用户名: 密码: 验证码:
微型光纤干涉型氢气传感器关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氢气作为一种清洁能源,在现代工业中有着极大的潜在应用价值。由于其自身易燃易爆的缺点,利用本质安全的氢气传感器来检测其泄漏成为人们日益关注的问题。光纤氢气传感器具有体积小、重量轻、以及抗电磁干扰等优点,成为目前研究的热点。其中,干涉型光纤氢气传感器已有长期的研究工作,其具有测量精度高、重复性好、误差小等优点,但不适合在某些安装位置狭小或对传感器集成化要求较高的场合应用。近年来,光纤氢气传感器朝着微型化及高灵敏度方向发展。并且,传统的光纤干涉型氢气传感器一般利用焊接或者毛细管封装的方法制作,其制作工序复杂,不利于批量生产。飞秒激光微加工技术为干涉型光纤氢气传感器的微型化及高效制作提供了一种新技术。
     本文对微型光纤干涉型氢气传感器深入研究,对飞秒激光微加工及磁控溅射镀膜技术进行了深入探讨,研究基于Mach-Zehnder、Fabry-Perot、Michelson干涉原理的三种不同微结构的氢气传感器,建立光学设计模型,理论分析其传感性能,实验研究该传感器的氢气响应特性,验证这种氢气检测方法的可行性。本文主要研究工作如下:
     (1)提出了利用飞秒激光微加工及磁控溅射镀膜技术相结合制作微型光纤干涉型氢气传感器的方法。利用飞秒激光微加工可以通过计算机准确控制飞秒激光微加工腔长,具有精度较高、重复性好的优点,且这类干涉型光纤氢气传感器本质安全,制作简单,灵敏度较高,结构紧凑,尺寸一般为微米级,适用于空间有限的场合。
     (2)研究了飞秒激光微加工和磁控溅射镀膜工艺,为微型光纤干涉型氢气传感器的制备提供实验基础。微结构的加工及氢敏感薄膜的制备是光纤氢气传感器制作中很重要的部分,其制作性能的优劣会直接影响检测的准确性及稳定性。
     (3)设计并研究微型Mach-Zehnder干涉型光纤氢气传感器,系统地分析其传感原理,建立光学模型计算其不同条件下光谱变化,详细介绍了微型Mach-Zehnder干涉型光纤氢气传感器的制备方法,并研究其在不同氢气浓度下的响应特性。在微加工腔长为40μm,Pd膜厚度为110m的情况下,Mach-Zehnder干涉型光纤氢气传感器的波长漂移率为~0.155nm/%。实验表明这种传感器具有较高的灵敏度,与现有的光纤氢气传感器相比,其制作简单、结构紧凑、体积小,因此在光纤氢气传感领域具有潜在应用价值。
     (4)研究了一种微型Fabry-Perot干涉型光纤氢气传感器的制作方法,详细分析了基于Fabry-Perot原理的光纤氢气传感器的工作原理,建立光学模型分析不同条件下其光谱变化,并研究了这种传感器对不同氢气浓度的响应特性。实验表明,Pd膜厚度为20nm的F-P光纤干涉仪(L1=20μm,L2=50μm)在氢气浓度分别为2%,4%,6%,8%时,在1298.42nm的波长漂移量分别为10pm,30pm,100pm和150pm。与微型Mach-Zehnder干涉型光纤氢气传感器相比,微型Fabry-Perot于涉型光纤氢气传感器灵敏度稍低,但是其采用的是检测反射光谱变化的方法,传感头结构更小,更符合微型化发展要求。
     (5)研究了基于Michelson原理的微型光纤氢气传感器,详细阐述了其工作原理,模拟分析结构参数变化对其性能的影响,并研究了其氢气浓度响应特性。实验中随着氢气浓度增加,样品在1280nm和1330nm的波峰向左漂移,其波长漂移率为-0.155nm/%和-0.1625nm/%。与基于Mach-Zehnder干涉的微型光纤氢气传感器相比,微型Michelson干涉型光纤氢气传感器和微型Fabry-Perot干涉型光纤氢气传感器采用的是检测其反射光谱变化的方法,其传感头结构更小,其中Michelson干涉型光纤氢气传感器灵敏度较高。
With the development of society and industry, hydrogen has been an important industrial raw material extensively used in many fields such as chemical industry, electronic industry, and metallurgical industry, etc. However the hydrogen is flammable and explosive; thus it is of great importance to precisely detect hydrogen concentration and monitor leakage. Optical fiber hydrogen sensors have attracted considerable research interests in recent years because of their advantages of small size, light weight, compactness, good reliability and electromagnetic immunity. However, the sensor is not suitable for the limited space or high integration. The recent research efforts have focused on miniaturization and high sensitivity. The traditional methods to fabricate the sensors by welding and capillary encapsulation are complicated, and difficult to be applied in mass production. The femtosecond(fs) laser has provided a new plateform and process for sensor fabrication.
     In this dissertation, fs laser fabricated miniature interferometric optical fiber hydrogen sensors coated with Pd films are proposed and developed. The optical fiber hydrogen sensors based on interferometer, such as Mach-Zehnder interferometer, Fabry-Perot interferometer, and Michelson interferometer, are analyzed and discussed under different conditions, and the novel sensors have high potential in hydrogen sensing. The main contents are listed as follows:
     (1) The miniature interferometric optical fiber hydrogen sensor fabricated by a new method is proposed. The proposed sensors in the micrometer size are compact, easy in fabrication and have high potentials in hydrogen concentration detection.
     (2) The materials micromachining methods and procedures with fs laser micromachining have been investigated systematically. Thus, the miniature interferometric optical fiber hydrogen sensors can be fabricated with optimal processing parameters.
     (3) The working principle of the miniature optical fiber hydrogen sensor based on Mach-Zehnder interferometer has been analyzed and the transmission characteristic of the sensor is discussed with optical model simulation under different conditions. The sensor is measured in the hydrogen volume concentration range of0-16%, and the sensitivity of the sensor (L=40μm, dfilm=110nm) is-0.155nm/%. Experimental results show that the miniature sensor has high sensitivity, and is featured by small size as compared to the existing hydrogen sensor.
     (4) The fs laser fabricated miniature Fabry-Perot interferometer hydrogen sensor coated with Pd film has been proposed and investigated. The corresponding reflection characteristics to hydrogen concentration have been discussed, and the wavelength shifts of the sensor (L1=20μm, Li=50μm) are10,30,100, and150pm respectively, corresponding to the hydrogen concentration of2%,4%,6%,8%, respectively. The sensitivity of the miniature Fabry-Perot interferometer hydrogen sensor is lower than that of the Mach-Zehnder interferometer, but the detection of reflection spectra leads to a smaller size.
     (5) The fs laser fabricated miniature Michelson interferometer with Pd film deposited on the fiber end face is proposed and demonstrated for hydrogen detection. The experimental results show that the reflection spectrum experiences a blue-shift, and the sensitivity of the sensor are-0.155nm/%at1280nm and-0.1625nm/%at1330nm. As the reflection spectra are detected, the sensor is almost the same size as the miniature Fabry-Perot interferometer hydrogen sensor. And it has higher sensitivity than the Mach-Zehnder interferometer and Fabry-Perot interferometer.
引文
[1]Hubert T, Boon-Brett L, Black G, et al. Hydrogen sensors-A review[J]. Sensors and Actuators B,2011,157(2):329-352.
    [2]Firth J G, Jones A, Jones T A. The principles of the detection of flammable atmospheres by catalytic devices[J]. Combustion and Flame,1973,20(3):303-311.
    [3]Brungs M P. The evaluation of hydrogen detectors for use in coal mines[J]. Journal of the Energy Institute,1992,65:66-69.
    [4]McAleer J F, Moseley P t, Bourke P, et al. Tin dioxide gas sensor:use of the seebeck effect[J]. Sensors and Actuators B,1985,8(3):251-257.
    [5]Shin W, Imai K, Izu N, et al. Thermoelectric thick-film hydrogen gas sensor operating at room temperature[J]. Japanese Journal of Applied Physics,2001,40(11B):1232-1234.
    [6]Qiu F, Shin W, Matsumiya M, et al. Miniaturization of thermoelectric hydrogen sensor prepared on glass substrate with low-temperature crystallized SiGe film[J]. Sensors and Actuators B,2004,103(1-2):252-259.
    [7]Matsumiya M, Qiu F, Shin W, et al. Thin-film Li-doped NiO for thermoelectric hydrogen gas sensor[J]. Thin Solid Films,2002,419:213-217.
    [8]Casey V, Cleary J, D'Arcy G, et al. Calorimetric combustible gas sensor based on a planar thermopile array:fabrication, characterisation, and gas response[J]. Sensors and Actuators B, 2003,96(1-2):114-123.
    [9]Nishibori M, Shin W, Izu N, et al. Thermoelectric hydrogen sensors using Si and SiGe thin films with a catalytic combustor[J]. Journal of the Ceramic Society of Japan,2010,118: 188-192.
    [10]Lee E, Hwang I, Cha J, et al. Micromachined catalytic combustible hydrogen gas sensors[J]. Sensors and Actuators B,2011,153(2):392-397.
    [11]Han C H, Hong D W, Kim I J, et al. Synthesis of Pd or Pt/titanate nanotube and its application to catalytic type hydrogen gas sensor[J]. Sensors and Actuators B,2007,128: 320-325.
    [12]Han C H, Hong D U, Gwak J, et al. A planar catalytic combustion sensor using nano-crystalline F-doped SnO2 as a supporting material for hydrogen detection[J]. Korean Journal of Chemical Engineering,2007,24(6):927-931.
    [13]Katti V R, Debnath A K, Gadkari S C, et al. Passivated thick film catalytic type H2 sensor operating at low temperature[J], Sensors and Actuators B,2002,84:219-225.
    [14]Katsuki A, Fukui K. H2 selective gas sensor based on SnO2[J]. Sensors and Actuators B, 1998,52(1-2):30-37.
    [15]Tajima K, Qiu F, Shin W, et al. Micromechanical fabrication of low-power thermoelectric hydrogen sensor[J]. Sensors and Actuators B,2005,108(1-2):973-978.
    [16]Shin W, Tajima K, Choi Y, et al. Planar catalytic combustor film for thermoelectric hydrogen sensor[J]. Sensors and Actuators B,2005,108(1-2):455-460.
    [17]Tajima K, Qiu F, Shin W, et al. Thermoelectric properties of RF-sputtered SiGe thin film for hydrogen gas sensor[J]. Japanese Journal of Applied Physics,2004,43(9A):5978-5983.
    [18]Huang H, Luan W, Zhang J S, et al. Thermoelectric hydrogen sensor working at room temperature prepared by bismuth-telluride P-N couples and Pt/gγ-Al2O3[J]. Sensors and Actuators B,2008,128(2):581-585.
    [19]Nishibori M, Shin W, Izu N, et al. Robust hydrogen detection system with a thermoelectric hydrogen sensor for hydrogen station application[J]. International Journal of Hydrogen Energy,2009,34(6):2834-2841.
    [20]Jessop G, Katharometers[J]. Journal of Scientific Instruments.1966,43:777-782.
    [21]Boon-Brett L, Black G, Moretto P, et al. A comparison of test methods for the measurement of hydrogen sensor response and recovery times[J]. International Journal of Hydrogen Energy,2010,35(14):7652-7663.
    [22]Pollak-Diener G, Obermaier E. Heat-conduction microsensor based on silicon technology for the analysis of two-and three-component gas mixtures[J]. Sensors and Actuators B,1993, 13(1-3):345-347.
    [23]Simon I, Arndt M. Thermal and gas-sensing properties of a micromachined thermal conductivity sensor for the detection of hydrogen in automotive applications[J]. Sensors and Actuators A,2002,97-98:104-108.
    [24]Kohlrausch F. Ueber das Leitungsvermogen einiger Electrolyte in ausserst verdunnter wasseriger Losung[J]. Annalen der Physik,1885,262(10):161-226.
    [25]Haber F, Moser A. Das Generatorgas- und das Kohlenelement[J]. Zeitschrift fur Elektrochemie und angewandte physikalische Chemie,1905,11(36):593-609.
    [26]Haber F, Fleischmann F. Uber die Knallgaskette. I. Mitteilung[J]. Zeitschrift fur anorganische Chemie,1906,51(1):245-288.
    [27]Clark L C, Wolf R, Granger D, et al. Continuous recording of blood oxygen tensions by polarography[J]. Journal of Applied Physiology,1953,6(3):189-193.
    [28]LaConti A B, Maget H J R. Electrochemical detection of H2, CO and hydrocarbons in inert or oxygen atmosphere[J]. Journal of The Electrochemical Society,1978,118(3):506-510.
    [29]Chao Y, Yao S, Buttner W J, et al. Amperometric sensor for selective and stable hydrogen measurement[J]. Sensors and Actuators B,2005,106(2):784-790.
    [30]Ramesh C, Murugesan N, Krishnaiah M V, et al. Improved Nafion-based amperometric sensor for hydrogen in argon[J]. Journal of Solid State Electrochem,2008,12(9):1109-1116.
    [31]Sakthivel M, Weppner W. A portable limiting current solid-state electrochemical diffusion hole type hydrogen sensor device for biomass fuel reactors:Engineering aspect[J]. International Journal of Hydrogen Energy,2008,33(2):905-911.
    [32]Nikolova V, Nikolov I, Andreev P, et al. Tungsten carbide-based electrochemical sensors for hydrogen determination in gas mixtures[J]. Journal of Applied Electrochemistry,2000,30(6): 705-710.
    [33]Korotcenkov G, Han S D, Stetter J R. Review of electrochemical hydrogen sensors[J]. Chemlnform,2009,109:1402-1433.
    [34]Lu X, Wu S, Wang L, et al. Solid-state amperometric hydrogen sensor based on polymer electrolyte membrane fuel cell[J]. Sensors and Actuators B,2005,107(2):812-817.
    [35]Martin L P, Pham A-Q, Glass R S. Electrochemical hydrogen sensor for safety monitoring[J]. Solid State Ionics,2004,175(1-4):527-530.
    [36]Schober T. Applications of oxidic high-temperature proton conductors[J]. Solid State Ionics, 2003,162-163:277-281.
    [37]Okuyama Y, Kurita N, Yamada A, et al. A new type of hydrogen sensor for molten metals usable up to 1600 K[J]. Electrochimica Acta,2009,55(20):470-474.
    [38]Filippov V I, Vasiliev A A, Moritz W, et al. Room-temperature hydrogen sensitivity of a MIS-structure based on the Pt/LaF3 interface[J]. IEEE SENSORS JOURNAL,2006,6(5): 1250-1255.
    [39]Wagner C. The Mechanism of the Decomposition of Nitrous Oxide on Zinc Oxide as Catalyst[J]. Journal of Chemical Physics,1950,18(1):69-71.
    [40]Seiyama T, Kato A, Fujishi K, et al. A new detector for gaseous components using semiconductive thin films[J]. Analytical Chemistry,1962,34(11):1502-1503.
    [41]Kohl D. Function and applications of gas sensors[J]. Journal of Physics D:Applied Physics, 2001,34(19):R125-R149.
    [42]Barsan N, Weimar U. Conduction model of metal oxide gas sensors[J]. Journal of Electroceramics,2001,7:143-167.
    [43]Ippolito S J, Kandasamy S, Kalantar-zadch K, et al. Hydrogen sensing characteristics of WO3 thin film conductometric sensors activated by Pt and Au catalystsfJ]. Sensors and Actuators B,2005,108(1-2):154-158.
    [44]Matushko I P, Yatsimirskii V K, Msksimovich N P, et al. Sensitivity to hydrogen of sensor materials based on SnO2 promoted with 3d metals[J]. Theoretical and Experimental Chemistry,2008,44(2):128-133.
    [45]Hoffheins B S, Maxey L C, Holmes W, et al. Development of low cost sensors for hydrogen safety applications, Proc. of the 1999 U.S. DOE Hydrogen Program Rev. NREL/CP-570-269.
    [46]Ravi Prakash J, McDaniel A H, Horn M, et al. Hydrogen sensors:role of palladium thin film morphology[J]. Sensors and Actuators B,2007,120(2):439-446.
    [47]Kumar M K, Rao M S R, Ramaprabhu S. Structural, morphological and hydrogen sensing studies on pulsed laser deposited nanostructured palladium thin films[J]. Journal of Physics D:Applied Physics,2006,39(13):2791-2795.
    [48]Joshi R. K., Krishnan S., Yoshimura,M., et al. Pd nanoparticles and thin films for room temperature hydrogen sensor[J]. Nanoscale Research Letters,2009,4:1191-1196.
    [49]Lee B. Review of the present status of optical fiber sensors[J]. Optical Fiber Technology, 2003,9(2):57-79.
    [50]Giallorenzi T.G., Bucaro J. A., Dandridge A., et al. Optical fiber sensor technology[J]. IEEE Transactions on Microwave Theory and Techniques,1982,30(4):472-511.
    [51]Butler M. A. Fiber optic sensor for hydrogen concentrations near the explosive limit[J]. Journal of The Electrochemical Society,1991,138(9):L46-L47.
    [52]Butler M. A. Micromirror optical-fibre hydrogen sensor[J]. Sensors and Actuators B,1994, 22:142-145.
    [53]Bevenot X., Trouillet A., Veillas C., et al. Hydrogen leak detection using an optical fibre sensor for aerospace applications[J]. Sensors and Actuators B,2000,67(1-2):57-67.
    [54]Lin K., Lu Y., Chen J., et al. Surface plasmon resonance hydrogen sensor based on metallic grating with high sensitivity [J]. Optics Express,2008,16(23):18599-18604.
    [55]Suzuki A., Kondoh J., Matsui Y., et al. Development of novel optical waveguide surface plasmon resonance (SPR) sensor with dual light emitting diodes[J]. Sensors and Actuators B, 2005,106(1):383-387.
    [56]Chadwick B., Gal M. Enhanced optical detection of hydrogen using the excitation of surface plasmons in palladium[J]. Applied surface science,1993,68(1):135-138.
    [57]Chadwick B., Tann J., Brungs M., et al. A hydrogen sensor based on the optical generation of surface plasmons in a palladium alloy[J]. Sensors and Actuators B,1994,17(3):215-220.
    [58]Bevenot X., Trouillet A., Veillas C., et al. Surface plasmon resonance hydrogen sensor using an optical fibre[J]. Measurement Science and Technology,2002,13(1):118-124.
    [59]Morjan M., Zilchner H., Cammann K., Contributions to a reliable hydrogen sensor based on surface plasmon surface resonance spectroscopy[J]. Surface Science,2009,603(10-12): 1353-1359.
    [60]Tobiska P., Hugon O., Trouillet A., et al. An integrated optic hydrogen sensor based on SPR on palladium[J]. Sensors and Actuators B,2001,74(1-3):168-172.
    [61]Tabib-Azar M., Suptapun B., Petrick R., et al. Highly sensitive hydrogen sensor using palladium coated fibre optics with exposed cores and evanescent field interaction[J]. Sensors and Actuators B,1999,56(1-2):158-163.
    [62]Sekimoto S, Nakagawa H, Okazaki S, et al. A fibre-optic evanescent-wave hydrogen gas sensor using palladium supported tungsten oxide[J]. Sensors and Actuators B,2000,66: 142-145.
    [63]Luna-Moreno D., Monz6n-Hernadez D., Villatoro J., et al. Optical fiber hydrogen sensor based on core diameter mismatch and annealed Pd-Au thin films[J]. Sensors and Actuators B, 2007,125(1):66-71.
    [64]Tien C. L., Chen H. W., Liu W. F., et al. Hydrogen sensor based on side-polished fiber Bragg gratings coated with thin palladium film[J]. Thin Solid Films,2008,516(16): 5360-5363.
    [65]Schroeder K., Ecke W., Willsch R. Optical fiber Bragg grating hydrogen sensor based on evanescent-field interaction with palladium thin-film transducer [J]. Optics and Lasers in Engineering,2009,47(10):1018-1022.
    [66]Aleixandre M., Corredera P., Hernanz M. L., et al. Development of fiber optic hydrogen sensors for testing nuclear waste repositories[J]. Sensors and Actuators B,2005,107(1): 113-120.
    [67]Sutapun B., Tabib-Azar M., Kazemi A. Pd-coated elastooptic fiber optic Bragg grating sensors for multiplexed hydrogen sensing[J]. Sensors and Actuators B,1999,60(1):27-34.
    [68]Tien C. L., Chen H. W., Liu W. F., et al. Hydrogen sensor based on side-polished fiber Bragg gratings coated with thin palladium film[J]. Thin Solid Films,2008,516(16): 5360-5363.
    [69]Kim Y. H., Kim M. J., Park M. S., et al. Hydrogen sensor based on a palladium-coated long-period fiber grating pair[J]. Journal of the Optical Society of Korea,2008,12(4): 221-225.
    [70]Caucheteur C., Debliquy M., Lahem D., et al. Hybrid fiber gratings coated with a catalytic sensitive layer for hydrogen sensing in air[J]. Optics Express,2008,16(21):16854-16859.
    [71]Butler M. A. Optical fibre hydrogen sensor[J]. Applied Physics Letters,1984,45(10): 1007-1009.
    [72]Bearzotti A., Caliende C., Verona E., et al. Integrated optic sensor for the detection of H2 concentrations[J]. Sensors and Actuators B,1992,7:685-688.
    [73]Trouillet A., Marin E., Veillas C. Fibre gratings for hydrogen sensing[J]. Measurement Science and Technology,2006,17(5):1124-1128.
    [74]Maciak E., Opilsk Z. Transition metal oxides covered Pd film for optical H2 gas detection[J]. Thin Solid Films,2007,515(23):8351-8355.
    [75]Farahi F., Leilabady P. A., Jones J. D. C., et al. Interferometric fibre-optic hydrogen sensor[J]. Journal of Physics E:Scientific Instruments,1987,20(4):432-434.
    [76]Dustech T. Mode-locking effects in an internally modulated ruby laser[J]. Applied Physics Letters,1965,7(4):80-82.
    [77]Fork R. L., Greene B, I., Shank C. V. Generation of optical pulses shorter than 0.1 psec by colliding pulse mode locking[J]. Applied Physics Letters,1981,38(9):671-672.
    [78]Moulton P. F. Spectroscopic and laser characteristics of Ti:Al2O3[J]. Journal of the Optical Society of America B,1986,3:125-132.
    [79]Roy R., Schulz P. A., Walther A. Acousto-optic modulator as an electronically selectable unidirectional device in a ring laser[J]. Optics Letters,1987,12(9):672-674.
    [80]Sarukura N., Ishida Y., Nakano H., et al. CW passive mode locking of a Ti:sapphire laser[J]. Applied Physics Letters,1990,56(9):814-815.
    [81]French P. M. W., Kelly S. M. J., Taylor J. R. Mode locking of a continuous-wave titanium-doped sapphire laser using a linear external cavity[J]. Optics Letters,1990,15(7): 378-380.
    [82]Naganuma K., Mogi K.50-fs pulse generation directly from a colliding-pulse mode-locked Ti:sapphire laser using an antiresonant ring mirror[J]. Optics Letters,1991,16(10):738-740.
    [83]Stingl A., Lenzner M., Spielmann Ch., et al. Sub-10-fs mirror-dispersion-controlled Ti:sapphire laser[J]. Optics Letters,1995,20(6):602-604.
    [84]Jung I. D., Kartner F. X., Matuschek N., et al. Self-starting 6.5 fs from a KLM Ti:sapphire laser[J]. Optics Letters,1997,22(13):1009-1011.
    [85]Yamane K., Zhang Z., Oka K., et al. Optical pulse compre ssion to 3.4 fs in the monocycle region by feedback phase compensation[J]. Optics Letters,2003,28(22):2258-2260.
    [86]Spence D. E., Kean P. N., Sibbett W.60-fsec pulse generation from a self-mode-locked Ti:sapphire[J]. Optics Letters,1991,16(1):42-44.
    [87]Haus H. A., Fujimoto J. G., Ippen E. P. Structures for additive pulse mode locking[J]. Journal of the Optical Society of America B,1991,8(10):2068-2076.
    [88]Cerullo G., Silvestri S. De, Magni V. Resonators for Kerr-lens mode-locked femtosecond Ti:sapphire lasers[J]. Optics Letters,1994,19(11):807-809.
    [89]Cerullo G., Silvestri S. De, Magni V. Self-starting Kerr lens mode-locking of a Ti:sapphire laser[J]. Optics Letters,1994,19(14):1040-1042.
    [90]Keller U., Miller D. A. B., Boyd G. D. Solid-state low-loss intracavity saturable absorber for Nd:YLF lasers:an antiresonant semiconductor Fabry-Perot saturable absorber[J]. Optics Letters,1992,17:505-507.
    [91]Kalashnikov V. L., Krimer D. O., Poloyko I. G. Soliton generation and picosecond collapse in solid-state lasers with semiconductor saturable absorbers[J]. Journal of the Optical Society of America B,2000,17(4):519-523.
    [92]Asaki M. T., Huang C., Garvey D., et al. Generation of 11-fs pulses from a self-mode-locked Ti:sapphire laser[J]. Optics Letters,1993,18(12):977-979.
    [93]Curley P. F., Spielmann Ch., Brabec T., et al. Operation of a femtosecond Ti:sapphire solitary laser in the vicinity of zero group delay dispersion[J]. Optics Letters,1993,18(1): 54-56.
    [94]Zhou J., Taft G., Huang C., et al, Pulse evolution in a broad-bandwidth Ti:sapphire laser[J]. Optics Letters,1994,19(15):1149-1151.
    [95]Szipocs R., Ferencz K., Spielmann C., et al. Chirped multilayer coatings for broadband dispersion control in femtosecond lasers[J]. Optics Letters,1994,19(3):201-203.
    [96]Kartner F. X., Matuschek N., Schibli T., et al. Design and fabrication of double-chirped mirrors[J]. Optics Letters,1997,22(11):831-833.
    [97]Matuschek N., Kartner F. X., Keller U. Analytical design of double-chirped mirrors with customtailored dispersion characteristics[J]. IEEE Journal of Quantum Electronics,1999, 35(2):129-137.
    [98]Matuschek N., Gallmann L., Sutter D. H., et al. Back-side coated chirped mirror with ultra-smooth broadband dispersion characteristics[J]. Applied Physics B,2000,71(4): 509-522.
    [99]Steinmeyer G., Sutter D. H., Gallmann L., et al. Frontiers in ultrashort pulse generation: pushing the limits in linear and nonlinear optics[J]. Science,1999,286(5444):1507-1512.
    [100]Aoyama M., Yamakawa K., Akahane Y., et al.0.85-PW,33-fs Ti:sapphire laser[J]. Optics Letters,2003,28(17):1594-1596.
    [101]Innerhofer E., Sudmeyer T., Brunner F., et al.60-W average power in 810-fs pulses from a thin-disk Yb:YAG laser[J]. Optics Letters,2003,28:367-369.
    [102]Giesen A., Hugel H., Voss A., et al. Scalable concept for diode-pumped high-power solid-state lasers[J]. Applied Physics B,1994,58(5):365-372.
    [103]Jeon S., Malyarchuk V., Rogers J. A., et al. Fabricating three dimensional nanostructures using two photon lithography in a single exposure step[J]. Optics Express,2006,14(6): 2300-2308.
    [104]Chichkov B. N., Momma C., Nolte S., et al. Femtosecond, picosecond and nanosecond laser ablation of solids[J]. Applied Physics A,1996,63:109-115.
    [105]Maruo S., Ikuta K., Korogi H. Submicron manipulation tools driven by light in a liquid[J]. Applied Physics Letters,2003,82(1):133-135.
    [106]Perry M. D., Strart B. C., Banks P. S., et al. Ultrafast-pulse laser machining of dielectric materials[J]. Journal of Applied Physics,1999,85:6803-6810.
    [107]Glezer E. N., Mazur E. Ultrafast-laser driven micro-explosions in transparent materials[J]. Applied Physics Letters,1997,71(7):882-884.
    [108]Glezer E. N., Milosavljevic M., Huang L., et al. Three-dimensional optical storage inside transparent materials[J]. Optics Letters,1996,21(24):2023-2025.
    [109]Hirao K., Miura K. Writing waveguides and gratings in silica and related materials by a femtosecond laser[J]. J. Non-Crystalline Solids 1998,239(1-3):91-95.
    [110]Siegel J., Fernandez-Navarro J. M., Garcia-Navarro A., et al. Waveguide structures in heavy metal oxide glass written with femtosecond laser pulses above the critical self-focusing threshold[J]. Applied Physics Letters,2005,86(12):121109-1-3.
    [111]Hughes M., Yang W., Hewak D. Fabrication and characterization of femtosecond laser written waveguides in chalcogenide glass[J]. Applied Physics Letters,2007,90(13): 131113-1-3.
    [112]Venkatakrishnan K., Ngoi B. K. A., Stanley P., et al. Laser writing techniques for photomask fabrication using a femtosecond laser[J]. Applied Physics A,2001,74(4): 493-496.
    [113]Juhasz T., Djotyan G., Loesel F. H., et al. Applications of femtosecond lasers in corneal surgery[J]. Laser Physics,2000,10(2):495-500.
    [114]Said A. A., Dugan M., Man S. de, et al. Carving fiber-top cantilevers with femtosecond laser micromachining[J]. Journal of Micromechanics and Microengineering,2008,18(3): 035005.
    [115]Lai Y., Marinez A., Khrushchev I., et al. Distributed Bragg reflector fiber laser fabricated by femtosecond laser inscription[J]. Optics Letters,2006,31(11):1672-1674.
    [116]Feng K., Cai J., Grubsky V., et al. Dynamic dispersion compensation in a 10 Gbit/s optical system using a voltage controlled tuned nonlinearly chirped fiber Bragg grating[J]. IEEE Photonnics Technology Letters,1999,11(3):373-375.
    [117]Lai Y., Zhou K., Sugden K., et al. Point-by-point inscription of first-order fiber Bragg grating for C-band applications[J]. Optics Express,2007,15(26):18318-18325.
    [118]Kondo Y., Nouchi K., Mitsuyu T., et al. Fabrication of long-period fiber gratings by focused irradiation of infrared femtosecond laser pulses[J]. Optics Letters,1999,24(10): 646-648.
    [119]Kalachev A. I., Nikogosyan D. N., Brambilla G. Long-period fiber grating fabrication by high-intensity femtosecond pulses at 211 nm[J]. Journal of Lightwave Technology,2005, 23(8):2568-2578.
    [120]Allsop T., Kalli K., Zhou K., et al. Long period gratings written into a photonic crystal fibre by a femtosecond laser as directional bend sensors[J]. Optics Communications,2008, 281(20):5092-5096.
    [121]Lai Y., Zhou K., Bennion I. Microchannels in conventional single-mode fibers[J]. Optics Letters,2006,31(17):2559-2561.
    [122]Zhou K., Lai Y., Chen X., et al. A refractometer based on a micro-slot in a fiber Bragg grating formed by chemically assisted femtosecond laser processing[J]. Optics Express,2007, 15(24):15848-15853.
    [123]Rao Y. J., Deng M., Duan D., et al. Micro Fabry-Perot interferometers in silica fibers machined by femtosecond laser[J]. Optics Express,2007,15(21):14123-14128.
    [124]Ran Z. L., Rao Y. J., Liu W. J., et al. Laser-micromachined Fabry-Perot optical fiber tip sensor for high-resolution temperature-independent measurement of refractive index[J]. Optics Express,2008,16(3):2252-2263.
    [125]Wei T., Han Y., Tsai H., et al. Miniaturized fiber inline Fabry-Perot interferometer fabricated with a femtosecond laser[J]. Optics Letters,2008,33(6):536-538.
    [126]Wei T., Han Y., Li Y., et al. Temperature-insensitive miniaturized fiber inline Fabry-Perot interferometer for highly sensitive refractive index measurement[J]. Optics Express,2008, 16(8):5764-5769.
    [127]Park M., Lee S., Ha W., et al. Ultracompact Intrinsic Micro Air-Cavity Fiber Mach-Zehnder Interferometer[J]. IEEE Photonics Technology Letters,2009,21(15): 1027-1029.
    [128]Baogar M., Ramanathanl A. K., Yun M., et al. Controlled growth of a single palladium nanowire between microfabricated electrodes[J]. Chemistry of Materials,2004,16(24): 4955-4959.
    [129]Woolley A. T., Marbles R. A., Ultra-High-Speed DNA sequencing using capillary electrophoresis chips[J]. Analytical Chemistry,1995,67(20):3676-3680.
    [130]Tajima K., Qiu F. B., Shin W., et al. Thermoelectric hydrogen sensor based on SiGe thin film[J]. Electroceramics in Japan VII,2004,269(1-2):117-120.
    [131]Matsumiya M., Shin W., Izu N., et al. Nano-structured thin-film Pt catalyst for thermoelectric hydrogen gas sensor[J]. Sensors and Actuators B,2003,93(1-3):309-315.
    [132]Ryzhikov A. S., Shatokhin A. N., Putilin F. N., et al. Hydrogen sensitivity of SnO2 thin films doped with Pt by laser ablation[J]. Sensors and Actuators B,2005,107(1):387-391.
    [133]Shukla S., Seal S., Ludwigb L., et al. Nanocrystalline indium oxide-doped tin oxide thin film low temperature hydrogen sensor[J]. Sensors and Actuators B,2004,97(2-3):256-265.
    [134]Tan O. K., Zhu W., Tse M. S., et al. Hydrogen-sensitive I-V characteristics of metal-ferroelectric gas sensordevice fabricated by sol-gel technique[J]. Materials Science and Engineering B,1999,58(2-3):221-228.
    [135]Gong J. W., Chen Q. F., Fei W. F., et al. Micromachined nanocrystalline SnO2 chemical gas sensors for electronic nose[J]. Sensors and Actuators B,2004,102(1):117-125.
    [136]Jung Y., Lee S., Lee B. H., et al. Ultra compact in-line broadband Mach-Zehnder interferometer using a composite leaky hollow-optical-fiber waveguide[J]. Optics Letters, 2008,33(24):2934-2936.
    [137]Wang Y., Li Y., Liao C. R., et al. High-temperature sensing using miniaturized fiber in-line Mach-Zehnder interferometer[J]. IEEE Photonics Technology Letters,2010,22(1):39-41.
    [138]Wang Y., Yang M. W., Wang D. N., et al. Fiber in-line Mach-Zehnder interferometer fabricated by femtosecond laser micromachining for refractive index measurement with high sensitivity [J]. Journal of the Optical Society of America B,2010,27(3):370-374.
    [139]Jiang L., L Zhao. J., Wang S. M., et al. Femtosecond laser fabricated all-optical fiber sensors with ultrahigh refractive index sensitivity:modeling and experiment[J]. Optics Express,2011,19(18):17591-17598.
    [140]Liao C. R., Wang Y., Wang D. N., et al. Fiber In-line Mach-Zehnder Interferometer Embedded in FBG for Simultaneous Refractive index and Temperature Measurement J]. IEEE Photonics Technology Letters,2010,22(22):1686-1688.
    [141]Zhang Y., Li Q. S., Z. Zhuang, et al. Fiber Optic Hydrogen Sensor resisting Temperature Interference[C]. in Proc.21st Int. Conf. Opt. Fiber Sensors, Ottawa,2011,775369:1-4.
    [142]Park K. S., Kim Y. H., Eom J. B., et al. Compact and multiplexible hydrogen gas sensor assisted by self-referencing technique[J]. Optics Express,2011,19(19):18190-18198.
    [143]Butler M. A., Ginley D. S. Hydrogen sensing with palladium-coated optical fibers[J]. Journal of Applied Physics,1988,64(7):3706-3712.
    [144]Goddard L., Wong K. Y., Garg A., et al. Measurements of the complex refractive index of Pd and Pt films in air and upon adsorption of H2 gas[C]. in 21st Annual Meeting of the IEEE Lasers and Electro-Optics Society,2008:569-570.
    [145]Tian Z. B., Yam S. S. H., Loock H. P. Single-Mode Fiber Refractive Index Sensor Based on Core-Offset Attenuators[J]. IEEE Photonics Technology Letters,2008,20(16):1387-1389.
    [146]Yuan L., Wei T., Han Q., et al. Fiber inline Michelson interferometer fabricated by a femtosecond laser[J]. Optics Letters,2012,37(21):4489-8891.
    [147]Liao C. R., Wang D. N., Wang M., et al. Fiber In-Line Michelson Interferometer Tip Sensor Fabricated by Femtosecond Laser[J]. IEEE Photonics Technology Letters,2012,24(22): 2060-2063.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700