用户名: 密码: 验证码:
超声激励—光纤光栅传感检测技术的相关理论与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超声激励-光纤光栅检测技术(Ultrasonic excitation-fiber Bragg gratings damage detection techniques, UE-FBGs)是近几年发展起来的一种新的检测技术,其基本原理是利用分布布置的光纤光栅(Fiber Bragg Gratings-FBG)代替无损检测中的压电陶瓷来检测超声信号,根据FBG测量的超声、应变等信息分析结构的损伤。该技术将FBG抗电磁干扰、分布式传感等独特优势与超声波的方向性好、穿透能力强等特点相结合,在结构损伤检测领域呈现出良好的发展潜力。国外已有高校和研究机构对此展开研究,而国内还未见相关报道。
     本论文旨在利用超声激励机械结构,通过FBG测量携带损伤信息的超声和结构应力应变等信息,建立面向机械结构损伤定位检测的新理论和新技术。重点研究基于超声激励下FBG高速解调技术和表面粘贴型FBG传感体复合结构模型,揭示超声激励下,粘贴型FBG从基体材料到纤芯的应变传递特征,实验研究基于超声激励和FBG分布传感的机械损伤检测与定位的新原理、新方法,解决机械结构裂纹损伤在线检测、识别和定位的基础问题。论文的主要工作如下:
     1.总结了超声激励下FBG反射波长的高速解调技术、FBG的应变传递特性与敏感特性三个关键问题的研究进展及该技术在复合材料和金属材料损伤监测方面的应用概况。
     2.分析了机械结构中超声波声场的分布特点,确定了FBG应轴向布置在离声源较近的远声场区;研究了铝合金的频散曲线及超声入射角与频厚积的关系曲线,为针对不同材料合理选择超声探头频率和入射角提供了理论基础;仿真分析了在超声源激励下机械结构试件的超声应力场分布,为FBG多点布置与优化提供了依据。
     3.研究了FBG反射波长的匹配滤波解调系统和基于可调激光光源的FBG解调系统,分析了各检测系统的工作原理,理论推导了对应输出电压与所测超声应变的关系式,将两测量系统均用于超声清洗槽振动信号的测量,对比分析了两解调系统的灵敏度和解调速度,最终试验验证了基于可调激光光源的FBG解调系统对金属板件中兰姆波信号测量的可行性。
     4.提出了超声激励下粘贴型FBG应变传递模型,并利用剪滞理论得出相应的应变传递方程。仿真分析了基于该模型的FBG应变传递特征及超声波频率、胶层厚度、待测材料对FBG从基体材料到纤芯的应变传递效率的影响关系;最后用超声探头对铝合金薄板件进行超声激励,用AB胶粘贴的FBG对板中的兰姆波进行测量,实验验证了超声激励下粘贴型FBG传感特性。
     5.利用传输矩阵法讨论了超声激励下FBG光谱特性,讨论分析了超声波长度和超声波能量对FBG反射谱的影响,研究印证了当超声波能量适当且FBG长度小于等于超声波波长的一半时,FBG可用于结构损伤检测中超声信号的测量。
     6.搭建了超声激励-FBG检测系统:系统采用超声波探伤仪激励超声探头从而在薄板中产生超声波,利用粘贴型FBG对超声波进行测量,用基于可调激光光源的解调系统实现FBG中心波长的解调,并将该装置用于5052铝合金板中超声波声轴线声强分布特征的研究,验证了该装置用于板中超声波信号测量的可行性;利用该装置分别进行5052铝合金板中两处直径为6mm的孔缺陷的检测,实验证明,当板中出现孔缺陷时,FBG所测波形中出将现新的波包,可通过损伤前后新增波包到来的时刻确定孔的位置,两孔的缺陷定位偏差分别为3.3mm和0.8mm;利用该装置开展了基于分布式FBG测试数据的板缺陷损伤检测的试验研究,初步确定了损伤的位置和大小。
The fiber Bragg gratings (FBG) detection technique under ultrasonic excitation is a new technology being developed in recent years. Its basic idea is to use the FBG as an ultrasonic detector instead of piezoelectric ceramics and analyze the injury condition of the construction based on FBG signals. By combining the unique advantages of FBG in electromagnetic interference immunity, distributed sensing with the ultrasonic features such as good directivity, high penetrating power, it has great development potentiality in structural damage detection field. Some foreign universities and research institutes have studied on this technology, however it hasn't been reported in china.
     This dissertation aims to set up a new theory for mechanical structure damage detection by using ultrasonic wave to excite mechanical structures and FBGs to detect the ultrasonic strain wave with damage information and structural stress signals. It mainly studies the FBG high speed demodulation technology and glued FBG multiple structure under ultrasonic excitation; it reveals the strain sensing characteristics from host material to fiber core of the glued FBG under ultrasonic excitation; it presents a new principle and method on structural damage detection and location based on ultrasonic excitation and distributed FBG sensing in order to solve the foundation problem toward the on-line detection identification and location of the mechanical crack damage. The detailed content of this paper shows as follows:
     1. It gives a review of the FBG high speed demodulation method, FBG strain transferring characteristic and sensitivity property as well as the application of this technique in composite and metallic materials health monitoring.
     2. It analyses the acoustic field distribution in mechanical structure and proposes that the FBG should be arranged at the closer far-field region from the ultrasonic source. The dispersion curves of the alloy aluminum as well as the relationship between the ultrasonic incidence angle and the frequency-thickness product are studied, to provide a theoretical basis for the reasonable selection of acoustic frequency and incidence angle according to different test materials. The ultrasonic stress field of the test mechanical structure under ultrasonic excitation is simulated with Comsol software, offering references for the layout and optimization of FBGs.
     3. Two high-speed demodulation systems for fiber Bragg grating (FBG) sensor respectively based on matched fiber Bragg grating and tunable laser light are studied. Their measuring principles are presented and the output curves are given by theoretical deduction. Then the vibration signals of an ultrasonic cleaner were measured using these two systems. The wavelength measurement sensitivity and demodulation speed of these two systems were compared with experiments. Finally, the experimental results demonstrated the feasibility to detect Lamb waves in metal plates with the FBG demodulation system based on a tunable laser light.
     4. A four-cylinder sensing model for glued FBG sensor is established in this paper. According to the shear-lag theory, an improved strain sensing function is derived from this model. Then, based on above function, the strain sensing characteristics and the effects of ultrasonic frequency, adhesive layer thickness and host material on strain transfer efficiency from host material to fiber core are studied with simulation. Finally, the system with an ultrasonic transducer to excite aluminum alloy thin plates and surface-bounded FBGs with AB glue to detect the Lamb wave propagating through the plate was established to validate the theoretical analysis.
     5. The optical spectrum of FBG under ultrasonic excitation is analyzed with the Transmission Matrix method. The influences of FBG length and ultrasonic power on the FBG spectrum distribution are discussed. Numerical results prove that the FBG can be used to detect ultrasonic signal in structure detection when the length of the FBG is shorter than a half of ultrasound wavelength with proper energy
     6. The detection system based on ultrasonic excitation and fiber Bragg gratings sensing was established. The ultrasonic fault detector was employed to stimulate the ultrasonic probe, thus generating ultrasonic waves in the thin plate. The glued FBG was used to measure the ultrasonic waves and the demodulating system based on tunable laser source was applied to achieve the center wavelength demodulation of FGB. On these bases, the experiment set was used to study the character of acoustic intensity distribution along the acoustic axis in the aluminum alloy (5052) plates, proving the feasibility to detect the acoustic waves with the system. Then, the experiment device was used to detect the two hole defects with diameters of6mm in the aluminum alloy (5052) plates, discovering new wave packets in the FGB measured ultrasonic waveform when there was hole damage in the plate, whose arriving time before and after the damage can be used to determine the damage localization. The positioning errors of the two holes were3.3mm and0.8mm, respectively. The datas obtained from distributed FBGs with this experiment set were used to study the position and size of the damage in a plate.
引文
[l]郭万林,邵忍平,冯谦.结构损伤监测的研究现状与展望[J].振动、测试与诊断,2003,23(02):79-85
    [2]王国彪,何正嘉,陈雪峰,赖一楠.机械故障诊断基础研究“何去何从”[J]机械工程学报.2013,49(01):63-72
    [3]Schijve, J. Fatigue of Structures and Materials [M]. Springer.2009.2
    [4]S. Suresh. Fatigue of Materials (Cambridge Solid State Science Series) Second Edition [M]. Cambridge University Press.1998.11
    [5]袁熙,李舜酩.疲劳寿命预测方法的研究现状与发展[J].航空制造技术.2005.12
    [6]张敬芬,赵德有.工程结构裂纹损伤振动诊断的发展现状和展望[J].振动与冲击,2002,21(04):21-26
    [7]Chuck Hellier. Handbook of Nondestructive Evaluation [M]. McGraw-Hill Professional.2001.3
    [8].Ravi, Dean. et al. Nondestructive Testing Techniques [M]. New Age Science.2009.7
    [9]P Cawley. Non-destructive testing—current capabilities and future directions[C]. Proceedings of the Institution of Mechanical Engineers, Part L:Journal of Materials:Design and Applications,2001,215(04):213-223
    [10]Zhang Weimin, Dong Shaoping, Zhang Zhijing. State-of-the-Art of Metal Magnetic Memory Testing Technique[J]. China Mechanical Engineering,2003,14(10):892-896
    [11]王迅,金万平等.红外热波无损检测技术及其进展[J].无损检测,2004,26(10):497-501
    [12]鲍凯,王俊涛,吴东流.新兴的无损检测技术—红外热波成像检测[J].无损检测,2006,28(08):393-398
    [13]T.M. Roberts, M. Talebzadeh. Acousticemission monitoring of fatigue crack propagation[J] Journal of Constructional Steel Research,2003,59(06):695-712
    [14]Mba, D., Rao, Raj B. K. N. Development of Acoustic Emission Technology for Condition Monitoring and Diagnosis of Rotating Machines:Bearings, Pumps, Gearboxes, Engines, and Rotating Structures [J]. The Shock and Vibration Digest,2006,38(1):3-16
    [15]王慧晶,林哲,赵德有.声发射技术在工程结构疲劳损伤监测中的应用和展望[J].振动与冲击.2007,26(06):157-161
    [16]E. Peter Carden. Vibration Based Condition Monitoring:A Review [J]. Structural Health Monitoring.2004,3 (4):355-377
    [17]Y.J. Yan, L. Cheng, Z.Y. Wu, L.H. Yam. Development in vibration-based structural damage detection technique [J]. Mechanical Systems and Signal Processing.2007,21(05):2198-2211
    [18]何正嘉,陈雪峰.小波有限元理论研究与工程应用的进展[J].机械工程学报,2005,41(03):1-11
    [19]Ajay Raghavan and Carlos E. S. Cesnik. Review of Guided-wave Structural Health Monitoring [J]. The Shock and Vibration Digest,2007,39(02):91-114
    [20]Jose M. Galan, Ramon Abascal. Numerical simulation of Lamb wave scattering in semi-infinite plates [J]. International Journal for Numerical Methods in Engineering,2002,53(5):1145-1173
    [21]张海燕,吕东辉,刘镇清.二维傅立叶变换在Lamb波模式识别研究中的应用.振动、测试与诊断[J].2004.41(07):24-26
    [22]阎石,张海凤,蒙彦宇.Lamb波频散曲线的数值计算及试验验证[J].华中科技大学学报(城市科学版),2010,27(01):1-4
    [23]Chunhui Yang, Lin Ye, Zhongqing Su, Michael Bannister. Some aspects of numerical simulation for Lamb wave propagation in composite laminates [J]. Composite Structures,2006,75(1-4):267-275
    [24]解维华,汤琚等.基于Lamb的金属薄板损伤主动监测技术研究[J].压电与声光,2008,30(03):349-352
    [25]冯志刚,孙汝科等.基于小波包分析的声发射源定位方法[J].江苏大学学报(自然科学版),2010,31(01):109-113
    [26]Delrue S., Van Den Abeele K. et al. Two-dimensional simulation of the single-sided air-coupled ultrasonic pitch-catch technique for non-destructive testing [J]. Ultrasonics,2010,50(2):188-196
    [27]Ye Lu, Lin Ye and Zhongqing Su. Crack identification in aluminium plates using Lamb wave signals of a PZT sensor network [J]. Smart Mater. Struct.,2006,15 (03):839-849
    [28]Jeong-Beom Ihn and Fu-Kuo Chang. Detection and monitoring of hidden fatigue crack growth using a built-in piezoelectric sensor/actuator network:I. Diagnostic [J]. Smart Mater. Struct.,2004,13 (03):609-620
    [29]Emmanuel Le Clezio, Michel Castaings, Bernard Hosten. The interaction of the SO Lamb mode with vertical cracks in an aluminium plate [J]. Ultrasonics.2002,40 (1-8):187-192
    [30]PSTua, STQuekandQWang.Detection of cracks in plates using piezo-actuated Lamb waves[J]. Smart Mater. Struet,2004,13 (04):643-66
    [31]Y. Ding, R.L. Reuben, J.A. Steel.Anew method for waveform analysis for estimating AE wave arrival times using wavelet decomposition [J]. NDT&E International,2004,37 (04):279-290
    [32]Michel Castaings, Emmanuel Le Clezio, and Bernard Hosten. Modal decomposition method for modeling the interaction of Lamb waves with cracks [J]. J. Acoust. Soc. Am.,2002,112 (06):2567-2582
    [33]Ye Lua, Lin Yea, Zhong qing Su, Chunhui Yang. Quantitative assessment of through-thickness crack size based on Lamb wave scattering in aluminium plates [J]. NDT&E International,2008,41 (01):59-68
    [34]B. V. Soma Sekhar, Krishnan Balasubramaniam and C.V. Krishnamurthy. Structural Health Monitoring of Fiber-reinforced Composite Plates for Low-velocity Impact Damage using Ultrasonic Lamb Wave Tomography [J]. Structural Health Monitoring,2006,5(3):0243-11
    [35]姜德生,何伟.光纤光栅传感器的应用概况[J].光电子·激光,2002.13(04):420-430
    [36]林钧岫,王文华,王小旭.光纤光栅传感技术应用研究及其进展[J].大连理工大学学报,2004.44(6):931-936
    [37]Mousumi Majumder.Tarun Kumar Gangopadhyay.et al.Fibre Bragg gratings in structural health monitoring—Present status and applications [J]. Sensors and Actuators A:Physical,2008.35(14):150-164
    [38]Kenneth O. Hill and Gerald Meltz. Fiber Bragg Grating Technology Fundamentals and Overview[J]. Journal of light wave technology,1997.15(08):1263-1276
    [39]刘丽辉,赵启大,张昊等.光纤光栅传感器的解调技术进展[J].激光与光电子学进展.2004.41(07):35-39
    [40]Maki ANDO, M.Y.; Keisuke NAKAYAMA, K.M. et al. Dependence of fiber Bragg grating characteristics on its length [J]. Japanese Journal of Applied Physics,2004,43 (7 A):4234-35
    [41]Turan Erdogan.Fiber Grating Spectra[J]. Journal of light wave technology,1997,15(08):1277-1294
    [42]D.H. Kanga,, S.O. Parkb, C.S. Hongb, C.G Kim. The signal characteristics of reflected spectra of fiber Bragg grating sensors with strain gradients and grating lengths [J].NDT&E.,2005,38(8):712-718
    [43]Mohanraj Prabhugoud, Kara Peters. Modified transfer matrix formulation for Bragg Grating strain sensors [J]. Journal of light wave technology,2004,22(10):2302-2309
    [44]张东生,马丽等.可调激光边沿滤波解调光纤光栅实时应变测量[J].武汉理工大学学报,2007,29(03):4-5
    [45]信思金,梁磊,左军.光纤光栅传感技术在重大工程结构诊断与监测中的应用[J].河南科技大学学报(自然科学版),2005,26(03):52-55
    [46]D.J. Webb, J. Surowiec, M. Sweeney, et al. Miniature fibre optic ultrasonic probe [C]. Proc. SPIE, Fiber Optic and Laser Sensors XIV,76 (October 25,1996), Vol.2839:76-80
    [47]汪钱纯,叶险峰等.用布拉格光纤光栅对聚焦超声场的检测[J].传感技术学报,2005,18(01):171-176
    [48]Bashir Ahmad Tahir, Jalil Ali and Rosly Abdul Rahman. Strain Measurements Using Fibre Bragg Grating Sensor [J]. American Journal of Applied Science (Special Issue),2005:40-48
    [49]Sun Man,Zhi Yong, Liu Hao-Wu.Fracture monitoring of steel-concrete composite structure using FBG sensing[J]. Gongcheng Lixue/Engineering Mechanics,2007,24(01):162-166
    [50]Childs Paul, Wong Allan C.L., Terry W., Peng G.D.. Measurement of crack formation in concrete using embedded optical fiber sensors and differential strain analysis [J]. Measurement Science and Technology, 2008,19(06):1-9
    [51]Okabe Yoji, Yashiro Shigeki, Kosaka Tatsuro.Takeda Nobuo.Detection of transverse cracks in CFRP composites by using embedded FBG sensors[C]. SPIE Proceedings-Smart Structures and Materials 2000: Sensory Phenomena and Measurement Instrumentation for Smart Structures and Materials,2000, 3986:282-291
    [52]Mizutani Tadahito, Okabe Yoji, Takeda Nobuo.Quantitative evaluation of transverse cracks in carbon fiber reinforced plastic quasi-isotropic laminates with embedded small-diameter fiber Bragg grating sensorsfJ]. Smart Materials and Structures,2003,12(06):898-903
    [53]Pramod R.Watekar Seongmin Ju Won-Taek Han. A multi-parameter sensor system using concentric core optical fiber[J]. Opt Quant Electron,2008,40(07):485-494
    [54]刘长卫,赵勇等.基于光纤光栅传感器的结构故障定位方法[J].光电工程,2007,34(04):136-139
    [55]Adam Propst, Ryan Garrett, et al. FBG Spectral Sensor Networks for Damage Identification in Composites[C]. Proc.SPIE-Smart Sensor Phenomena, Technology, Networks, and Systems 2009, 7293:729303
    [56]Andrea Cusano, Patrizio Capoluongo, et al. Experimental Modal Analysis of an Aircraft Model Wing by Embedded Fiber Bragg Grating Sensors [J]. Sensors Journal,2006,6(01):67-77
    [57]Baldwin Chris S.,vlzzini Anthony J. Acoustic emission crack detection with FBG[C]. Proceedings of SPIE-Smart Structures and Materials 2003:Smart Sensor Technology and Measurement Systems,2003,5050: 133-143
    [58]Seo Dae-Cheol, Kwon Il-Bum, Kim Chi-Yeop, Yoon Dong-Jin.Fiber optic acoustic sensors for crack growth diagnostics[C]. Proc. SPIE-19th International Conference on Optical Fibre Sensors,2008,7004: 70044T-70044T-4
    [59]Seo Dae-Cheol, Yoon Dong-Jin, Kwon IL-Bum, Lee Seung-Suk.Sensitivity enhancement of fiber optic FBG sensor for acoustic emission[C]. Proceedings of SPIE,2009,7294:729415
    [60]黄锐,蔡海文,瞿荣辉等.一种同时测量温度和应变的光纤光栅传感器[J].中国激光,2005,32(2):232-235
    [61]D C Betz, W J Staszewski, G Thursby, B Culshaw. Multi-functional fibre Bragg grating sensors for fatigue crack detection in metallic structures[C]. Proc. ImechE2006, Vol.220 Part G:J. Aerospace Engineering, 453-461
    [62]G Thursby, DC Betz, B Culshaw,W Staszewski. Versatile fiber Bragg grating arrays for strain mapping and ultrasound Lamb wave detection [C]. Proc. of SPIE 2006, Vol.6379,63790F
    [63]Takeda N, Okabe Y,Kuwahara J, et al.Development of smart composite structure with small-diameter fiber Brag grating sensor for damage detection:quantitative evaluation of delamination length in CFRP laminates using Lamb wave sensing[J]. Composites Science and Technology,2005,65(15-16):2575-87
    [64]Nobuo Takeda. Recent development of structural health monitoring technologies for aircraft composite structures [C].26th Congress of International Council of the Aeronautical Sciences,2008:1-12
    [65]Seiji Kojima, Akihito Hongo, et al. High-speed optical wavelength interrogator using a PLC-type optical filter for fiber Bragg grating sensors[C]. Proceedings of SPIE 2004, Vol.5384:241-249
    [66]Hideki Soejima, et al.Experimental investigation of impact damage detection for CFRP structure by lamb wave sensing using FBG/PZT hybrid system[C].16th International Conference on Composite Materials, 2007:1-9
    [67]Toshimichi Ogisu,Masakazu Shimanuki,Satoshi Kiyoshima, et al.Feasibility studies on active damage detection for CFRP aircraft bonding structures [J]. Adv. Composite Mater.,2006,15(2):153-173
    [68]Jung-Ryul Lee, Hiroshi Tsuda, Nobuyuki Toyama. Impact wave and damage detections using a strain-free fibre Bragg grating ultrasonic receiver [J]. NDT&E International,2007,40(01):85-93
    [69]Hiroshi Tsuda, Eiichi Sato, Tomio Nakajima. et al.Acoustic emission measurement using a strain-insensitive fiber Bragg grating sensor under varying load condition[J]. OPTICS LETTERS,2009,34(19):2942-2944
    [70]Tsuda H. Ultrasound and damage detection in CFRP using fiber Bragg grating sensor [J].compos Sci Technol., 2006,66(05):676-683
    [71]HiroshiTsuda,Nobuyuki Toyama, KeiUrabe et al.Impact damage detection in CFRP using fiber Bragg gratings[J]. Smart Mater. Struct.,2004,13(04):719-724
    [72]Hiroshi Tsuda, Jung-Ryul Lee,Yisheng Guan.Fatigue crack propagation monitoring of stainless steel using fiber Bragg grating ultrasound sensors[J]. Smart Mater.Struct,2006,15(05):1429-1437
    [73]Hiroshi Tsuda,Jung-Ryul Lee, Yisheng Guan, et al. Investigation of fatigue crack in stainless steel using a mobile fiber Bragg grating ultrasonic sensor[J]. Optical Fiber Technology,2007,13(03):209-214
    [74]Tsuda H, Toyama N, Takatsubo J. Damage detection of CFRP using fiber Bragg gratings [J].J. Mater. Sci., 2004,39(6):2211-4
    [75]Daniel C Betz, Graham Thursby, Brian Culshaw, et al.Acousto-ultrasonic sensing fiber Bragg gratings [J]. Smart Mater. Struct,2003,12(01):122-128
    [76]Daniel C Betz, GrahamThursby, Brian Culshaw. Identification of structural damage using multifunctional Bragg grating sensors:I.Theory and implementation[J]. Smart Mater. Struct.,2006, 15(05):1305-1312
    [77]D C Betz, W Staszewski,. Structural damage identification using multifunctional Bragg grating sensors-Part Ⅱ:damage detection results and analysis [J]. Smart Materials and Structures,2006,15(05):1313-1322
    [78]Graham Wild, Steven Hinckley. A Transmit Reflect Detection System for Fiber Bragg Grating Acoustic Emission and Transmission Sensors [J]. Lecture Notes in Electrical Engineering,2008,20(4):183-197
    [79]Graham Wild, Steven Hinckley. Optical fibre Bragg gratings for acoustic sensors[C]. Proceedings of 20th International Congress on Acoustics,2010:1-7
    [80]Graham Wild.Spatial performance of acousto-ultrasonic fiber Bragg grating sensor[J]. IEEE Sensors Journal, 2010,10(4):805-806
    [81]Graham Wild, Steven Hinckley. Wireless acoustic communications for autonomous agents in structural health monitoring sensor networks[C]. Proc. of SPIE 2007, Vol.6798,67980Z
    [82]B. Lissak, A. Arie, M. Tur, Highly sensitive dynamic strain measurements by locking laser to fiber Bragg gratings [J]. Opt. Lett.1998,23(24):1930-1932
    [83]J. Seim, et al. Higher speed demodulation of fiber grating sensors[C].Proc. SPEE,1999,3670:8-15
    [84]I. Perez,et al. High frequency ultrasonic wave detection using fiber Bragg gratings[C]. Proc. SPIE,2000,3986
    [85]N. Takahashi, K. Yoshimura, S. Takahashi. Detection of ultrasonics mechanical vibration of a solid using fiber Bragg grating [J]. Jpn. J. Appl. Phys.,2000,39(5B),3134-3138
    [86]N. Takahashi, K. Yoshimura, S. Takahashi et al. Fiber Bragg grating vibration sensor using incoherent light [J]. Jpn J Appl Phys 2001,40(5B):3632-6.
    [87]N. Takahashi, K. Yoshimura, S. Takahashi. Vibration sensing with fiber Bragg grating[C]. Proc.SPIE-Optoelectronic Information Systems and Processing,2001,4513:1-6
    [88]Ignacio Perez,Hong-Liang Cui,Eric Udd.Acoustic emission detection using fiber Bragg gratings[C]. Proc. SPIE,2001,4328:209-215
    [89]Calvert S. High speed dual-axis strain using a single fiber Bragg grating[C]. Proc SPIE-Smart Structures and Materials 2004:Smart Sensor Technology and Measurement Systems,2004, 5384,229-40
    [90]A. Cusano, et al. Dynamic strain measurement by fibre Bragg grating sensor [J]. Sensor. Actual A,2004, 110(1-3):276-281
    [91]C. Ambrosono, et al.Active vibration control using fiber Bragg grating sensors and piezoelectric actuators in co-located configuration [C]. Proc. SPIE-Third European Workshop on Optical Fibre Sensors.2007, 6619:661940
    [92]FERREIRA L A. Pseudoheterodne demodulation technique for fiber Bragg grating sensors using two matched gratings [J]. IEEE Photon Technol Lett,1997,9(4):487-489
    [93]DAVIS M A. Matched-filter interrogation technique for fiber Bragg grating array [J]. Electron Lett,1995, 31(10):822-823
    [94]Pou-Man Lam, Kin-Tak Lau, Hang-Yin Ling et al. Acousto-ultrasonic sensing for delaminated GFRP composites using an embedded FBG sensor [J]. Optics and Lasers in Engineering,2009,47(10):1049-1055
    [95]YiZhou,YiQiao and Sridhar Krishnaswamy.A two-wave mixing interferometer for phase and wavelength demodulation of fiber-optic ultrasound sensors[C]. AIP Conference Proceedings,2005,760:1630-1637
    [96]T. Fujisue, et al.Demodulation of acoustic signals in fiber Bragg grating ultrasonic sensors using arrayed waveguide gratings [J]. Jpn. J. Appl. Phys.2006,45(5B):4577-4579
    [97]Duck G, LeBlanc M. Arbitrary strain transfer from a host to an embedded fibre-optic sensor [J]. Smar-Mater.Struct,2000,9(4):492-497
    [98]Hang-yin Ling et al.Embedded fibre Bragg grating sensors for non-uniform strain structures sensing in composite structures [J]. Measurement Science and Technology,2005,16(12):2415-2424.
    [99]J. R. Lee, H. Tsuda. Acousto-ultrasonic sensing using capsular fiber Bragg gratings for temperature compensation [J]. Meas Sci Technol 2006,17(11):2920-2926
    [100]Fucai Li, Hideaki Murayam et ala, Guided wave and damage detection in composite laminates using different fiber optic Sensors [J]. Sensors,2009,9(5):4005-4021
    [101]Hiroshi Tsuda, Kenji Kumakura, Shinji Ogihara.Ultrasonic sensitivity of strain-insensitive fiber Bragg grating sensors and evaluation of ultrasound-induced strain [J]. Sensors,2010,10(12):11248-11258
    [102]冯若主编.超声手册[M].南京大学出版社.1999.10
    [103]孔梅,石邦任.光纤光栅温度与轴向应变响应机制分析[J].光子学报,2001,30(02):188-191
    [104]H. Tamaue, J. Kuwahara, Y. Okabe, N. Takeda, Dynamic detection of damages in CFRP laminates using small diameter FBG sensors[C].The 53rd Nat Cong. Of Theoretical & Applied Mechanics,2004:381-382
    [105]张海燕,孙修立等.光纤布拉格传感器兰姆波检测的反射谱分析[J].声学技术.2009.28(05):605-609
    [106]A.Minardo,A-Cusano,R.Bernini,et al. Fiber Bragg gratings as ultrasonic waves sensors [C]. Proc. of SPIE,2004,5502:84-87
    [107]Aleksandra Sikora. Impulse strain processing using uniform fibre Bragg grating numerical simulation [C]. Proc. of SPIE,2006,6159:61592C
    [108]杨小平等.实现节能减排的碳纤维复合材料应用进展[J].材料导报,2010,24(2):1-5
    [109]Su,z., Ye, L., Lu, Y., Guided lamb waves for identification of damage in composite structures:A review[J].Joumal of sound and vibration,2006,295(3-5):753-780.
    [110]Y.Botsev, E.Arad, M.Tur,I.Kressel et al.Damage detection under a composite patch using an embedded PZT-FBG ultrasonic sensor array[C]. Proceedings of SPIE,2007,6619:661942
    [111]史亦韦.超声检测——国防科技工业无损检测人员资格鉴定与认证培训教材[M].北京:机械工业出版,2005.8
    [112]Joseph L.Rose. Ultrasonic Wave in Solide Media[M]. Cambridge:Cambridge University Press.1999
    [113]Kersey A D.Berkoff T A.Morey W W. High resolution fiber-grating based strain sensor with interferometric wavelength-shift detection [J].Electron.Lett,1992,28(03):236-238
    [114]ASHOORI R, GEBREMICHAEL Y M.XIAO S, et al. Time domain multiplexing for bragg grating strain measurement sensor network [C].Proceeding of SPIE 1998,3746:308-311
    [115]Liu Bo,Sun Guilin, et al. Application for High Birefringence Fiber Sagnac Loop Mirror Filter of Fiber Bragg Grating Sensing SystemBiomolecular Interactions[J]. Acta Scientiarum Naturallum (Universitatis Nakaiensis),2005,38(05):9-12
    [116]DAVIS M A. KERSEY A D. All-fiber Bragg grating strain-sensor demodulation technique using a wavelength division coupler [J].Electron Lett,1994.30(1):75-77.
    [117]FERREIRA L A. Pseudoheterodyne demodulation technique for fiber Bragg grating sensors using two matched gratings [J]. IEEE Photonics Technology Letters,1997,9(4):487-489
    [118]DAVIS M A. Matched-filter interrogation technique for fiber Bragg gratings array [J].Electron Lett,1995,31 (10):822-823
    [119]KERSEY AD. Multiplexed fiber Bragg strain-senor system with a fiber F-P wave-length filter [J].Opt Lett, 1993,18(16):1370-1372
    [120]王小凤,乔学光,贾振安等.动静态监测光纤光栅传感信号的实验研究[J].光电子·激光,2006,17(09):1048-1051
    [121]Micronoptics International Product Overview-sm130 [EB/OL].ttp://www.micronoptics.com.cn /en/sm130.htm.,2010.9.20
    [122]LISSAK B, ARIE A.Highly sensitive strain measurements by locking lasers to fiber Bragg grating [J].Opt Lett,1998,23(24):1930-1321
    [123]Yun S H.Richardson D J.Kim B Y. Interragation of fiber grating sensor arrays with a wavelength-swept fiber laser [J].Opt.Lett.,1998,23(11):843-845
    [124]Seim J.Schulz W,Udd E et al.Low cost, high speed fiber optic grating demodulation system for monitoring composite structures. Proc. SPIE,1998,3326:390-395
    [125]Lobo A B, Ferreira L A, SantosJ L et al..Analysis of the reflective-matched fiber Bragg grating sensing interrogation scheme [J].Appl.Opt,1997,36(7):934-9
    [126]刘云启,刘志国,郭转运,董孝义.光纤光栅传感器的调谐滤波检测技术[J].光学学报.2001,21(1):88-92
    [127]李萍.InGaAs/InP光电探测器[J].红外,2004,(10):10-14
    [128]陈张玮,李玉和等.光电探测器前级放大电路设计与研究[J].电测与仪表,2005,(06):32-34
    [129]Russell P.S, et al. Fiber gratings[J]. Physics World,1993,6(10):41-46
    [130]Maki ANDO, M.Y.; Keisuke NAKAYAMA, K.M. et al. Dependence of fiber Bragg grating characteristics on its length[J]. Japanese Journal of Applied Physics.2004,43(7A):4234-35
    [131]Fisher, N. E.; Webb, D. J. et al.Ultrasonic field and temperature sensor based on short in-fibre Bragg gratings[J]. Electron. Lett,1998,34(11):1139-1140
    [132]Aleksandra Sikora. Impulse strain processing using uniform fibre Bragg grating Numerical simulation[C]. Proc. of SPIE-Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments IV,2006,6159:61592C
    [133]Turan Erdogan. Fiber Grating Spectra[J]. Journal of lightwave technology,1997,15(08):1277-1294
    [134]龚仁荣,程志勤等.模态声发射在结构材料缺陷定位中的研究[J].振动与冲击.2006,25(3):176-179

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700