overview [J]. Proceedings of the IEEE,95(1):108-137,2007.
    [47] S. Yüksel, T. Basar, Communication Constraints for Decentralized Stabilizability withTime-Invariant Policies [J], IEEE Transactions on Automatic Control,52(6):1060-1066,2007.
    [48] P. Minero, M. Franceschetti, and G. N. Nair. Data rate theorem for stabilization overtime-varying feedback channels [J]. IEEE Transactions on Automatic Control,54(2):243-255,2009.
    [49] Z. W. Wang, C. Q. Zhu, W. Pan, G. Guo. Observability and controllability of NetworkedControl Systems. Proceedings of the2007IEEE International Conference on IntegrationTechnology. Shenzhen, China.2007:96-99.
    [50] R. H. Middleton, J. Rojas, J. S. Freudenberg. Feedback stabilization over a first ordermoving average gaussian noise channel [J]. IEEE Transactions on Automatic Control.54(1):163-167,2009.
    [51] H. Ishii, T. Basar, Remote control of LTI systems over networks with state quantization [J].Systems and Control Letters,54(1):15-31,2005.
    [52] J. Rojas. Signal-to-noise ratio performance limitations for input disturbance rejection inoutput feedback control [J]. Systems&Control Letters,2:1-6,2009.
    [53] J. Rojas. Signal-to-Noise Ratio Fundamental Limitations in Continuous-Time LinearOutput Feedback Control [J]. IEEE Transactions on Automatic Control,54(8):1902-1907,2009.
    [54] E. Tian, D. Yue, C. Peng. Quantized output feedback control for networked control systems[J]. Information Sciences,178(12):2734-2749,2008.
    [55] E. Tian, D. Yue. Quantised control design for networked control systems [J]. ControlTheory&Applications, IET,1(6):1693-1699,2007.
    [56] S. Hu, D. Yue. Event-triggered control design of linear networked systems withquantizations [J]. ISA Transactions,51(1):153-162,2012.
    [57] J. H. Braslavsky, R. H. Middleton, J. S. Freudenberg, Feedback stabilization oversignal-to-noise ratio constrained channels. Technical Report.2003.
    [58] E. I. Silva, G. C. Goodwin, D. E. Quevedo. Control system design subject to SNRconstraints [J]. Automatica,46(2):428-436,2010.
    [59] Braslavsky, Middleton, Freudenberg, Feedback stabilization over signal-to-noise ratioconstrained channels. Technical Report.2003.
    [60] Rojas, Braslavsky, Middleton. Fundamental limitations in control over a communicationchannel [J]. Automatica.44(12):3147-3151,2008.
    [61] J. H. Braslavsky, R. H. Middleton, J. S. Freudenberg. Feedback stabilization oversignal-to-noise ratio constrained channels [J]. IEEE Transactions on Automatic control.52(8):1391-1403,2007.
    [62] L. Wang, X. F. Wang. New conditions for synchronization in dynamical communicationnetworks [J]. Systems&Control Letters,60(4):219–225,2011.
    [63] J. H. Braslavsky, R. H. Middleton, J. S. Freudenberg. Effects of time delay on feedbackstabilization over signal-to-noise ratio constrained channels [C]. Proceedings of the16thIFAC World Congress, Prague,2005.
    [64] R. H. Middleton, J. Rojas, J. S. Freudenberg. Feedback stabilization over a first ordermoving average gaussian noise channel [J]. IEEE Transactions on Automatic Control.54(1):163-167,2009.
    [65] J. Rojas. Signal-to-noise ratio performance limitations for input disturbance rejection inoutput feedback control [J]. Systems&Control Letters,2:1-6,2009.
    [66] J. Rojas. Signal-to-Noise Ratio Fundamental Limitations in Continuous-Time LinearOutput Feedback Control [J]. IEEE Transactions on Automatic Control,54(8):1902-1907,2009.
    [67] B. X. Wang, Z. H. Guan, F. S. Yuan. Optimal tracking and two-channel disturbancerejection under control energy constraint [J]. Automatica,47(4):733-738,2011.
    [68] X. S. Zhan, Z. H. Guan, R. Q. Liao, F. S. Yuan. Optimal Performance in TrackingStochastic Signal under Disturbance Rejection[J]. Asian Journal of Control,14(6):1608-1616,2012.
    [69]邓玮璍,费敏锐,杜大军,宋杨.基于信噪比受限通道的网络控制系统镇定[J].控制与决策,27(1):58-64,2012.
    [70]邓玮璍,费敏锐.带有执行器故障的网络控制系统的自适应容错控制[J].控制理论与应用,27(2):271-274,2010.
    [71]邓玮璍,费敏锐.基于带有随机时滞的多通信通道的网络控制系统的镇定[J].控制与决策,24(11):1635-1640,2009.
    [72] A.V. Savkin, Analysis and synthesis of networked control systems: topological entropy,observability, robustness and optimal control [J], Automatica,42(1):51-62,2006.
    [73] J. Baillieul, P. J. Antsaklis, Control and communication challenges in networked real-timesystems [J], Proceedings of the IEEE,95(1):9-28,2007.
    [74] M. Asberg, T. Nolte, S. Kato, R. Rajkumar. ExSched:An External CPU SchedulerFramework for Real-Time Systems[C]. Embedded and Real-Time Computing Systems andApplications (RTCSA),2012IEEE18th International Conference on,240-249,2012.
    [75]杜亚珍,雷磊,许宗泽. WiMAX系统突发实时业务调度算法的改进[J],计算机工程,36(21):121-125,2010.
    [76]袁远,李红信. CAN网络实时性分析及改进[J],电子设计工程,18(6),2010.
    [77] S. Kato, Y. Ishikawa, R. Rajkumar. CPU scheduling and memory management forinteractive real-time applications [J]. Real-Time Systems,47(5):454-488,2011.
    [78] T. Cucinotta, D. Giani, D. Faggioli, F. Checconi.Providing Performance Guarantees toVirtual Machines Using Real-Time Scheduling [J]. Lecture Notes in Computer Science,6586:657-664,2011.
    [79]张胜.嵌入式Linux多任务实时调度算法及应用研究[J].医疗保健器具,109(3),2008.
    [80]巴巍,张大波,李琦,王伟.一种新的组优先级动态实时调度算法[J].计算机科学,36(7),2009.
    [81] A. Cervin, J. Eker. Feedback scheduling of control tasks[C]. Proceedings of the39thConference on Decision and Control. Sydney, Australia: IEEE,4871-4876,2010.
    [82]穆嘉松,刘开华,史伟光. ZigBee网络中基于节点移动性的路由选择策略[J].天津大学学报,45(4):301-308,2012.
    [83] K.Sungoh, N.B.Shroff. Energy-Efficient Unified Routing Algorithm for Multi-HopWireless Networks [J].Wireless Communications, IEEE Transactions on,11(11):3890-3899,2012.
    [84]郝晓辰,窦晶晶,刘浩然,郭力培,刘彬.基于链路质量的WSN代价均衡路由选择算法[J].电子与信息学报,32(5):1212-1218,2010.
    [85] S. Manfredi. Reliable and energy-efficient cooperative routing algorithm for wirelessmonitoring systems[J].Wireless Sensor Systems, IET,2(2):128-135,2012.
    [86]杨凯,马建峰,杨超.无线网状网中基于D-S证据理论的可信路由[J].通信学报,32(5):89-103,2011.
    [87] C. Francalanci, P. Giacomazzi. A High-Performance Deadlock-Free Multicast RoutingAlgorithm for K-Ary N-Cubes[J].Computers, IEEE Transactions on,59(2):174-187,2010.
    [88]杨银堂,高翔,柴常春,张剑贤.一种WSN中的能耗优化动态路由算法[J].西安电子科技大学学报(自然科学版),37(5):777-782,2010.
    [89] A. E. Abdulla, H. Nishiyama, J. Yang, N. Ansari, N. Kato. HYMN: A Novel HybridMulti-Hop Routing Algorithm to Improve the Longevity of WSNs[J].WirelessCommunications, IEEE Transactions on,11(7):2531-2541,2012.
    [90]刘期烈,潘英俊,李云,赵晓娜.运用HTC解决延迟容忍网络路由问题[J].北京邮电大学学报,33(5):28-32,2010.
    [91] G. Valentini, C. Abbas, L. Villalba, L. Astorga. Dynamic multi-objective routingalgorithm:a multi-objective routing algorithm for the simple hybrid routing protocol onwireless sensor networks [J].Communications, IET,4(14):1732-1741,2010.
    [92]杨俊刚,史浩山,段爱媛,李冬.无线传感器网络卡尔曼流量预测算法[J].华中科技大学学报(自然科学版),39(2):98-101,2011.
    [93]王小波,周贤伟,宋俊德.基于非齐次泊松过程的深空骨干节点流量分析[J].电波科学学报,27(3):458-464,2012.
    [94]董军,詹聪明,舒静.网络路由基于对策论的资源分配策略[J].电子学报,38(2):143-147,2010.
    [95] R. Moraveji, P. Moinzadeh, H. Sarbazi-azad, A.Y. Zomaya. Multispanning TreeZone-Ordered Label-Based Routing Algorithms for Irregular Networks [J].Parallel andDistributed Systems, IEEE Transactions on,22(5):817-832,2011.
    [96] J. Flich, T. Skeie, A. Mejia, O. Lysne, P. Lopez, A. Robles, J. Duato, M. Koibuchi, T.Rokicki, J.C. Sancho. A Survey and Evaluation of Topology-Agnostic DeterministicRouting Algorithms [J]. Parallel and Distributed Systems, IEEE Transactions on,23(3):405-425,2012.
    [97] J. F. Martins-Filho, J. L. Santana, H. A. Pereira, D.A.R. Chaves, C.J.A.astos-Filho.Assessment of the Power Series Routing Algorithm in Translucent, Transparent andOpaque Optical Networks [J].Communications Letters, IEEE,16(6):941-944,2012.
    [98]汪学舜,余少华,戴锦友.新颖的WDM EPON动态带宽调度算法[J].通信学报,33(2):69-75,2012.
    [99] S. H. Hong. Bandwidth allocation scheme for cyclic-service fieldbus networks [J].IEEE/ASME Transactions on Mechatronics,6(2):197-204,2001.
    [100] S. H. Hong, Y. C. Kim. Implementation of a bandwidth allocation scheme in atoken-passing field-bus network [J]. Instrumentation and Measurement,51(2):246-251,2002.
    [101] S. Kim, J. Lee, D. Sung. Bandwidth allocation for fluid input generalized processor sharingservers [J].Communications, IEEE Transactions on,58(5):1514-1523,2010.
    [102] N. A. M. Radzi, N. M. Din, M. H. Al-Mansoori, I. S. Mustafa, S. K.Sadon. IntelligentDynamic Bandwidth Allocation Algorithm in Upstream EPONs [J]. OpticalCommunications and Networking, IEEE/OSA Journal of,2(3):148-158,2010.
    [103]李昕,张宏科.多跳无线局域网视频质量优化的路由与源码率控制[J].电子学报,38(2):160-164,2010.
    [104] F. Paganini, A. Tang, A. Ferragut, L.L.H. Andrew. Network Stability Under Alpha FairBandwidth Allocation With General File Size Distribution [J]. Automatic Control, IEEETransactions on,57(3):579-591,2012.
    [105] H. Iiduka, M. Uchida. Fixed Point Optimization Algorithms for Network BandwidthAllocation Problems with Compoundable Constraints [J]. Communications Letters, IEEE,15(6):596-598,2011.
    [106] D. S. Kim, Y. S. Lee, W. H. Kwon. Maximum allowable delay bounds of networkedcontrol systems [J]. Control Engineering Practice,11(11):1301-1313,2003.
    [107]牛云,戴冠中,康军.网络化控制性能与带宽调度协调优化设计及其仿真[J].控制与决策,24(9):1412-1420,2009.
    [108] A. Esmailpour, N. Nasser. Dynamic QoS-Based Bandwidth Allocation Framework forBroadband Wireless Networks [J]. Vehicular Technology, IEEE Transactions on,60(6):2690-2700,2011.
    [109] J. Doyle, R. Shorten, D. O'Mahony."Fair-Share" for Fair Bandwidth Allocation in CloudComputing [J]. Communications Letters, IEEE,16(4):550-553,2012.
    [110] T. L. Sheu, K. C. Huang. Adaptive bandwidth allocation model for multiple traffic classesin IEEE802.16worldwide interoperability for microwave access networks[J].Communications, IET,5(1):90-98,2011.
    [111] S. C. Brailsford. Constraint Satisfaction Problems: Algorithms and Applications [J].European Journal of Operational Research,119(3):557-581,1999.
    [112] C. S. Wang, C. T. Chang. Integrated Genetic Algorithm and Goal Programming forNetwork Topology Design Problem with Multiple Objectives and Multiple Criteria [J].IEEE Transactions on Networking,16(3):680-690,2008.
    [113] X. Yao, Y. Liu, G. Lin. Evolutionary programming made faster [J]. IEEE TransEvolutionary Computation,3(2):82-102,1999.
    [114] M. Liu, C. Wu. Scheduling algorithm based on evolutionary computation in identicalparallel machine production line [J]. Robotics and Computer Integrated Manufacturing.19:401-407,2003.
    [115] L. Wang, D. Z. Zheng. A modified evolutionary programming for flow shop scheduling [J].Int J. Adv. Manuf. Technol,22:522-527,2003.
    [116] M. Bowman, L.C. Briand, Y. Labiche. Solving the Class Responsibility AssignmentProblem in Object-Oriented Analysis with Multi-Objective Genetic Algorithms [J].Software Engineering, IEEE Transactions on,36(6):817-837,2010.
    [117] N. Geroliminis, K. Kepaptsoglou, M. G. Karlaftis. A hybrid hypercube–Genetic algorithmapproach for deploying many emergency response mobile units in an urban network [J].European Journal of Operational Research,210(2):287-300,2011.
    [118] E. Vallada, R.Ruiz. A genetic algorithm for the unrelated parallel machine schedulingproblem with sequence dependent setup times [J]. European Journal of OperationalResearch,211(3):612-622,2011.
    [119]王洪峰,汪定伟,杨圣祥.动态环境中的进化算法[J].控制与决策,22(2):127-131,2007.
    [120] J. L. Fernandez-Martinez, E. Garcia-Gonzalo. Stochastic Stability Analysis of the LinearContinuous and Discrete PSO Models [J]. Evolutionary Computation, IEEE Transactionson,15(3):405-423,2011.
    [121]刘建华,刘国买,杨荣华,胡文瑜.粒子群算法的交互性与随机性分析[J].自动化学报,38(9):1471-1484,2012.
    [122] M. F. Tasgetiren, Y. C. Liang, M. Sevkli, G. Gencyilmaz. A particle swarm optimizationalgorithm for makespan and total flowtime minimization in the permutation flowshopsequencing problem [J]. European Journal of Operational Research,177(3):1930-1947,2007.
    [123]冯琳,毛志忠,袁平.一种改进的多目标粒子群优化算法及其应用[J].控制与决策,27(9):1313-1319,2012.
    [124] S. S. Fan, E. Zahara. A hybrid simplex search and particle swarm optimization forunconstrained optimization [J]. European Journal of Operational Research,181(2):527-548,2007.
    [125] H. Yapicioglu, A. E. Smith, G. Dozier. Solving the semi-desirable facility location problemusing bi-objective particle swarm [J]. European Journal of Operational Research,181(2):733-749,2007.
    [126]钟秋波,朴松昊,高超,洪炳镕.基于混合进化算法的仿人机器人步态规划[J].浙江大学学报(工学版),46(5):893-898,2012.
    [127]徐文星,耿志强,朱群雄,顾祥柏.基于SQP局部搜索的混沌粒子群优化算法[J].控制与决策,27(4):557-561,2012.
    [128] S. T. Li, M. K. Tan, I. W. Tsang, J.T.Y. Kwok. A Hybrid PSO-BFGS Strategy for GlobalOptimization of Multimodal Functions [J]. Systems, Man, and Cybernetics, Part B:Cybernetics, IEEE Transactions on,41(4):1003-1014,2011.
    [129] H. Kwasnicka, M. Przewozniczek. Multi Population Pattern Searching Algorithm: A NewEvolutionary Method Based on the Idea of Messy Genetic Algorithm [J]. EvolutionaryComputation, IEEE Transactions on,15(5):715-734,2011.
    [130] A.Soroudi, M. Afrasiab. Binary PSO-based dynamic multi-objective model for distributedgeneration planning under uncertainty[J]. Renewable Power Generation, IET,15(5):67-78,2012.
    [131]彭亦飞,张英杰.基于免疫粒子群算法的网络拥塞控制策略[J].中南大学学报(自然科学版),42(7):2042-2047,2011.
    [132] R.A. Hooshmand, S. Soltani. Fuzzy Optimal Phase Balancing of Radial and MeshedDistribution Networks Using BF-PSO Algorithm [J]. Power Systems, IEEE Transactionson,27(1):47-57,2012.
    [133]赵俊,陈建军.非线性系统模糊神经网络控制的改进策略[J].控制理论与应用,27(4):466-472,2010.
    [134]孙大为,常桂然,陈东,王兴伟.一种基于蚁群算法动态均衡的网格任务调度[J].东北大学学报(自然科学版),31(5):630-633,2010.
    [135]胡毅,龚斌,王风宇.网格资源调度中基于云模型的蚁群算法[J].华中科技大学学报(自然科学版),38(9):64-67,2010.
    [136] F.E.B.Otero, A.A.Freitas, C.G. Johnson. A New Sequential Covering Strategy for InducingClassification Rules With Ant Colony Algorithm s[J]. Evolutionary Computation, IEEETransactions on,17(1):64-76,2013.
    [137] L.M. Gambardella, R. Montemanni, D. Weyland. Coupling ant colony systems with stronglocal searches [J]. European Journal of Operational Research,220(3):831-843,2012.
    [138] Krzysztof Socha, Marco Dorigo. Ant colony optimization for continuous domains [J].European Journal of Operational Research,185(3):1155-1173,2008.
    [139]黄文明,兰静,张阳.基于改进蚁群算法的网格资源调度[J].北京邮电大学学报,32:111-114,2009.
    [140] M. Lopez-Ibanez, T. Stutzle. The Automatic Design of Multiobjective Ant ColonyOptimization Algorithms [J]. Evolutionary Computation, IEEE Transactions on,16(6):861-875,2012.
    [141]张金标,陈科.并行设计任务调度的自适应蚁群算法[J].计算机辅助设计与图形学学报,22(6):1070-1074,2010.
    [142] C. Rajendran, H. Ziegler. Ant-colony algorithms for permutation flowshop scheduling tominimize makespan/total flowtime of jobs [J]. European Journal of Operational Research,155(2):426-438,2004.
    [143]张兆军,冯祖仁,陈竹青.简化蚁群算法[J].控制与决策,27(9):1325-1330,2012.
    [144] I. Ciornei, E. Kyriakides. Hybrid Ant Colony-Genetic Algorithm (GAAPI) for GlobalContinuous Optimization [J]. Systems, Man, and Cybernetics, Part B: Cybernetics, IEEETransactions on,42(1):234-245,2012.
    [145]李盼池,宋考平,杨二龙.基于相位编码的量子蚁群算法[J].系统工程理论与实践,31(8):1565-1570,2010.
    [146]李伯虎,张霖,王时龙,陶飞,曹军威,姜晓丹,宋晓,柴旭东.云制造面向服务的网络化制造新模式[J].计算机集成制造系统,16(1):1-7,2010.
    [147]李伯虎,张霖,任磊,柴旭东,陶飞,王勇智,尹超,黄培,赵欣培,周祖德.云制造典型特征、关键技术与应用[J].计算机集成制造系统,18(7):1343-1356,2012.
    [148]李伯虎,张霖,柴旭东.云制造概论[J].中兴通讯技术,16(4):5-8,2010.
    [149]李伯虎.云制造制造领域中的云计算[J].中国制造业信息化,特别报道:24-26,2011.
    [150] A. Weiss. Computing in the clouds [J]. Networker,11(4):16-25,2007.
    [151] F. Dong, S. G. Akl. Scheduling algorithms for grid computing: state of the art and openproblems [R].Technical Report,2006.
    [152] R. Braun, H. Siegel. A comparison of eleven static heuristics for mapping a class ofindependent tasks onto heterogeneous distributed computing systems [J]. J of Parallel andDistributed Computing,61(6):810-837,2001.
    [153] X. He, X. Sun, Laszewski G. A QoS guided min-min heuristic for grid task scheduling [J].J of Computer Science and Technology, Special Issue on Grid Computing,18(4):442-451,2003.
    [154] M. Wu, W. Shu, H. Zhang. Segmented min-min: A static mapping algorithm for meta-taskson heterogeneous computing systems [C]. Cancun, Mexico: Proc of the9th HeterogeneousComputing Workshop,375-385,2000.
    [155] K. Etminani, M. Naghibzadeh. A min-min max-min selective algorithm for grid taskscheduling [C].3rd IEEE/IFIP International Conference in Central Asia,1-7,2007.
    [156] H. Casanova, A. Legrand, D. Zagorodnov. Heuristics for scheduling parameter sweepapplications in grid environments [C]. Cancun, Mexico: Proceeding of the9thheterogeneous Computing Workshop,349-363,2000.
    [157] J. Yu, R. Buyya. A taxonomy of workflow management systems for grid computing [J]. Jof Grid Computing,3(3-4):171-200,2005.
    [158] H. Dai, F. Berman, H. Casanova. A decoupled scheduling approach for grid applicationdevelopment environments [J]. Journal of Parallel and Distributed Computing,63(5):505-524,2003.
    [159]谭一鸣,曾国荪,王伟.随机任务在云计算平台中能耗的优化管理方法[J].软件学报,23(2):266-278,2012.
    [160]李强,郝沁汾,肖利民,李舟军.云计算中虚拟机放置的自适应管理与多目标优化[J].计算机学报,34(12):2253-2264,2011.
    [161] D.Bertsimas, E. Litvinov, X.A.Sun, J.Zhao, T. Zheng. Adaptive Robust Optimization forthe Security Constrained Unit Commitment Problem [J]. Power Systems, IEEETransactions on,28(1):52-63,2013.
    [162]吴杰康,唐力.基于模糊机会约束规划的水火电力系统多目标随机调度模型[J].中国电机工程学报,31(25):26-34,2011.
    [163]袁铁江,晁勤,李义岩,吐尔逊.伊不拉音.大规模风电并网电力系统经济调度中风电场出力的短期预测模型[J].中国电机工程学报,30(13):23-27,2010.
    [164] C. Lowery, M. O'Malley. Impact of Wind Forecast Error Statistics upon UnitCommitment[J]. Sustainable Energy, IEEE Transactions on,3(4):760-768,2012.
    [165]吴栋梁,王扬,郭创新,刘毅,高振兴.电力市场环境下考虑风电预测误差的经济调度模型[J].电力系统自动化,36(6):23-28,2012.
    [166] L. Zhao, B. Zeng, B. Buckley. A Stochastic Unit Commitment Model with CoolingSystems [J]. Power Systems, IEEE Transactions on,28(1):211-218,2013.
    [167] J. Ostrowski, M.F. Anjos, A. Vannelli. Tight Mixed Integer Linear ProgrammingFormulations for the Unit Commitment Problem [J]. Power Systems, IEEE Transactionson,27(1):39-46,2012.
    [168]郑晓,张静,马韬韬,朱少华,黄斌,郭创新.基于改进决策方法的电力系统多目标优化调度[J].电工技术学报,25(9):151-156,2010.
    [169] K. Chandrasekaran, S.P. Simon. Multi-objective unit commitment problem with reliabilityfunction using fuzzified binary real coded artificial bee colony algorithm [J]. Generation,Transmission&Distribution, IET,6(10):1060-1073,2012.
    [170]车平,唐立新,施刚.基于模型的机组组合两阶段启发式算法[J].控制与决策,27(10):1547-1556,2012.
    [171] T. Seki, N.Yamashita, K. Kawamoto. New Local Search Methods for Improving theLagrangian-Relaxation-Based Unit Commitment Solution. Power Systems, IEEETransactions on,25(1):272-283,2010.
    [172]王楠,张粒子,谢国辉.求解机组组合问题的改进混合整数二次规划算法[J].电力系统自动化,34(15):28-32,2010.
    [173] R.A. Jabr. Tight polyhedral approximation for mixed-integer linear programming unitcommitment formulations [J]. Generation, Transmission&Distribution, IET,6(11):1104-1111,2012.
    [174]李整,谭文,秦金磊.一种用于机组组合问题的改进双重粒子群算法[J].中国电机工程学报,32(25):189-195,2012.
    [175] P. L. Tang, C. W. Silva. Compensation for Transmission Delays in an Ethernet-BasedControl Network Using Variable-Horizon Predictive Control [J]. IEEE Transactions onControl Systems Technology,2006,14(4):707-718.
    [176] K.B. Sim, K.S. Byun, and Fumio Harashima. Internet-Based Teleoperation of an IntelligentRobot with Optimal Two-Layer Fuzzy Controller [J]. IEEE Transactions on IndustrialElectronics,2006,53(4):1362-1372.
    [177] A.V. Savkin, T. M. Cheng. Detectability and Output Feedback Stabilizability of NonlinearNetworked Control Systems [J]. IEEE Transactions on Automatic Control,2007, Vol.52(4):730-735.
    [178] M.E.M.B. Gaid, A. Cela, Y. Hamam. Optimal Integrated Control and Scheduling ofNetworked Control Systems with Communication Constraints: Application to a CarSuspension System [J]. IEEE Transaction on Control Systems Technology,2006,14(4):776-787.
    [179] M. Eslamian, S. H. Hosseinian, B. Vahidi. Bacterial foraging based solution to theunit-commitment problem. J. IEEE Trans. Power Syst., vol.24, no.3, pp.1478--1488(2009)
    [180] H. Elbehairy, E. Elbeltagi, T. Hegazy: Comparison of two evolutionary algorithms foroptimization of bridge deck repairs [J]. Computer-Aided Civil Infrastr. Eng.,21:561-572,2006.
    [181] A. Rahimi-Vahed, A. H. Mirzaei. Solving a bi-criteria permutation flow-shop problemusing shuffled frog-leaping algorithm [C]. in Soft Computing. New York: Springer-Verlag,2007.
    [182] X. H. Luo, Y. Yang, X. Li. Solving TSP with shuffled frog-leaping algorithm [C]. in Proc.ISDA2008,3:228-232,2008.
    [183] E. Elbeltagi, T. Hegazy, D. Grierson: Comparison among five evolutionary-basedoptimization algorithms [J]. Adv. Eng. Informat.,19(1):43-53,2005.
    [184] M. M. Eusuff, K. E. Lansey, F. Pasha. Shuffled frog-leaping algorithm: A memeticmeta-heuristic for discrete optimization [J]. Eng. Optimiz.,38(2):129-154,2006.
    [185] T. H. Huynh. A modified shuffled frog leaping algorithm for optimal tuning ofmultivariable PID controllers [C]. in Proc. ICIT2008,1-6,2008.
    [186] Q. Chen, Y. Zhong, X. Zhang. A pseudo genetic algorithm, Neural Comput&Applic,19(1):77-83,2010.
    [187]杜海峰,公茂果,刘若辰,焦李成.自适应混沌克隆进化规划算法[J].中国科学,8:817-829,2005.
    [188] J. Zhang, J. Wang, C. Yue. Small Population-Based PSO for Short-Term HydrothermalScheduling [J]. Power Systems, IEEE Transactions on,27(1):142-152,2012.
    [189] M. Eslamian, S. H. Hosseinian, B. Vahidi. Bacterial foraging based solution to theunit-commitment problem [J]. IEEE Trans. on Power Syst.,24(3):1478-1488,2009.
    [190] M. Battisha, A. Elmaghraby. Adaptive tracking of network behavioral signals for real timeforensic analysis of service quality degradation [J]. IEEE Transactions on Network andService Management,5(2):105-117,2008.
    [191] A. Grimshaw, M. Morgan. An Open Grid Services Architecture Primer [J]. IEEE ComputerSociety,42(2):27-34,2009.
    [192] N. Ranaldo. Time and Cost-Driven Scheduling of Data Parallel Tasks in Grid Workflows[J]. IEEE Systems Journal,3(1):104-120,2009.
    [193] K. Rzadca, D. Trystram. Promoting cooperation in selfish computational grids [J].European Journal of Operational Research,199(3):647-657,2009.
    [194] N Ranaldo. Time and Cost-Driven Scheduling of Data Parallel Tasks in Grid Workflows[J]. IEEE Systems Journal,3(1):140-120,2009.
    [195] Q. Wang, Y. Guan, J. Wang. A Chance-Constrained Two-Stage Stochastic Program for UnitCommitment With Uncertain Wind Power Output [J]. Power Systems, IEEE Transactionson,27(1):206-215,2012.
    [196] D. Bertsimas, E. Litvinov, X. Sun, J. Zhao, T. Zheng. Adaptive Robust Optimization forthe Security Constrained Unit Commitment Problem [J]. Power Systems, IEEETransactions on,28(1):52-63,2013.
    [197] H. Daneshi, A. Srivastava. Security-constrained unit commitment with wind generationand compressed air energy storage [J]. Generation, Transmission and Distribution, IET,6(2):167-175,2012.
    [198] R. Jiang, J. Wang, Y. Guan. Robust Unit Commitment With Wind Power and PumpedStorage Hydro [J]. Power Systems, IEEE Transactions on,27(2):800-810,2012.
    [199] Y. Makarov, P. Etingov, J. Ma; Z. Huang, K. Subbarao. Incorporating Uncertainty of WindPower Generation Forecast into Power System Operation, Dispatch, and Unit CommitmentProcedures [J]. Sustainable Energy, IEEE Transactions on,2(4):433-442,2011.
    [200] Y. Jeong, J. Park, S. Jang, K. Lee. A New Quantum-Inspired Binary PSO: Application toUnit Commitment Problems for Power Systems [J]. Power Systems, IEEE Transactions on,25(3):1486-1495,2010
    [201] L. Xu, M. R. Fei, A Hybrid Quantum Clone Evolutionary Algorithm-Based SchedulingOptimization in a Networked Learning Control System, Chinese Control and DecisionConference (CCDC)2010:3632-3637,2010.
    [202] M. Eslamian, S. H. Hosseinian, B. Vahidi. Bacterial foragingbased solution to theunit-commitment problem [J]. IEEE Trans. on Power System,24(3):1478-1488,2009.
    [203] J. Ebrahimi, S. H. Hosseinian, G. B. Gharehpetian. Unit Commitment Problem SolutionUsing Shuffled Frog Leaping Algorithm [J]. IEEE Transactions on Power Systems,26(2):1-9,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700