用户名: 密码: 验证码:
机载/星载雷达地面运动目标检测稀疏处理方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
机载/星载雷达地面运动目标检测(GMTI)系统在军事领域具有重要的应用价值。机载/星载雷达处于下视工作状态,由于平台的高速运动导致杂波多普勒展宽,从而会淹没慢速目标,因此需要进行杂波抑制。目前空时自适应处理(STAP)和多通道SAR/GMTI技术是针对机载/星载雷达的两种最基本的杂波抑制技术。但是由于实际非理想因素的影响,空时自适应处理性能改善受限于独立同分布样本的数目。对于多通道SAR/GMTI方法,随着雷达成像分辨率的提高和广域监视的需要,其采样数据量成倍增加,给数据传输和存储系统带来严峻挑战。本文紧密围绕少量数据样本条件下的GMTI方法展开研究,主要工作包括:
     1、针对实际非均匀环境下独立同分布样本不足的问题,基于压缩感知理论提出一种针对单距离门数据处理的运动目标检测方法,该方法首先将接收回波数据变换至二维波束-多普勒域进行信号能量积累,并相应在二维频谱域构造冗余字典,利用贝叶斯压缩感知技术在待检测距离门内提取杂波谱的主要分量,然后估计杂波能量的支撑区域,以此作为先验知识,建立基于加权的最小l1范数优化模型实现运动目标检测。本文所提方法无需估计协方差矩阵,直接对待检测距离门数据进行处理,实验结果表明所提方法具有良好的动目标检测性能。
     2、针对目前双通道SAR地面运动目标检测方法采样数据量过大的问题,提出一种基于稀疏采样条件下的双通道SAR/GMTI方法。该方法针对方位降采样的双通道回波数据,利用压缩感知技术实现SAR成像,并通过DPCA技术进行杂波抑制,从而最终实现地面运动目标检测。首先详细分析了压缩感知成像算法的运动目标重构模型,从理论上分析了算法利用双通道降采样数据进行杂波抑制的可行性。并通过公式推导和仿真实验证明了目标运动参数(距离向速度/加速度,方位向速度)对基于压缩感知算法的目标成像的影响。仿真与实测数据实验证明,在信杂比较高(场景散射系数近似稀疏)的情况下,本文算法具有良好的杂波抑制性能。
     3、针对观测场景散射系数的空间分布稀疏性较差情况,提出一种基于联合稀疏处理和加权l1范数优化的双通道SAR/GMTI方法。考虑到多通道雷达对同一地面场景进行观测,因此图像对之间具有很强的相关性,该方法对两个通道的SAR回波数据进行联合处理,通过构造的变换矩阵将目标能量支撑区进行分离,将重构两幅SAR图像问题转换为重构一幅SAR图像和运动目标的问题,然后利用重构的SAR图像得到加权位置信息,通过构建加权l1范数优化模型实现杂波抑制与地面运动目标成像。分别将该方法应用至一维稀疏采样和二维稀疏采样情况,实验结果表明该方法只需少量样本数据即可有效实现地面运动目标检测,即使在信杂比较低条件下仍可取得较好的动目标检测结果。
     4、针对观测场景不稀疏情况,提出一种稀疏采样下基于先验知识的杂波抑制与GMTI算法。在该算法中,雷达采用一发多收体制,其中一个通道按照奈奎斯特采样定理周期发射与接收脉冲信号,其他通道随机稀疏接收脉冲信号。首先对满采样的通道数据进行SAR成像,并以此作为先验知识对稀疏采样的通道数据进行稀疏表示,在其距离脉压域进行杂波抑制,此时通道中只包含运动目标信号。由于运动目标的空间分布具有很强的稀疏性,因此可以有效实现稀疏重构。该方法对通道间的幅度相位误差具有良好的稳健性。实验结果表明该方法可以极大程度降低所需的原始采样数据,同时能够较好地获得地面静止场景和运动目标信息。
     5、传统扫描式合成孔径雷达(ScanSAR)成像算法方位分辨率低,并存在严重的“扇贝”效应,针对该问题,提出一种ScanSAR模式下基于稀疏重构理论的成像算法。该算法对同一子条带内的所有脉冲串统一处理,利用压缩感知理论重构方位图像。实验结果表明该算法可以获得较高的方位分辨率,并有效克服了“扇贝效应”。将方法应用于多通道SAR/GMTI实测数据处理,也获得较好的杂波抑制性能。
Airborne/spaceborne ground moving target indication (GMTI) radar system playsan important role in military applications. Since airborne/spaceborne radar usuallyworks in the downward-looking status thus causing a spreading clutter Dopplerbandwidth because of the high speed of the platform, the moving targets may besubmerged in clutter. At present, space time adapting processing (STAP) andmulti-channel SAR/GMTI techniques are the two fundamental clutter suppressionmethods for high-speed platform radar. In practical applications, it is hard to acquirethe sufficient Independent and Identically Distributed (IID) sample supports toestimate the covariance matrix due to the heterogeneity of the clutter, in the endcausing a dramatic degreadation of the STAP processor performance. For themulti-channel SAR/GMTI system, the increasing demands for high resolution of SARimages and wide swath coverage have resulted in a huge SAR raw data, which posesmajor constraints in the operation of SAR to transmit the data to ground, or to storethem onboard. In this thesis, novel GMTI methods with limited samples are studied.The main contributions of this thesis are as follows:
     1、For conventional Space-Time Adaptive Processing (STAP), sufficient IIDsample supports are hard to obtain. To mitigate this problem, a Compressive Sensing(CS)-based Ground Moving Target Indication (GMTI) method is proposed. In theproposed method, firstly the space-time data of the interested range bin is transformedto spatial-temporal frequency fields to accumulate the signal energy and thecorresponding redundant dictionary is constructed; Then several primary clutterspectrum peaks are extracted by Bayesian compressive sensing technique to estimatethe clutter ridge; Finally, the weighted l1minimization optimization model is used torealize the ground moving target indication(GMTI) without estimating the covariancematrix. Simulation results demonstrate the excellent GMTI performance of theproposed method.
     2、In the conventional SAR ground moving targets indication (GMTI) method, thesample number is heavily large, which greatly increase the data transmission andstorage load. To mitigate this problem, a SAR/GMTI method based on compressivesensing is proposed in this paper. In the proposed method, compressive sensing theoryis used to perform the azimuth direction focus with sparse sampled raw data. Theconventional displaced phase center antenna (DPCA) technique is adopted to suppress clutter. Theoretical analysis shows that the proposed method can be applied to cluttersuppression of the sparse sampling data of dual channels and the influences of motionparameters (range velocity/acceleration, azimuth velocity) on target imaging areanalysed in detail. The results of simulated and real data processing verify that theproposed method has excellent clutter suppression performance in the case of highsignal to clutter ratios (SCNR).
     3、For the SAR-based GMTI system, the clutter scattering centers of surveillancearea are usually non-sparse. In this case, the sampled raw data of single channel cannot be significantly reduced. Considering the fact that the correlations among themulti-channel SAR images are high, a SAR/GMTI method based on jointly sparse andweighted l1optimization model is proposed. In the proposed method, dual channelSAR raw data are jointly processed. Firstly, a transform matrix is constructed toseparate the energy support areas of moving targets from that of all scattering centers,and then we convert dual-channel SAR imaging to single-channel imaging and movingtargets reconstruction. Then, we can roughly obtain the energy support areas of allscattering centers via CS. Finally, based on the acquired energy support areas above,clutter suppression and GMTI is achieved by solving a weighted l1optimization model.The proposed method is applied to the SAR raw data sparsely sampled in1-dimensiondomain (azimuth) and in2-dimension domains (range and azimuth), respectively.Simulated and real data experiments demonstrate that the proposed method performswell with sparse sampled raw data, even if clutter scattering centers have a low sparselevel.
     4、For the cases of clutter scattering centers are non-sparse,we propose a cluttersuppression and GMTI method with sparse sampled data for dual-channel SAR. In theproposed method, one channel periodically transmits and receives pulses at Nyquistsampling rate, and other channels sparely and randomly receive pulses. Firstly, rawdata of the channel with full sampling are used to perform SAR imaging. Thenutilizing the acquired SAR image above to be prior-knowledge, the clutter included inother channels data is suppressed. Since the moving targets are sparse in space afterclutter suppression, the moving targets image can be accurately recovered bycompressive sensing. The proposed method is robust to amplitude and phase errorsbetween the channels. The experiment results demonstrate that the static and dynamicinformation loss of the interest area is slight, even if the sampled data are significantlyreduced.
     5、The conventional ScanSAR imaging method acquires wide swath coverage at acost of severe azimuth resolution loss. Moreover, scalloping is also a major ScanSARdrawback. To overcome the aforementioned problem, a compressing sensing-basedimaging and GMTI method is proposed for ScanSAR mode. In the proposed method,CS is utilized to perform azimuth imaging by processing jointly sparse aperture data ofeach subswath after range compression and range cell migration correction (RCMC).The proposed method has high azimuth resolution. Moreover, it can overcomescalloping problem without resolution loss. An excellent clutter suppressionperformance using the proposed method can be achieved in the application ofmulti-channel SAR raw data processing.
引文
[1] I. S. Reed, J. D. Mallett, L. E. Brennan. Rapid Convergence Rate in AdaptiveArrays [J]. IEEE Trans. on Aerospace and Electronic Systems,1974,10(6):853-863.
    [2] Y. L. Wang, J. W. Chen,et a1.Robust space-time adaptive processing forairbome radar in nonhomogeneous clutter environments [J].IEEE Trans. onAerospace and Electronic Systems,2003,39(1):70-81.
    [3] D.J.Rabideau,A.O.Steinhardt.Improved adaptive clutter cancellation throughdata-adaptive training[J].IEEE Trans. on Aerospace and Electronic Systems,35(3),1999:879-891.
    [4] E. J. Candes, J. K. Romberg and T. Tao. Stable signal recovery from incompleteand inaccurate measurements [J]. Commun. Pure Appl. Math.,2006,59(8):1207-1223.
    [5] D. Donoho. Compressed sensing [J]. IEEE Trans. on Information Theory,2006,52(4):5406-5425.
    [6] E. J. Candes, J. Romberg, and T. Tao. Robust uncertainty principles: exact signalreconstruction from highly incomplete frequency information [J]. IEEE Trans. onInformation Theory,2006,52(2):489-509.
    [7] E. J. Candes, T. Tao. Near optimal signal recovery from random projections:universal encoding strategies?[J]. IEEE Trans. on Information Theory,2006,52(12):5406-5425.
    [8] D. L. Donoho, M. Elad and V. N. Temlyakov. Stable recoveries of sparseovercomplete representations in the presence of noise [J]. IEEE Trans. onInformation Theory,2006,52(1):6-18.
    [9] L. Brennan and L. Reed. Theory of adaptive radar [J]. IEEE Trans on Aerospaceand Electronic Systems,1973,237-252.
    [10] J. Ward. Space-time adaptive processing for airborne radar[C]. MIT LincolnLaboratory, Lexington, MA, Technical Report1015,1994.
    [11] R. Klemm. Principles of Space-Time Adaptive Processing [M]. IEE Radar, Sonar,Navigation, and Avionics Series. IEE, London, vol.9,2002.
    [12] J. Guerci. Space-time Adaptive Processing for Radars. Norwood, MA: ArtechHouse,2003.
    [13]王永良,彭应宁.空时自适应信号处理.北京:清华大学出版社,2000.
    [14] R. Klemm. Adaptive clutter suppression for airborne phased array radars. IEE Pt.F,1983,130(1):125-132.
    [15]廖桂生.相控阵天线AEW雷达时空二维自适应处理[D].西安电子科技大学,博士学位论文,1992.9.
    [16]保铮,廖桂生,吴仁彪,张玉洪,王永良.相控阵机载雷达杂波抑制的时空维自适应滤波[J].电子学报,1993,21(9):1-7.
    [17]保铮,张玉洪,廖桂生,王永良,吴仁彪.机载雷达空时二维信号处理[J].现代雷达,1994,16(1):38-48,16(2):17-27.
    [18] H. Wang, L. Cai. On adaptive spatial-temporal processing for airbornesurveillance radar systems. IEEE. Trans. AES,1994,30(3):660-669.
    [19]王永良,吴志文,彭应宁.适于非均匀环境的空时自适应处理方法.电子学报,1999,27(9):63-66.
    [20] K. Gerlach, S. D. Blunt, and M. L. Picciolo. Robust adaptive matched filteringusing the FRACTA algorithm [J]. IEEE Trans. on Aerospace and ElectronicSystems,2004,30(3):929-945.
    [21] D. B. Shannon, G. Karl. Efficient robust AMF using the FRACTA algorithm [J].IEEE Trans. onAerospace and Electronic Systems,2005,41(2):537-548.
    [22] D. B. Shannon, G. Karl and R. Muralidhar. STAP using knowledge-aidedcovariance estimation and the FRACTAalgorithm [J]. IEEE Trans. on Aerospaceand Electronic Systems,2006,2(3):1043-1057.
    [23] A. K. Shackelford, K. Gerlach and S. D. Blunt. Partially adaptive STAP using theFRACTAalgorithm [J]. IEEE Trans. on Aerospace and Electronic Systems,2009,45(1):58-69.
    [24] T. K. Sarkar, N. Sangruji. An adaptive nulling system for a narrow-band signalwith a look-direction constraint utilizing the conjugate gradient method [J].IEEETrans. Antennas Propag.,1989,37(7):940-944.
    [25] T. K. Sarkar, H. Wang, S. Park, et al. A deterministic least square approach tospace-time adaptive processing [J]. IEEE Trans. Antennas Propag.,2001,49(1):91-103.
    [26] R. Klemm. Comparison between monostatic and bistatic antenna configurationsfor STAP[J]. IEEE Transactions on Aerospace and Electronic Systems,2000,36(2):596-608.
    [27] P. G. Tomlinson. Modeling and analysis of monostatic/bistatic space-timeadaptive processing for airborne and space-based radar[C]. In Proceedings ofIEEE National Radar Conference, Boston, MA, Apr.1999:102-107.
    [28] B. Himed, J. H. Michels, and Y. Zhang. Bistatic STAP performance analysis inradar applications[C]. In Proceedings of IEEE Radar Conference, Atlanta, GA,May.2001:198-203.
    [29] W. L. Melvin, M. J. Callahan, and M. C Wicks. Bistatic STAP: Application toairborne radar[C]. In Proceedings of IEEE Radar Conference, Long Beach, CA,Apr.2002:22-25.
    [30] F. Pearson and G. Borsari. Simulation and analysis of adaptive interferencesuppression for bistatic surveillance radars[C]. In Proceedings of the ASAPSymposium, Lexington, MA, Mar.2001:13-16.
    [31] B. Himed, Y. Zhang, and A. Hajjari. STAP with angle-Doppler compensation forbistatic airborne radars [C]. In Proceedings of IEEE Radar Conference, LongBeach, CA, Apr.2002:22-25.
    [32] S. D Hayward. Adaptive beamforming for rapidly moving arrays[C]. InProceedings of the CIE International Conference of Radar, Beijing, China, Oct.1996:480-483.
    [33] G. Borsari. Mitigating effects on STAP processing caused by an inclined array[C].In Proceedings of IEEE Radar Conference, Dallas, TX, May1998:135-140.
    [34] D. A. Leatherwood and W. L. Melvin. Adaptive processing in a nonstationaryspaceborne environment[C]. In Proceedings of IEEE Aerospace Confeence, BigSky, MT, Mar,2003:1357-1360.
    [35] W. L. Melvin, M. J. Callahan, and M. C. Wicks. Adaptive clutter cancellation inbistatic radar[C]. In Proceedings of the34th Asilomar Conference, Pacific Grove,CA, Oct.2000:1125-1130.
    [36] S. M. Kogon and M. A. Zatman. Bistatic STAP for airborne radar systems[C]. InProceedings of IEEE SAM2000, Lexington, MA, Mar.2000:7-11.
    [37] W. Melvin and M. Davis. Adaptive cancellation method for geometry-inducednonstationary bistatic clutter environments [J]. IEEE Trans. on Aerospace andElectronic Systems,2007,43(2):651-672.
    [38] X. Neyt, P. Ries, J. G. Verly, F. D. Lapierre. Registration-based range-dependencecompensation method for conformal-array STAP [C]. In Proceedings of AdaptiveSensor Array Processing Workshop,(MIT Lincoln Laboratory, Lexington, MA),2005.
    [39] F. D. Lapierre, P. Ries, J. G. Verly. Foundation for mitigating range dependencein radar space-time adaptive processing [J]. IET Radar Sonar Navig,2009,3(1):18-29.
    [40] P. Ries, F. D. Lapierre, P.Ries.Geometry-Induced Range-DependenceCompensation for Bistatic STAP with Conformal Arrays [J]. IEEE Trans. onAerospace and Electronic Systems,2011,47(1):275-294.
    [41] P. Ries, X. Neyt, F. D. Lapierre, and J. G.Verly. Fundamentals of spatial andDoppler frequencies in radar STAP [J]. IEEE Trans. on Aerospace and ElectronicSystems,44(7):1118-1134.
    [42] D. A. Leatherwood, W. L. Melvin, and S. D. Berger. Adaptive signal processingfor a spaceborne distributed aperture[C]. In Proceedings of2001AIAAConference, Albuquerque, NM, Aug.2001.
    [43] D. A. Leatherwood and W. L. Melvin. Adaptive processing in a nonstationaryspaceborne environment[C]. In Proceedings of IEEE Aerospace Conference, BigSky, MT, Mar,2003.
    [44] B.Friedlander. A subspace method for space time adaptive processing [J].IEEETrans.on Signal Processing,2005,5(1):74-82.
    [45] P. Parker, A. Swindlehurst. Space-time autoregressive filtering for matchedsubspace STAP [J]. IEEE Trans. on Aerospace and Electronic Systems,2003,39(2):510-519.
    [46] S. Miranda, C.J. Baker, K. Woodbridge, and H.D. Griffiths. Knowledge-basedresource management for multifunction radar [J]. IEEE Signal Processing Mag.,2006,23(1):66-76.
    [47] J. R. Guerci and E. J. Baranoski. Knowledge-aided adaptive radar at DARPA: Anoverview [J]. IEEE Signal Processing Mag.,2006,23(1):41-50.
    [48] P. Stoica, J. Li, X. Zhu, and J. R. Guerci. On using a priori Knowledge inSpace-Time Adaptive Processing [J]. IEEE Trans. on Signal processing,2008,56(6):2598-2602.
    [49] A. Freeman, A. Currie. Synthetic aperture radar images of moving targets [J].GEC Journal of Research,1987,5(2):106-115.
    [50] H. Chen, C. D. McGillem. Target motion compensation by spectrum shifting insynthetic aperture radar [J]. IEEE Trans. on Aerospace and Electronic Systems,1992,28(3):895-901.
    [51] S. Barbarossa and A. Farina. Detection and imaging of moving objects withsynthetic aperture radar [J]. Part2: joint time-frequency analysis by Wigner-Villedistribution. IEE Proc.-f,1992,21(1):89-97.
    [52] J. R. Fienup. Detecting moving targets in SAR imagery by focusing [J]. IEEETrans. onAerospace and Electronic Systems,2001,37(3):794-809.
    [53] R. P. Perry, R. C. Dipietro, et al. SAR imaging of moving targets[J]. IEEE Trans.onAerospace and Electronic Systems,1999,35(1):188-200.
    [54] S. Q. Zhu, G. S. Liao, Y. Qu, et al. Ground Moving Targets Imaging Algorithmfor Synthetic Aperture Radar [J]. IEEE Trans. on Geosci. Remote Sens.,2011,49(1):462-477.
    [55] C. H. Gierull and I. C. Sikaneta. Raw data based two-aperture SAR groundmoving target indication[C]. In Proceedings of IGARSS, Toulouse, France,2003.
    [56] I. C. Sikaneta, C. H. Gierull. Ground moving target detection for along-trackinterferometric SAR data[C]. In Proceedings of IEEE Aerospace Conference,2004:2227-2235.
    [57] S. Q. Zhu, G. S. Liao, Z. G Zhou, Y. Qu.Robust moving targets detection andvelocity estimation using multi-channel and multi-look SAR images [J]. SignalProcessing (EURASIP),2010,1(3):2009-2019.
    [58] J. H. G. Ender. Space-time processing for multichannel synthetic aperture radar[J].Electronics and Communication Engineering Journal, Feb.1999,11(1):29-38.
    [59] M. Soumekh.Signal subspace fusion uncalibrated sensors with application inSAR and diagnostic medicine [J]. IEEE Trans. Image Processing,1999,8(1):127-137.
    [60] J. Ender, Detection and estimation of moving target signals by multi-channelSAR [J]. AEü Int. J. Electron. Commun,1996,50(2):150-156.
    [61] E. Candes. Compressive Sampling[C]. In Proceedings of the InternationalCongress of Mathematicians. Madrid, Spain,2006:1433-1452.
    [62] M. Lustig, D. L. Donoho, J. M. Pauly. Rapid MR imaging with compressedsensing and randomly under-sampled3DFT trajectories[C]. In Proceedings of the14thAnnual Meeting of ISMRM. Seattle, WA.2006.
    [63] M. Sheikh, O. Milenkovic, R. Baraniuk. Compressed sensing DNA microarrays.http://www.dsp.ece.rice.edu/cs/CSMprobeDesign02.pdf.
    [64] P. Borgnat, P. Flandrin. Time-frequency localization from sparsity constraint.IEEE International Conference on Acoustics, Speech and Signal Processing(ICASSP). Piscataway: Institute of Electrical and Electronic Enginners,2008.3785-3788.
    [65] R. Willett, M. Gehm, D. Brady. Multiscele reconstruction for computationalspectral imaging. Proceedings of SPIE and Electrical Imaging-ComputionalImaging. Bellingham: SPIE,2007.64980L.
    [66] W. Bajwa, J. Haupt, A. Sayeed. Compressive wireless sensing. Proceedings of the15th International Conference on Information Processing in Sensor Networks,IPSN’06, New York: Association for Computing Machinery.2006:134-142.
    [67] M. A. Herman and T. Strohmer. High-resolution radar via compressed sensing [J].IEEE Trans. Signal Process.2009,57(6):2275–2284.
    [68] C. Chen and P. P. Vaidyanathan. Compressed sensing in MIMO radar[C]. InProceedings of Asilomar Conf. on Signals, Systems, and Computers, PacificGrove, CA,2008:41-44.
    [69] R. Baraniuk and P. Steeghs. Compressive radar imaging[C]. In Proceedings ofIEEE Radar Conference, Apr.2007,128-133.
    [70] L. Jose, Paredes, R. Gonzalo, et al.Ultra-Wideband compressed sensing: channelestimation [J]. IEEE journal of selected topics in signal processing,2007,1(3):383-395.
    [71] G. M. Shi, J. Lin. UWB echo signal detection with ultra-low rate sampling basedon compressed sensing [J]. IEEE Trans. Circuits and system,2008,55(4):379-383.
    [72] M. Moshe, C. Yonina. Eldar.Blind Multiband Signal Reconstruction: CompressedSensing for Analog Signals [J]. IEEE Trans. on signal processing,2009,57(3):993-1009.
    [73] J. Laska, S. Kirolos, Y. Massoud. Random sampling for analog-to-informationconversion of wideband signals[C]. Proceedings of the IEEE Dallas Circuits andSystems Workshop (DCAS’06). Dallas, Texas,2006:119-122.
    [74] S. Kirolos, J. Laska, M. Wakin, etc. Analog-to-information conversion viaRandom demodulations[C]. Proceedings of the IEEE Dallas Circuits and SystemsWorkshop (DCAS’06). Dallas, Texas,2006:1959-1962.
    [75] J. A. Tropp, M. B. Wakin, M. F. Duarte. Random filters for compressive samplingand reconstruction[C]. In Proceedings of IEEE International Conference onAcoust., Speech, and Signal Processing,2006:872-875
    [76] T. Ragheb, S. Kirolos, J. Laska. Implementation models for analog-to-informationconversion via random sampling [C]. In Proceedings of the50th Symposium onCircuits and Systems. Montreal, Canada: IEEE,2007:325-328.
    [77] D. T. akhar,J. L. aska,M. Wakin.A new compressive imaging cameraarchitecture using opacal-domain compression[C].Proceedings of SPIE,BellinghamWA:International Society for Optical Engineering,2006:60-65.
    [78] D. Takhar,V. Bansal,M. Wakin.A compressed sensing camera:New theory andan implementation using digital micromirrors [C].SPIE Electronic Imaging:Computational Imaging.San Jose,2006.
    [79] E. J. Candes, M. B. Wakin. An introduction to compressive sampling [J]. IEEESignal Processing Magazine,2008,25(2):21-30.
    [80] E. Candès and T. Tao. Decoding by linear programming [J]. IEEE Trans.Information Theory,2005,51(12):4203-4215.
    [81] S. Ji,Y. Xue,L. Carm.Bayesian compressive sensing [J].IEEE Trans. SignalProcessing,2008,56(6):2346-2356.
    [82] S.D.Babacan, R. Molina, and A.K. Katsaggelos, Bayesian Compressive Sensingusing Laplace Priors [J]. IEEE Trans. on Image Processing,2010,19(1):53-64.
    [83] N. Dobigeon, O. Alfred, J.Y. Hero. Tourneret. Hierarchical Bayesian sparseimage reconstruction with application to MRFM [J]. IEEE Trans. ImageProcessing,2009,18(9):2059-2070.
    [84] Z. L. Zhang, D. R. Bhaskar.Sparse Signal Recovery with Temporally CorrelatedSource Vectors Using Sparse Bayesian Learning. IEEE Journal of SelectedTopics in Signal Processing,2011,5(5):912-926.
    [85] S. Sarvotham,D. Baron,R. G. Baraniuk.Measurements vs.bits:Compressedsensing mets information theory[C].In Proc.Allerton Conference on AllertonConference on Communication,Control and Computing, Monficeno,IL,2006:1419-1423.
    [86] H. Rauhut,K. Schass,P. Vandergheynst.Compressed sensing and redundantdictionaries [J].IEEE Trans. on Information Theory,2008,54(5):2210-2219.
    [87] N. Ramakrishnan, E. Emre, and L. Randolph. Moses.Distributed CompressedSensing of Jointly Sparse Signals[C]. In the Proceedings of the2005AsilomarConference on Signals, Systems, and Computers, Pacific Grove, CA. Oct.30-Nov.2,2005:
    [88] B. Dror, B. Michael, W. F. Marco. Duarte.Distributed Compressed Sensing.OLj.http://www.dsp.rice.edu/~drorb/pdf/DCS112005.Pdf.
    [89] E. J. Candes, M. B. Wakin. Enhancing sparsity by reweighted1Minimization[J]. IEEE Journal on Fourier Analysis and Applications,2008,14:877-905.
    [90] J. A. Tropp and A. C. Gilbert.Signal recovery from random measurements viaorthogonal matching pursuit [J].IEEE Trans. on Information Theory,2007,53(12):4655-4666.
    [91] J. Zhang, D. B. Zhao, C. Zhao, R. Q. Xiong.Compressed Sensing Recovery viaCollaborative Sparsity. In Proceedings of IEEE Data Compression Conference(DCC), Snowbird, Utah, USA,2012:287-296.
    [92] Z. Yang, C. S. Zhang, J. Deng, and W. M. Lu. Orthonormal expansionl1-minimization algorithms for compressed sensing [J]. IEEE Trans. on SignalProcessing,2011,59(12):6285-6290.
    [93] A. Gholami, S.M. Hosseini. A General Framework for Sparsity-based Denoisingand Inversion [J]. IEEE Trans. on Signal Processing,59(11):5202-5211.
    [94] P. Jain, A. Tewari, I. S. Dhillon. Orthogonal Matching Pursuit withReplacement[C]. Advances in Neural Information Processing Systems,2011:1215-1223.
    [95] M. A. T. Figueiredo,R. D. Nowak,S. J. Wright.Gradient projection for sparsereconstruction: Appficafion to compressed sensing and other inverseproblems[J].Journal of Selected Topics in Signal Processing:Special Issue onConvex Optimization Methods for Signal Processing,2007,1(4):586-598.
    [96] H. W. Chen, C. S. Lu, and S. C. Pei. Fast Compressive Sensing Recovery withTransform-based Sampling[C]. In Proceedings of Workshop on SignalProcessing with Adaptive Sparse Structured Representations, Edinburgh, UK,2011:27-30,
    [97] Yang Jun feng, Zhang Yin and Yin Wo tao. A fast alternating direction methodfor TVL1-L2signal reconstruction from partial fourier data [J]. IEEE journal ofselected topics in signal processing,2010,4(2):288-297.
    [98] W. Deng, W.T. Yin, and Y. Zhang. Group Sparse Optimization by AlternatingDirection Method[C]. Technical Report TR11-06, Department of Computationaland Applied Mathematics, Rice University,2011.
    [99] P. Gerlind, J.W. Ma. Curvelet-wavelet regularized split Bregman iteration forcompressed sensing [J]. International Journal of Wavelets, Multiresolution andInformation Processing,2011,9(1):79-110.
    [100]Z. B. Xu, X. Y. Chang, F. Xu,.H. Zhang. L1/2Regularization: AThresholdingRepresentation Theory and A Fast Solver [J].IEEE Trans. Neural Networks andLearning Systems,2012,23(7):1013-1027.
    [101]M. Herman,T. Strohmer.Compressed sensing radar[C]. IEEE Radar Conference,Rome, Italy,2008:1-6.
    [102]B. Richard, S. Philippe.Compressive Radar Imaging[C]. IEEE RadarConference.Waltham,Massaehusetts,2007,128-133.
    [103]K. R. Varshney, M. Cetin, J. W. Fisher. Sparse representation in structureddictionaries with applications to synthetic aperture radar [J]. IEEE Trans. onSignal Processing,2008,56(8),3548-3561.
    [104]A. C. Gurbuz, J. H. McClellan, and R. S. Waymond. Compressive sensing forGPR imaging[C]. In Proceedings of Conference on Signals, Systems andComputers, Pacific Grove, CA, USA, Nov,2007:2223-2227.
    [105]Y. S. Yoon, G. M. Amin.Compressed sensing technique for high-resolutionradar imaging[C].In Proceedings of Conference on signal process,SensorFusion,and Target Recognition(SPIE),2008:1-10.
    [106]A.C. Gurbuz., J. H.McClellan,S. R. Waymond.Compressive sensing forsubsurface imaging using ground Penetrating radar [J].Signal Processing,2009,89(10): l959-1972.
    [107]A. C. Gurbuz, J. H. McClellan,S. R.Waymond. A compressive sensing dataacquisition and imaging method for stepped frequency GPRs[J].IEEE Trans. onSignal Processing,2009,57(7):2640-2650.
    [108]A.C. Gurbuz, J. H. McClellan, S. R.Waymond.GPR imaging using compressedmeasurements[C]. Intemational Geoscience and Remote SensingSymposium(IGARSS),2008,2(1):113-116.
    [109]I. Stojanovic, W. C. Karl. Imaging of moving targets with multi-static SAR usingan overcomplete dictionary[C]. IEEE Journal of Selected Topics in SignalProcessing,2010,4(1):164-176.
    [110]A. Budillon, A. Evangelista, and G. Schirinzi. Three-dimensional SAR focusingfrom multipass signals using compressive sampling [J]. IEEE Trans. ongeosciences and remote sensing,49(1),2011:488-499.
    [111]S. Bhattacharya, T. Blumensath, B. Mulgrew, and M. Davies. Fast encoding ofsynthetic aperture radar raw data using compressed sensing[C]. In IEEEWorkshop on Statistical Signal Processing, Madison, USA, Aug.2007.
    [112]V. M. Parel, G. R. Easley, D. M. Healy. Compressed synthetic aperture radar [J].IEEE journal of selected topics in signal processing,2010,4(2):244-254.
    [113]M. T. Alonso, P. Lopez-Dekker and J. J. Mallorqui. A novel strategy for radarimaging based on compressive sensing [J]. IEEE Transactions on Geoscienceand Remote Sensing,2010,42(18):4285-4295.
    [114]L. C. potter, E. Ertin, J. T. Parter. Sparsity and Compressed Sensing in RadarImaging [J]. Proceedings of the IEEE,2010,98(6):1006-1020.
    [115]Y. Yu, A. P. Petmpulu, H. V. Poor.Compressive sensing for MIMORadar[C].In Proceedings of IEEE Conference on Acoustics Speech and SignalProcess, Taipei, Taiwan,2009:3017-3020.
    [116]Y. Yu,A. P. Petmpulu,H. V. Poor.MIMO radar using compressive sampling[J].IEEE Journal of Selected Topics in Signal Processing,2010,4(1):146-163.
    [117]A. P. Petmpulu.Distributed MIMO Radar Using Compressive Sampling [C].InProceedings of Conference on Signals, Systems and Computers, Pacific Grove,CA,2008:203-207.
    [118]Yu. Y,A. P. Petropulu,H. V. Poor.Reduced complexity angle-Doppler rangeestimation for MIMO radar that employs compressive sensing[C]. InProceedings of Asilomar Conference on Signals, System, Computing,PacificGrove,CA,Nov.2009:1196-1220.
    [119]X. X. Zhu, R. Bamler. Tomographic SAR Inversion by L1Norm Regularization-The Compressive Sensing Approach [J]. IEEE Transactions on Geoscience andRemote Sensing,2010,48(10):3839-3846
    [120]X. X. Zhu, R. Bamler. Compressive sensing for high resolution differential SARtomography-the SL1MMER algorithm[C]. IEEE International Geoscience andRemote Sensing Symposium (IGARSS),2010:17-20.
    [121]A. Budillon, A. Evangelista, G. Schirinzi. Three-Dimensional SAR FocusingFrom Multipass Signals Using Compressive Sampling [J]. IEEE Trans. onGeoscience and Remote Sensing,2011,49(3):488-499.
    [122]刘记红,徐少坤,高勋章等.压缩感知雷达成像技术综述[J].信号处理,2011,27(2):251-257.
    [123]Q. Huang, L. L. Qu, B. H. Wu and G. Y. Fang. UWB through-wall imagingbased on compressive sensing [J]. IEEE Trans. Geosci. Remote Sens.,2010,48(3),1408-1415.
    [124]谢晓春,张云华.基于压缩感知的二维雷达成像算法[J].电子与信息学报,2010,32(5):1234-1238.
    [125]余慧敏,方广有.压缩感知理论在探地雷达三维成像中的应用[J].电子与信息学报,2010,32(1):12-16.
    [126]候颖妮,李道京,洪文.基于稀疏阵列和压缩感知理论的舰载雷达运动目标成像研究自然科学进展[J].2009,10(1):1110-1116.
    [127]Y. B. Liu, Y. H. Quan, J. Li. SAR Imaging of Multiple Ships Based onCompressed Sensing[C]. In Proceddings of Asian-Pacific Conference onSynthetic Aperture Radar (APSAR), xian Shaanxi,2009:112-115.
    [128]L. Zhang, M. D. Xing, W. Q. Cheng, et al. Resolution enhancement for inversedsynthetic aperture radar imaging under low SNR via improved compressivesensing [J]. IEEE Trans. on Geoscience and Remote Sensing,2010,48(10):3824-3838.
    [129]L. Zhang, M. D. Xing, and C. W. Qiao, et al. Achieving higher resolution ISARimaging with limited pulses via compressed sampling [J]. IEEE Geoscience andRemote Sensing Letters,2009,6(3):567-571.
    [130]L. Zhang, Z. J. Qiao, M. D. Xing et al.High Resolution ISAR imaging byExploiting Sparse Apertures [J]. IEEE Trans. Antennas and propagation,2012,60(2):997-1008.
    [131]张龙,张磊,邢孟道.一种基于改进压缩感知的低信噪比ISAR高分辨成像方法[J].电子与信息学报,2010,32(9):2263-2267.
    [132]李军,邢孟道,张磊.一种高分辨的稀疏孔径ISAR成像方法[J].西安电子科技大学学报(自然科学版),2010,37(3):441-446.
    [133]H. Zhang, G. Li, and H. Meng, A class of novel STAP algorithms using sparserecovery technique[C]. Arxiv preprint arXiv:0904.1313,2009.
    [134]S. Ke, M. H. Dong, F. D. Lapierre. Registration-based compensation using sparserepresentation in conformal-array STAP [J].Signal processing.2011,99:2222-2236.
    [135]K. Sun, H. Zhang, G. Li. A novel STAP algorithm using sparse recoverytechnique[C]. In Proceedings of IEEE International Conference on Geoscienceand Remote Sensing Symposium (IGARSS), Capetown,2009:336-339.
    [136]刘吉英.压缩感知理论及在成像中的应用[D].国防科技大学博士学位论文,2010.
    [137]叶钒.基于信号稀疏表示的ISAR目标特性增强技术[D]国防科技大学博士学位论文,2010.
    [1] I. S. Reed, J. D. Mallett, L. E. Brennan. Rapid Convergence Rate in AdaptiveArrays [J]. IEEE Trans. on Aerospace and Electronic Systems,1974,AES-10(6):853-863.
    [2]王永良,彭应宁.空时自适应信号处理[M].北京:清华大学出版社,2000:53-53.
    [3] L. William, Melvin,et a1. Assessment of multichannel airborne radarmeasurements for analysis and design of space-time processing architecture andalgorithms[C].IEEE National Radar Conference,Ann Arbor,Michiganm,May.1996:130-135.
    [4] Y. L. Wang,J. W. Chen,et a1.Robust space-time adaptive processing for airbomeradar in nonhomogeneous clutter environments [J].IEEE Trans.on AES,Jan.2003,39(1):70-81.
    [5] D.J.Rabideau, A.O.Steinhardt.Improved adaptive clutter cancellation throughdata-adaptive training[J].IEEE Trans.on AES,35(3),July.1999:879-891.
    [6] H. Wang, Y. Zhang, Q. Zhang. Lessons learned from recent STAP experiments[C].In Proceedings of CIE International Conference on Radar,1996:761-765.
    [7] T. K. Sarkar, H. Wang, S. Park, R. J. Adve, et al. A deterministic least-squaresapproach to space-time adaptive processing (STAP)[J]. IEEE Trans. AP, January2001,49(1):91-103.
    [8] E. J. Candes, J. Romberg, and T. Tao. Robust uncertainty principles: exact signalreconstruction from highly incomplete frequency information [J]. IEEE Trans. onInformation Theory,2006,52(2):489-509.
    [9] D. L. Donoho. Compressed sensing [J]. IEEE Trans. on Information Theory,2006,52(4):1289-1306.
    [10] E. J. Candes, M. B. Wakin. An introduction to compressive sampling [J]. IEEESignal Processing Magazine,2008,25(2):21-30.
    [11] V. M. Parel, G. R. Easley, D. M. Healy. Compressed synthetic aperture radar [J].IEEE journal of selected topics in signal processing,2010,4(2):244-254.
    [12] L. Zhang, M. D. Xing, W. Q. Cheng. Resolution enhancement for inversedsynthetic aperture radar imaging under low SNR via improved compressivesensing [J]. IEEE Trans. on Geoscience and Remote Sensing,2010,48(10):3824-3838.
    [13] M. A. Herman, T. Strohmer. High-Resolution Radar via Compressed Sensing [J].IEEE Trans Signal Proc,2009,57:2275-2284
    [14]谢晓春,张云华.基于压缩感知的二维雷达成像算法[J].电子与信息学报,2010,32(5):1234-1238.Xie Xiao-chun, Zhang Yun-hua.2D radar imaging scheme based on compressivesensing technique [J]. Journal of Electronic&Information Technology,2010,32(5):1234-1238.
    [15] L. C.Potter, E. Ertin, J. T. Parter and M. Cetin. Sparsity and compressed sensingin radar imaging [J]. Proceedings of the IEEE,2010,98(6):1006-1020.
    [16] H. Zhang, G. Li, and H. Meng, A class of novel STAP algorithms using sparserecovery technique[C]. Arxiv preprint arXiv:0904.1313,2009.
    [17] S. Ke, M. H. dong, F. D. Lapierre. Registration-based compensation using sparserepresentation in conformal-array STAP [J].Signal processing.2011,99:2222-2236.
    [18] W. Ivan, S. Selesnick, Pillai, Unnikrishna K. Y. Li, Braham Himed.Angle-Doppler processing using sparse regularization [C].In Proceedings ofIEEE International Conference on Acoustic, Speech and Signal Processing.Dallas: IEEE,2010:2750-2753.
    [19] S. Li, Y. Xue, and L. Carin, Bayesian compressive sensing [J]. IEEE Transationson Signal Process,2008,56(6):2346.2356.
    [20] J. F. Yang, Y Zhang and W. T. Yin. A fast alternating direction method forTVL1-L2signal reconstruction from partial fourier data [J]. IEEE journal ofselected topics in signal processing,2010,4(2):288-297.
    [1] H. S. C.Wang. Mainlobe clutter cancellation by DPCA for space-based radars [C].In Proceedings of IEEE AerospaceApplications Conference, Digest,1991:1-28.
    [2]郑明洁,杨汝良.基于DPCA和干涉技术的SAR动目标检测[J].电子与信息学报,2003,25(11):1525-1530.
    [3] V. Pascazio, G. Schirinzi and A. Farina. Moving target detection by along-trackinterferometry[C]. In Proceedings of Conference on IEEE Geoscience andRemote Sensing Symposium(IGARSS), Sydney, Australia, Jul.2001:3024-3026.
    [4] I. Sikaneta and C. H. Gierull. Ground moving target detection for along-trackinterferometric SAR data[C]. IEEE Aerospace Conf., Mar.2004:2227-2235.
    [5] M. Soumekh. Signal subspace fusing of uncalibrated sensors with application inSAR and diagnostic medicine [J].IEEE Trans. Signal Processing,1999,8(1):127-137.
    [6]孙娜,周荫清,李景文.基于DPCA技术的星载SAR/GMTI处理方法[J].电子与信息学报,2005,27(10):1564-1568.
    [7] Z. Z. Zhou, G. S. Liao, S. Q. Zhu. A robust approach to ground moving targetdetection and localization for multi-channel SAR system[C]. In Proceedings of the2nd Asian-Pacific Conference on Synthetic Aperture Radar, Xi’an, China,2009:163-166.
    [8] K. I. Ranney, M. Soumekh. Signal subspace change detection in averagedmultilook SAR imagery [J]. IEEE Trans. Geosci. Remote. Sens.,2006,44(1):201-212.
    [9] S. Q. Zhu, G. S. Liao, Z. Z. Zhou. Roust moving targets detection and velocityestimation using multi-channel and multi-look SAR images [J]. Signal Processing(EURASIP),2010,1(3):2009-2019.
    [10]S. Bhattacharya, T. Blumensath, B. Mulgrew, M. Davies. Synthetic aperture radarraw data encoding using compressed sensing[C]. In Proceedings of IEEE RadarConference, Edinburgh,2008:1-5.
    [11] E. J. Candes, J. Romberg, and T. Tao. Robust uncertainty principles: exact signalreconstruction from highly incomplete frequency information [J]. IEEE Trans. onInformation Theory,2006,52(2):489-509.
    [12] E. J. Candes, T. Tao. Near optimal signal recovery from random projections:universal encoding strategies?[J]. IEEE Trans. on Information Theory,2006,52(12):5406-5425.
    [13] D. L. Donoho, M. Elad, V.N.Temlyakov. Stable recovery of sparse overcompleterepresentations in the presence of noise [J]. IEEE Trans. on Information Theory,2006,52(1):6-18.
    [14] D. L. Donoho. Compressed sensing [J]. IEEE Trans. on Information Theory,2006,52(4):1289-1306.
    [15] R. Baraniuk and P. Steeghs. Compressive radar imaging[C]. In Proceeding ofInternational Conference on Radar. Boston: IEEE,2007:128-133.
    [16] U. Benz, K. Strodl, and A. Moreira. A comparison of several algorithms for SARraw data compression [J]. IEEE Trans. on Geoscience and Remote Sensing,1995,33(5):1266-1276.
    [17] Y. X. Zhang, J. P. Sun, J. H. Tian. Compressive Sensing SAR Imaging With RealData[C]. In Proceedings of the3rd International Congress on Image and SignalProcessing (CISP2010), Beijing, China,2010:2026-2029.
    [18] M. T. Alonso, P. L. Dekker and J. J. Mallorqui. A novel strategy for radarimaging based on compressive sensing [J]. IEEE Trans. on Geoscience andRemote Sensing,2010,42(18):4285-4295.
    [19] L. C.Potter, E. Ertin, J. T. Parter and M. Cetin. Sparsity and compressed sensingin radar imaging [J]. Proceedings of the IEEE,2010,98(6):1006-1020.
    [20]候颖妮,李道京,洪文.基于稀疏阵列和压缩感知理论的舰载雷达运动目标成像研究[J].自然科学进展,2009,10(1):1110-1116.
    [21] Q. Huang, L. L. Qu, B. H. Wu and G. Y. Fang. UWB through-wall imaging basedon compressive sensing [J]. IEEE Trans. on Geoscience and Remote Sensing,2010,48(3):1408-1415.
    [1]成萍,司锡才,姜义成,许荣庆.基于稀疏贝叶斯学习的稀疏信号表示ISAR成像方法[J].电子学报,2008,36(3):547-550.
    [2] L. Zhang, M. D. Xing, C. W. Qiu, et al. Resolution Enhancement for InversedSynthetic Aperture Radar Imaging Under Low SNR via Improved CompressiveSensing [J]. IEEE Trans. on Geoscience and Remote Sensing,2010,48(10):3824-3838.
    [3] L. Zhang, Z. J. Qiao, M. D. Xing.High Resolution Radar Imaging of MultipleTargets by Exploiting Sparse Apertures [J]. IEEE Trans. on Geoscience andRemote Sensing,2010,48(10):3824-3838.
    [4]李军,邢孟道,张磊.一种高分辨的稀疏孔径ISAR成像方法[J].西安电子科技大学学报(自然科学版),2010,37(3):441-446.
    [5] L. Zhang, M. D. Xing, and C. W. Qiao, et al. Achieving higher resolution ISARimaging with limited pulses via compressed sampling [J]. IEEE Geoscience andRemote Sensing Letters,2009,6(3):567-571.
    [6] M. Herman and T. Strohmer. High resolution radar via compressed sensing [J].IEEE Trans.Signal Process,2009,57(6):2257-2284.
    [7] K. Sun, H. D. Meng, D. L. Fabian. Registration-based compensation using sparserepresentation in conformal-array STAP [J].Signal processing,2011,99:2222-2236.
    [8] I. W. Selesnick, P. S. Unnikrishna, K. Y. Li, et al. Angle-Doppler processingusing sparse regularization [C]. Proceedings of the International Conference onAcoustic, Speech and Signal Processing. Dallas: IEEE Press,2010:2750-2753.
    [9] Q. Huang, L. L. Qu, B. H. Wu. UWB through-wall imaging based oncompressive sensing [J]. IEEE Trans. on Geoscience and Remote Sensing,2010,48(3):1408-1415.
    [10]候颖妮,李道京,洪文.基于稀疏阵列和压缩感知理论的舰载雷达运动目标成像研究[J].自然科学进展,2009,10(1):1110-1116.
    [11] Y. B. Liu, Y. H. Quan, J. Li, L. Zhang, M. D. Xing. SAR Imaging of MultipleShips Based on Compressed Sensing[C]. In Preceedings of the Asia-PacificConference on Synthetic Aperture Radar (APSAR), Shaanxi,2009:112-115.
    [12] J. Li, M. D. Xing, S. J. Wu. Application of Compressed Sensing in SparseAperture Imaging of Radar[C]. In Preceedings of IET International RadarConference, Guilin,2009:1-4.
    [13] N. Ramakrishnan, E. Ertin, and R. L. Moses. Distributed Compressed Sensing ofJointly Sparse Signals[C]. In Proceedings of the Asilomar Conference on Signals,Systems, and Computers, Oct.30-Nov.2,2005, Pacific Grove, CA.
    [14] B. Dror, B. Michael, W. F. Marco. Duarte.Distributed Compressed Sensing.OLj.http://www.dsp.rice.edu/~drorb/pdf/DCS112005.Pdf.
    [15] N. Ramakrishnan, E. Ertin, and R. L. Moses. Joint enhancement ofmultichannel SAR data[C]. In Proceedings of SPIE Algorithms SyntheticAperture Radar Imagery XIV, Apr.2007:65-68.
    [16] N. Ramakrishnan, E. Ertin, and R. L. Moses. Enhancement of coupledmultichannel images using sparsity constraints [J]. IEEE Trans. on ImageProcessing,2010,9(8):2115-2126.
    [17] M. Fornasier and H. Rauhut, B. Recovery algorithms for vector-valued data withjoint sparsity constraints [J]. SIAM Journal on Numerical Analysis,2008,46(2):577-613.
    [18] M. Duarte, M. Wakin, and R. Baraniuk, B.Wavelet-domain compressive signalreconstruction using a hidden Markov tree model[C]. In Proceedings of IEEEConference on Acoust, Speech, Signal Process,2008:5137-5140.
    [19] L. C. Potter, E. Ertin, J. T. Parter. Sparsity and compressed sensing in radarimaging [J]. Proceedings of the IEEE,2010,98(6):1006-1020.
    [20] E. J. Candes, M. B. Wakin. Enhancing sparsity by reweighted1Minimization[J]. IEEE Journal on Fourier Analysis and Applications,2008,14:877-905.
    [21] E. J. Candes, M. B. Wakin. An introduction to compressive sampling [J]. IEEESignal Processing Magazine,2008,25(2):21-30.
    [1] S. Bhattacharya., T. Blumensath, B. Mulgrew, M. Davies. Synthetic apertureradar raw data encoding using compressed sensing [C]. IEEE Radar Conference,Edinburgh,2008:1-5.
    [2] M. T. Alonso, D. P. Lopez, J. J. Mallorqui. A novel strategy for radar imagingbased on compressive sensing [J]. IEEE Trans. Geoscience and Remote Sensing,2010,42(18):4285-4295.
    [3] E. J. Candes, J. Romberg, and T. Tao. Robust uncertainty principles: exact signalreconstruction from highly incomplete frequency information [J]. IEEE Trans. onInformation Theory,2006,52(2):489-509.
    [4] E. J. Candes, T. Tao. Near optimal signal recovery from random projections:universal encoding strategies?[J]. IEEE Trans. on Information Theory,2006,52(12):5406-5425.
    [5] D. L.Donoho. Compressed sensing [J]. IEEE Trans. on Information Theory,2006,52(4):1289-1306.
    [6]康欣,韩崇昭,杨艺.基于结构的SAR图像配准[J].系统仿真学报,2006,18(5):1307-1310.
    [7]李红英.InSAR图像配准方法研究[D].湖南大学博士学位论文,2007.
    [8]汪鲁才,王耀南,毛建旭.基于相关匹配和最大谱图像配准相结合的InSAR复图像配准方法[J].测绘学报,2003.
    [9] M. Soumekh. Moving target detection and imaging using an X band along-trackmonopulse SAR [J].IEEE Trans. Aerosp.Electron. Syst.2002,38(1):315-333.
    [10] V. Pascazio, G. Schirinzi and A. Farina. Moving target detection by along-trackinterferometry[C]. In Proceedings of Conference on IEEE Geoscience andRemote Sensing Symposium(IGARSS), Sydney, Australia, Jul.2001:3024-3026.
    [11] S. Q. Zhu, G. S. Liao, Z. G Zhou, Y. Qu.Robust moving targets detection andvelocity estimation using multi-channel and multi-look SAR images [J]. SignalProcessing (EURASIP),2010,1(3):2009-2019.
    [12]周争光,廖桂生,朱圣棋.稳健的多通道SAR特征投影杂波抑制算法[J].系统工程与电子技术,2010,32(5):941-945.
    [13] I. Sikaneta, C. H. Gierull. Ground moving target detection for along-trackinterferometric SAR data[C]. In Proceedings of IEEE Aerospace Conf., Mar.2004:2227-2235.
    [14]王首勇,刘俊凯,王永良.机载雷达多杂波分布类型的恒虚警检测方法[J].电子学报,2005,33(3):484-487.
    [15]胡文琳.机载雷达恒虚警率检测方法研究(D).国防科学技术大学博士学位论文,2007.
    [16]杜鹏飞,王永良,孙文峰.机载监视雷达地杂波背景中的CFAR检测方法[J].系统工程与电子技术,2004,26(3):321-324.
    [17]王伟伟、廖桂生、吴孙勇等.基于小波稀疏表示的压缩感知SAR成像算法研究[J].电子与信息学报,2010,32(5):1234-1238.
    [18] Y. X.Zhang, J. P.Sun, J. H.Tian, et al. Compressive sensing SAR imaging with realdata[C]. The3rd International Congress on Image and Signal Processing(CISP2010), Beijing, China,2010:2026-2029.
    [1] W. G. Carrara, R. S.Goodman, R. M. Majewski. Spotlight Synthetic ApertureRadar: Signal ProcessingAlgorithms [M]. Artech House, Norwood, MA,1995.
    [2] C. V. Jakowatz, D. E.Wahl, P. H. Eichel, D. C. Ghiglia, and P. A.Thompson.Spotlight-Mode Synthetic Aperture Radar: a signal processing approach[M].Kluwer academic publishers, Boston, MA,1996.
    [3] B. L. Honeycutt. Spceborne imaging radar-C instrument [J]. IEEE Trans. onGeoscience and remote sensing,1989,27(2):164-169.
    [4] A. Monti-Guarieri, Y. L. Desnos. Optimizing performances of the ENVISATASAR ScanSAR modes[C]. In Proceedings of Geoscience and remote sensingsymp, IGARSS’99,Hamburg, Germany,1999:1758-1760.
    [5] A. Monti-Guarieri, Y. L. Desnos.Optimizing performances of the ENVISATASAR ScanSAR modes[C]. In Proceedings of Geoscience and remote sensingsymp., IGARSS’99,Hamburg, Germany,1999:1758-1760.
    [6] R. Bamler.Adapting Precision standard SAR processors to ScanSAR[C]. InProceedings of Geoscience and remote sensing symp., IGARSS’99,Florence,Italy,1995:2051-2053.
    [7] A. Moreira, J. Mittermayer. R.Scheiber. Extend chirp scaling algorithm for airand spaceborne SAR data processing in Stripmap and ScanSAR imaging modes[J]. IEEE Trans.on Geoscience and Remote Sensing,1996,34(5):479-491.
    [8] R.Lanari, S. Hensley, P.A. Rosen. Chirp-Z transform based SPECAN Approachfor phase preserving ScanSAR imaging generation [J]. IEEE Proc. radar sonarand navigation,1998,145(5):254-261.
    [9] A. Monti-Guarnieri and P. Guccione. Optimal Focusing for Low ResolutionScanSAR [J]. IEEE Trans. Geoscience and Remote Sensing,2001,39(3):479-491.
    [10] C. P. Lee, E. Ertin, J. T. Parter. Sparsity and compressed sensing in radar imaging[J]. Proceedings of the IEEE,2010,98(6):1006-1020.
    [11]成萍,姜义成,许荣庆.基于匹配追踪的ISAR超分辨成像方法[J].现代雷达,2008,30(1):19-26.
    [12]屈乐乐,黄琼,方广有.基于压缩感知的频率步进探地成像算法[J].系统工程与电子技术,2010,31(2):295-297.
    [13]余慧敏,方广有.压缩感知理论在探地雷达三维成像中的应用[J].电子与信息学报,2010,31(2):12-16.
    [14] J. Li, M. D. Xing, S. J. Wu. Application of Compressed Sensing in SparseAperture Imaging of Radar[C]. In Proceedings of Asian-Pacific Conference onSynthetic Aperture Radar (APSAR), Xi’an, Shaanxi,2009:651-655.
    [15] M. Herman and T. Strohmer. High resolution radar via compressed sensing [J].IEEE Trans.Signal Process,2009,57(6):2257-2284.
    [16] X. X. Zhu, R.Bamler. Topographic SAR Inversion by L1-NormRegularization—The Compressive Sensing Approach [J]. IEEE Trans. onGeoscience and Remote Sensing,2010,48(10):3839-3846.
    [17] L. Zhang, Z. J. Qiao, M. D. Xing et al.High Resolution ISAR imaging byExploiting Sparse Apertures [J]. IEEE Trans. on Antennas and propagation,2012,60(2):997-1008.
    [18] E. J. Candes, M. B. Wakin. An introduction to compressive sampling [J]. IEEESignal Processing Magazine,2008,25(2):21-30.
    [19] M. T. Alonso, P. Lopez-Dekker and J. J. Mallorqui. A novel strategy for radarimaging based on compressive sensing [J]. IEEE Trans. on Geoscience andRemote Sensing,2010,42(18):4285-4295.
    [20] V. M. Parel, G. R. Easley, D. M. Healy. Compressed synthetic aperture radar [J].IEEE journal of selected topics in signal processing,2010,4(2):244-254.
    [21]保铮,邢孟道,王彤.雷达成像技术[M].北京:电子工业出版社,2005:132-138.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700