用户名: 密码: 验证码:
多排螺旋计算机断层摄影泌尿系成像临床应用的系列研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:回顾性研究生理盐水输注、腹部加压和两种排泄期延迟扫描时间对64排螺旋CTU图像质量的影响。
     材料与方法:获得全部参加研究患者的病史和知情同意书。共122名患者参与此研究(男性50人,女性72人),行两期延迟期CTU检查,检查设备是西门子64排螺旋CT。CTU检查所用造影剂为300mgI/ml,共注射100ml,注射造影剂后行或不行团注100ml生理盐水,注射速度均为5ml/s。每名患者均进行延迟400s和550s的两期排泄期扫描,在进行排泄期扫描前患者接受或不接受腹部加压。研究者阅读轴位和后处理重建图像(包括VRT和MIP)以评价泌尿系的扩张及造影剂充盈情况。使用方差分析和卡方检验评价四种检查方法(生理盐水输注和腹部加压、仅生理盐水输注、仅腹部加压、既无生理盐水输注也无腹部加压)和两期排泄期扫描对于CTU图像质量的影响。
     结果:生理盐水输注可以提高肾内集合系统和近段输尿管的充盈程度(P<0.05)并提高图像质量(P<0.01)。腹部加压(P<0.05)和550s排泄期扫描(P<0.01)可以提高肾内集合系统和近段输尿管的扩张程度,但是不影响其充盈情况。四种检查方法和两期排泄期扫描对远段输尿管扩张及造影剂充盈情况的影响无统计学显著性差异,但是550s排泄期扫描中有更多节段的远段输尿管显影。
     结论:生理盐水输注、腹部加压和550s排泄期扫描对提高上泌尿系扩张、造影剂充盈情况和图像质量有一定影响。550s排泄期扫描有助于显示更多的远段输尿管。
     目的:评价FLASH双源CT泌尿系成像双能量虚拟平扫临床应用的可行性。
     材料与方法:对240例患者进行FLASH双源CT泌尿系成像,包括常规平扫、肾实质期双能量扫描(100kVp/230mAs和Sn140kVp/178mAs)和排泄期扫描。顺序注射造影剂100ml (370mgI/ml)和100ml生理盐水,注射速度均为5ml/s。利用'Liver VNC'软件处理得到虚拟平扫CT图像,与常规平扫CT图像比较在器官CT值、噪声、信号噪声比、图像质量和放射剂量等方面的差异。
     结果:常规平扫和虚拟平扫所测器官CT值均无统计学显著性差异(P>0.05),虚拟平扫图像噪声明显低于常规平扫而信号噪声比明显高于常规平扫(P<0.05),虚拟平扫图像质量低于常规平扫但无统计学显著性差异(P>0.05),肾实质期双能量扫描放射剂量高于常规平扫和排泄期扫描(P<0.05)。
     结论:在FLASH双源CT泌尿系成像中,双能量虚拟平扫具有取代常规平扫的可能,减少1次平扫的放射剂量,具有临床应用价值。
     目的:评价单次团注造影剂双源双能量CT泌尿系成像中上泌尿系显影情况,及对无痛性血尿的诊断能力。
     材料与方法:2010年8月至2010年12月间,共205名患者因无痛性血尿行双源双能量CT泌尿系成像(CTU)检查,其中男性137人,女性68人,年龄18-89岁,平均年龄61.1±14.9岁)。双源双能量CTU检查包括常规平扫、肾实质期双能量扫描(100kVp/230mAs和Sn140kVp/178mAs)和大螺距(3.0)排泄期扫描。两名医师独立评价排泄期上泌尿系各节段(双侧肾内集合系统、肾盂、近段输尿管和远段输尿管)的造影剂充盈情况。分别评价使用平扫、肾实质期和排泄期前瞻性诊断、以及使用虚拟平扫、肾实质期和排泄期回顾性诊断血尿的病因,参考标准包括病理、实验室检查、其他影像学资料和截至15个月的临床随访资料。分别计算前瞻性和回顾性诊断无痛性血尿的敏感性、特异性、阳性预测值、阴性预测值和准确性。使用受试者工作特征(ROC)分析并分别计算以上两种方法的曲线下面积(AUC),比较两种方法的诊断效能和放射剂量。
     结果:两名医师认为充盈程度大于50%的上泌尿系节段分别有87.8%和86.8%。使用三期扫描图像前瞻性诊断血尿的敏感性、特异性、阳性预测值、阴性预测值和准确性分别为95.2%,91.9%,98.2%,81.0%和94.6%,AUC为0.991±0.007。使用虚拟平扫和两期扫描图像回顾性诊断血尿的敏感性、特异性、阳性预测值、阴性预测值和准确性分别为98.8%,91.9%,98.2%,94.4%和97.6%,AUC为0.993±0.006。两种方法诊断效能无明显差异(z=1.425, Bonferroni校正P>0.05)。回顾性诊断CTU方案的放射剂量是(12.732±3.485)mSv,明显低于前瞻性诊断CTU方案的放射剂量[(17.002±4.013)mSv](P<0.05),前者放射剂量减低为(32.74±8.92)%。
     结论:单次团注造影剂肾实质期双能量扫描和大螺距排泄期扫描双期CTU检查中上泌尿系充盈较好,结合虚拟平扫图像对无痛性血尿诊断能力高,放射剂量减低。
     目的:评价多排螺旋CT泌尿系成像(MDCTU)在尿路上皮癌患者随访中的临床价值。
     材料与方法:2006年1月至2010年7月间,我科共行2800例MDCTU检查,其中413名尿路上皮癌患者术后随访共行466例MDCTU检查,包括平扫、肾实质期和排泄期三期扫描。顺序注射造影剂100ml (370mgI/ml)和100ml生理盐水,注射速度均为5ml/s。对MDCTU轴位及三维后处理图像进行前瞻性诊断,以评价是否有肿瘤复发。分析诊断的敏感性、特异性、准确性、阳性和阴性预测值。参考标准为病理学结果和随访临床资料。
     结果:对尿路上皮癌患者的术后随访中,MDCTU诊断肿瘤复发的敏感性、特异性、准确性、阳性和阴性预测值分别为92.0%、99.0%、97.1%、97.2%和97.1%。
     结论:MDCTU对随访尿路上皮癌患者肿瘤复发具有重要的临床价值。
Purpose To retrospectively evaluate the effects of saline administration following contrast material injection, abdominal compression and two delay phase acquisition on image quality improvement of CT urography (CTU).
     Materials and Methods Medical records and informed consents of patients were obtained. In totally122patients (50men,72women), two delay phase images with MDCT(Siemens Somatom Sensation64) were performed. Scans began simultaneously with a contrast bolus injection of100ml (300mgI/ml) and or not a saline bolus injection of100ml at a rate of5ml/s. Two delay phase images were undergone at400and550seconds for each patient. Examinations were taken by using abdominal compression or not. The distention and opacification of the urinary tract were evaluated by two interpreters together on transverse images and post-processing3D images (VRT and MIP). Effects of four techniques (saline administration and abdominal compression, saline administration only, compression only, and neither saline administration nor compression) and two delay phase acquisition on image quality improvement were analysed by using ANOVA and Chi-square test.
     Results Saline administration improved opacification (P<0.05) and increased overall image quality (P<0.01) of the intrarenal collecting system and proximal ureter. Abdominal compression (P<0.05) and delayed phase image acquisition of550seconds (P<0.01) all improved distention of the intrarenal collecting system and proximal ureter but did not improve opacification. No statistically significant effects on the distal ureter were found. However, there were more visualized distal ureteral segments with the longer imaging delay.
     Conclusion Saline administration, abdominal compression and longer imaging delays are all effective in improving image quality of64-detector row CTU.
     Purpose To evaluate the clinical feasibility of dual-source CT urography using dual-energy virtual non-enhanced CT.
     Materials and Methods Totally240patients received dual-source CT, which included true non-enhanced CT (TNCT), nephrographic phase scanning with dual-energy mode (100kVp/230mAs and Sn140kVp/178mAs) and excretory phase scanning. A contrast bolus injection of100ml (370mgI/ml) contrast material following100ml saline which were all at a rate of5ml/s. Virtual non-enhanced CT (VNCT) image sets were reformatted from 'LiverVNC' software. The mean CT number, noise, signal to noise ratio (SNR), image quality and radiation dose were compared between TNCT and VNCT image sets.
     Results There was no significant difference in mean CT numbers of all organs (P>0.05). However, VNCT images had significantly lower noise and higher SNR than TNCT images (both P<0.05). Image quality of VNCT was lower than that of TNCT without significant difference (P>0.05). Radiation dose of nephrographic phase with dual-energy mode was significantly higher than that of TNCT and excretory phase scanning (both P<0.05).
     Conclusions In dual-source CT urography, dual-energy VNCT has potential clinical values in replacing TNCT with consequent saving in radiation dose.
     Purpose To assess upper urinary tract opacification and the performance of one-bolus dual-dource dual-energy CT urography for painless hematuria.
     Materials and Methods Between August2010and December2010, we identified205patients (137men,68women; age range,18-89years; mean±SD,61.1±14.9years) who underwent dual-source dual-energy CT urography (CTU) for painless hematuria. CTU included true non-enhanced phase, dual-energy mode nephrographic phase (100kVp/230mAs and Sn140kVp/178mAs) and FLASH mode (pitch3.0) excretory phase imaging of the urinary tract. Two radiologists independently evaluated the degree of upper urinary tract opacification. Prospective interpretations using true non-enhanced, nephrographic and excretory phase imaging for hematuria were recorded, as well as retrospective diagnosis using virtual non-enhanced, nephrographic and excretory phase imaging. The standard of reference included all available clinical, imaging, and laboratory data for up to15months after CT urography. Sensitivity, specificity, positive (PPV) and negative (NPV) predictive values, and accuracy were calculated. Receiver-operating characteristic (ROC) analysis was undertaken and the area under the curve (AUC) calculated. The prospective and retrospective diagnostic performance for hematuria and the radiation dose of two CTU protocol were compared.
     Results87.8%and86.8%of segments were at least50%opacified, respectively. Sensitivity, specificity, PPV, NPV and accuracy for hematuria for prospective interpretation were95.2%,91.9%,98.2%,81.0%and94.6%, respectively. Comparable figures for retrospective diagnosis were98.8%,91.9%,98.2%,94.4%and97.6%. The AUC for prospective and retrospective diagnosis were (0.991±0.007) and (0.993±0.006), respectively (z=1.425, Bonferroni-corrected P>0.05). The radiation dose of CTU protocol using in retrospective diagnosis[(12,732±3.485)mSv] was significantly lower than that of prospective diagnosis [(17.002±4.013)mSv], with dose reduction of (32.74±8.92)%.
     Conclusion One-bolus two-phase dual-source dual-energy CT urography provided at least50%opacification of upper urinary tract segments and had high diagnostic performance for painless hematuria, as well as with relatively low radiation dose.
     Purpose To assess the clinical value of multi-detector row CT urography(MDCTU) in follow-up of patients with a history of previous urothelial tumor.
     Materials and Methods At our department, totally2800MDCTU examinations were performed from January2006through July2010. Of these,466CT urograms in413patients evaluated for a history of urothelial tumor, were included in the study. MDCTU was used for non-enhanced, nephrographic phase and excretory phase scanning that began with a contrast bolus injection of100ml (370mgI/ml) contrast material following100ml saline which were all at a rate of5ml/s. Axial and three-dimensional reformation images were prospectively evaluated for urothelial tumor recurrence. Sensitivity, specificity, accuracy, positive and negative predictive values were analyzed with the standard of reference, including all available pathological and clinical materials.
     Results In the post-operative follow-up of patients with previous urothelial cancer, sensitivity, specificity, accuracy, positive and negative predictive values of MDCTU for tumor recurrence were92.0%、99.0%、97.1%、97.2%and97.1%, respectively.
     Conclusions MDCTU plays an important role in the post-operative follow-up of patients with a history of urothelial cancer for recurrence.
引文
1.E·D·克罗法特、S·戴斯主编,黄国华、孔宪国主译,《现代泌尿生殖肿瘤外科学》(第二版)[M].武汉,同济大学出版社,2004:31-46。
    2. Morton A Bosniak. The small(≤3.0cm) renal parenchymal tumor:detection, diagnosis, and controversies[J]. Radiology,1991,179:307-317.
    3. Skrepetis K, Siafakas I, Lykourinas M. Evolution of retrograde pyelography and excretory urography in the early 20th century[J]. J Endourol,2001,15:691-696.
    4. Klingenbeck-Regn K, Schaller S, Flohr T, et al. Sub-second multi-slice computed tomography:basics and applications [J]. Eur J Radiol,1999,31:110-124.
    5. Schaller S, Flohr T, Klingenbeck K, et al. Spiral interpolation algorithm for multi-slice spiral CT-part Ⅰ:theory [J]. IEEE Trans Med Imaging,2000,19:822-834.
    6. Fuchs T, Schaller S. Spiral interpolation algorithms for multi-slice spiral CT-part Ⅱ: measurement and evaluation of slice sensitivity profiles and noise at a clinical multi-slice system [J]. IEEE Trans Med Imaging,2000,19:835-847.
    7. Amis ES Jr. Epitaph for the urogram [J]. Radiology,1999,213:639-640.
    8. Silverman SG, Leyendecker, JR, Amis ES Jr. What is the current role of CT urography and MR urography in the evaluation of the urinary tract? [J]. Radiology,2009,250: 309-323.
    9. McTavish JD, Jinzaki M, Zou KH, et al. Multi-detector row CT urography:comparison of strategies for depicting the normal urinary collecting system [J]. Radiology,2002,225: 783-790.
    10. Raptopoulos V, McNamara A. Improved pelvicalyceal visualization with multidetector computed tomography urography:comparison with helical computed tomography [J]. Eur Radiol,2005,15:1834-1840.
    11. Caoili EM, Inampudi P, Cohan RH, et al. Optimization of multi-detector row CT urography:effect of compression, saline administration, and prolongation of acquisition delay [J]. Radiology,2005,235:116-123.
    12. Meindl T, Coppenrath E, Kahlil R, et al. MDCT urography:retrospective determination of optimal delay time after intravenous contrast administration [J]. Eur Radiol,2006,16: 1667-1674.
    13. Silverman SG, Akbar SA, Mortele KJ, et al. Multi-detector row CT urography of normal urinary collecting system:furosemide versus saline as adjunct to contrast medium [J]. Radiology,2006,240:749-755.
    14. Kawamoto S, Horton KM, Fishman EK. Opacification of the collecting system and ureters on excretory-phase CT using oral water as contrast medium [J]. AJR,2006,186: 136-140.
    15. Meindl T, Coppenrath E, Degenhart C, et al. MDCT urography:experience with a bi-phasic excretory phase examination protocol [J]. Eur Radiol,2007,17:2512-2518.
    16. Chow LC, Kwan SW, Olcott EW, et al. Split-bolus MDCT urography with synchronous nephrographic and excretory phase enhancement [J]. AJR,2007,189:314-322
    17. Curic J, Vukelic-Markovic M, Marusic P, et al. Influence of bladder distension on opacification of urinary collecting system during CT urography [J]. Eur Radiol,2008,18: 1065-1070.
    18. Kekelidze M, Dwarkasing RS, Dijkshoorn ML, et al. Kidney and urinary tract imaging: triple-bolus multidetector CT urography as a one-stop shop-protocol design, opacification, and image quality analysis [J]. Radiology,2010,255:508-516.
    19. Maheshwari E, O'Malley ME, Ghai S, et al. Split-bolus MDCT urography:upper tract opacification and performance for upper tract tumors in patients with hematuria [J]. AJR, 2010,194:453-458.
    20. Van Der Molen AJ, Cowan NC, Mueller-Lisse UG, et al. CT urography:definition, indications and techniques. A guideline for clinical practice [J]. Eur Radiol,2008,18:4-17.
    21. Townsend BA, Silverman SG, Mortele KJ, et al. Current Use of Computed tomographic urography:survey of the Society of Uroradiology [J]. J Comput Assist Tomogr,2009,33: 96-100.
    22. Petersilka M, Bruder H, Krauss B, et al. Technical principles of dual source CT [J]. Eur J Radiol,2008,68:362-368.
    23. Yeh BM, Shepherd JA, Wang ZJ, et al. Dual-energy and low-kVp CT in the abdomen [J]. AJR,2009,193:47-54.
    24. Fletcher JG, Takahashi N, Hartman R, et al. Dual-energy and dual-source CT:Is there a role in the abdomen and pelvis? [J]. Radiol Clin N Am,2009,47:41-57.
    25. Coursey CA, Nelson RC, Boll DT, et al. Dual-energy multidetector CT:How does it work, what can it tell us, and when can we use it in abdominopelvic imaging. Radiographics, 2010,30:1037-1055.
    26. De Cecco CN, Buffa V, Fedeli S, et al. Dual energy CT (DECT) of the liver: conventional versus virtual unenhanced images [J]. Eur Radiol,2010,20:2870-2875.
    27. Zhang LJ, Peng J, Wu SY, et al. Liver virtual non-enhanced CT with dual-source, dual-energy CT:a preliminary study [J]. Eur Radiol,2010,20:2257-2264.
    28. Graser A, Johnson TRC, Hecht EM, et al. Dual-energy CT in patients suspected of having renal masses:Can virtual nonenhanced images replace true nonenhanced images? [J]. Radiology,2009,252:433-440.
    29. Takahashi N, Vrtiska TJ, Kawashima A, et al. Detectability of urinary stones on virtual nonenhanced images generated at pyelographic-phase dual-energy CT [J]. Radiology,2010, 256:184-190.
    30. Joffe SA, Servaes S, Okon S, et al. Multi-detector row CT urography in the evaluation of hematuria [J]. Radiographics,2003,23:1441-1456.
    31. Caoili EM, Cohan RH, Inampudi P, et al. MDCT urography of upper tract urothelial neoplasms [J]. AJR,2005,184:1873-1881.
    32. Fritz GA, Schoellnast H, Deutschmann HA, et al. Multiphasic multidetector-row CT (MDCT) in detection and staging of transitional cell carcinomas of the upper urinary tract [J]. Eur Radiolo,2006,16:1244-1252.
    33. Tsili AC, Efremidis SC, Kalef-Ezra J, et al. Multi-detector row CT urography on a 16-row CT scanner in the evaluation of urothelial tumors [J]. Eur Radiolo,2007,17: 1046-1054.
    34. Dillman JR, Caoili EM, Cohan RH, et al. Detection of upper tract urothelial neoplasms: sensitivity of axial, coronal reformatted, and curved-planar reformatted image-types utilizing 16-row multi-detector CT urography [J]. Abdom Imaging,2008,33:707-716.
    35. Wang LJ, Wong YC, Chuang CK, et al. Diagnostic accuracy of transitional cell carcinoma on multidetector computerized tomography urography in patients with gross hematuria [J]. J Urol,2009,181:524-531.
    36. Jinzaki M, Matsumoto K, Kikuchi E, et al. Comparison of CT urography and excretory urography in the detection and localization of urothelial carcinoma of the upper urinary tract [J].AJR,2011,196:1102-1109.
    37. Vrtiska TJ, Hartman RP, Kofler JM, et al. Spatial resolution and radiation dose of a 64-MDCT scanner compared with published CT urography protocols [J]. AJR,2009,192: 941-948.
    38. American Cancer Society (2004). Cancer Facts & Figures 2004 [M]. American Cancer Society, Atlanta, GA, USA:30329
    39. Mueller-Lisse UG, Mueller-Lisse UL, Hinterberger J, et al. Multidetector-row computed tomography (MDCT) in patients with a history of previous urothelial cancer or painless macroscopic haematuria [J]. Eur Radiol,2007,17:2794-2803.
    1. Van Der Molen AJ, Cowan NC, Mueller-Lisse UG, et al. CT urography:definition, indications and techniques. A guideline for clinical practice [J]. Eur Radiol,2008,18:4-17.
    2. Caoili EM, Inampudi P, Cohan RH, et al. Optimization of multi-detector row CT urography:effect of compression, saline administration, and prolongation of acquisition delay [J]. Radiology,2005,235:116-123.
    3. Silverman SG, Leyendecker, JR, Amis ES Jr. What is the current role of CT urography and MR urography in the evaluation of the urinary tract? [J]. Radiology,2009,250: 309-323.
    4. Townsend BA, Silverman SG, Mortele KJ, et al. Current Use of Computed tomographic urography:survey of the Society of Uroradiology [J]. J Comput Assist Tomogr,2009,33: 96-100.
    5. Chow LC, Sommer FG. Multidetector CT urography with abdominal compression and three-dimensional reconstruction. AJR,2001,177:849-855.
    6. McNicholas MM, Raptopoulos VD, Schwartz RK, et al. Excretory phase CT urography for opacification of the urinary collecting system. AJR,1998,170:1261-1267.
    7. Heneghan JP, Kim DH, Leder RA, et al. Compression CT urography:a comparison with IVU in the opacification of the collecting system and ureters. J Comput Assist Tomogr, 2001,25:343-347.
    8. McTavish JD, Jinzaki M, Zou KH, et al. Multi-detector row CT urography:comparison of strategies for depicting the normal urinary collecting system [J]. Radiology,2002,225: 783-790.
    9. Raptopoulos V, McNamara A. Improved pelvicalyceal visualization with multidetector computed tomography urography:comparison with helical computed tomography [J]. Eur Radiol,2005,15:1834-1840.
    10. Meindl T, Coppenrath E, Kahlil R, et al. MDCT urography:retrospective determination of optimal delay time after intravenous contrast administration [J]. Eur Radiol,2006,16: 1667-1674.
    11. Kawamoto S, Horton KM, Fishman EK. Opacification of the collecting system and ureters on excretory-phase CT using oral water as contrast medium [J]. AJR,2006,186: 136-140.
    12. Curic J, Vukelic-Markovic M, Marusic P, et al. Influence of bladder distension on opacification of urinary collecting system during CT urography [J]. Eur Radiol,2008,18: 1065-1070.
    13. Silverman SG, Akbar SA, Mortele KJ, et al. Multi-detector row CT urography of normal urinary collecting system:furosemide versus saline as adjunct to contrast medium [J]. Radiology,2006,240:749-755.
    14. Chow LC, Kwan SW, Olcott EW, et al. Split-bolus MDCT urography with synchronous nephrographic and excretory phase enhancement [J]. AJR,2007,189:314-322
    15. Kekelidze M, Dwarkasing RS, Dijkshoorn ML, et al. Kidney and urinary tract imaging: triple-bolus multidetector CT urography as a one-stop shop-protocol design, opacification, and image quality analysis [J]. Radiology,2010,255:508-516.
    16. Maheshwari E, O'Malley ME, Ghai S, et al. Split-bolus MDCT urography:upper tract opacification and performance for upper tract tumors in patients with hematuria [J]. AJR, 2010,194:453-458.
    17. Ziegler J. Significance and technique of compression of ureter in elimination pyelography. Dtsch Med Wochenschr 1930,56:1772-1775.
    18. Caoili EM, Cohan RH, Korobkin M, et al. Urinary tract abnormalities:initial experience with multi-detector row CT urography. Radiology,2002,222:353-360.
    1. Van Der Molen AJ, Cowam NC, Muller-Lisse UG, et al. CT urography:definition, indications and techniques. A guideline for clinical practice[J]. Eur Radiol,2008,18:4-17.
    2. Zhang LJ, Peng J, Wu SY, et al. Liver virtual non-enhanced CT with dual-source, dual-energy CT:a preliminary study [J]. Eur Radiol,2010,20:2257-2264.
    3. De Cecco CN, Buffa V, Fedeli S, et al. Dual energy CT (DECT) of the liver: conventional versus virtual unenhanced images [J]. Eur Radiol,2010,20:2870-2875.
    4. Behrendt FF, Schmidt B, Plumhans C, et al. Image fusion in dual energy computed tomography:effect on contrast enhancement, signal-to-noise ratio and image quality in computed tomography angiography [J]. Invest Radiol,2009,44:1-6.
    5. Menzel H, Schibilla H, Teunen D, et al. European guidelines on quality criteria for computed tomography [M]. Luxembourg:European Commission,2000:16262.
    6. Genant HK, Boyd D. Quantitative bone mineral analysis using dual energy computed tomography [J]. Invest Radiol,1977,12:545-551.
    7. Goldberg HI, Cann CE, Moss AA, et al. Noninvasive quantitation of liver iron in dogs with hemochromatosis using dual-energy CT scanning[J]. Invest Radiol,1982,17: 375-380.
    8. Chiro GD, Brooks RA, Kessler RM, et al. Tissue signatures with dual-energy computed tomography [J]. Radiology,1979,131:521-523.
    9. Coursey CA, Nelson RC, Boll DT, et al. Dual-energy multidetector CT:how does it work, what can it tell us, and when can we use it in abdominopelvic imaging?[J]. Radiographic,2010,30:1037-1055.
    10. Graser A, Johnson TR, Hecht EM, et al. Dual-energy CT in patients suspected of having renal masses:can virtual nonenhanced images replace true nonenhanced images?[J]. Radiology,2009,252:433-440.
    11.彭晋,张龙江,吴新生,等.双源CT双能量上腹部虚拟平扫临床应用价值的初步探讨[J].临床放射学杂志,2009,28:1680-1684.
    12.彭晋,张龙江,周长生,等.对比剂注射流率对双源CT上腹部虚拟平扫图像质量的影响[J].放射学实践,2010,25:215-218.
    13. Graser A, Johnson TR, Chandarana H, et al. Dual energy CT:preliminary observations and potential clinical applications in the abdomen[J]. Eur Radiol,2009,19:13-23.
    14. Dillman JR, Caoili EM, Cohan RH. Multi-detector CT urography:a one-stop renal and urinary tract imaging modality[J]. Abdom Imaging,2007,32:519-529.
    15. Silverman SG, Leyendecker JR, Amis ES Jr. What is the current role of CT urography and MR urography in the evaluation of the urinary tract?[J]. Radiology,2009,250:309-323.
    1. Menzal H, Schibilla H, Teunen D (eds). European guidelines on quality criteria for computed tomography [M]. Publication No. EUR 16262 EN. European Commission, Luxembourg,2000,735-738.
    2. Landis JR, Koch GG. The measurement of observer agreement for categorical data[J]. Biometrics 1977,33:159-174.
    3. Caoili EM, Inampudi P, Cohan RH, et al. Optimization of multi-detector row CT urography:effect of compression, saline administration, and prolongation of acquisition delay [J]. Radiology,2005,235:116-123.
    4. Chow LC, Sommer FG. Multidetector CT urography with abdominal compression and three-dimensional reconstruction [J]. AJR,2001,177:849-855.
    5. Caoili EM, Cohan RH, Korobkin M, et al. Effectiveness of abdominal compression during helical renal CT [J]. Acad Radiol,2001,8:1100-1106.
    6. Kawamoto S, Horton KM, Fishman EK. Opacification of collecting system and ureters on excretory phase CT using oral water as contrast medium [J]. AJR,2006,186:136-140.
    7. Sudakoff GS, Dunn DP, Hellman RS, et al. Opacification of the genitourinary collecting system during MDCT urography with enhanced CT digital radiography: nonsaline versus saline bolus [J]. AJR,2006,186:122-129.
    8. Silverman SG, Akbar SA, Mortele KJ, et al. Multi-detector row CT urography of normal urinary collecting system:furosemide versus saline as adjunct to contrast medium [J]. Radiology,2006,240:749-755.
    9. Maheshwari E, O'Malley ME, Ghai S, et al. Split-bolus MDCT urography:upper tract opacification and performance for upper tract tumors in patients with hematuria [J]. AJR, 2010,194:453-458.
    10. Dillman JR, Caoili EM, Cohan RH, et al. Comparison of urinary tract distension and opacification using single-bolus 3-phase vs split-bolus 2-phase multidetector row CT urography [J]. J Comput Assist Tomogr,2007,31:750-757.
    11. Caoili EM, Cohan RH, Inampudi P, et al. MDCT urography of upper tract urothelial neoplasms [J]. AJR,2005,184:1873-1881.
    12. McTavish JD, Jinsaki M, Zou KH, Nawfel RD, Silverman SG Multidetector row CT urography:comparison of strategies for depicting the normal urinary collecting system. Radiology,2002,225:783-790.
    13. Grossfeld GD, Litwin MS, Wolf JS Jr, et al. Evaluation of asymptomatic microscopic hematuria in adults:the American Urological Association best practice policy. Part II. Patient evaluation, cytology, voided markers, imaging, cystoscopy, nephrology evaluation, and follow-up [J]. Urology,2001,57:604-610.
    14. Choyke PL, Bluth EI, Bush WH Jr, et al. Clinical condition:hematuria-American College of Radiology appropriateness criteria. American College of Radiology Website. www.acr.org/ac. [EB] Published October 2008. Accessed October 27,2009
    15. Van Der Molen AJ, Cowan NC, Mueller-Lisse UG, et al; CT Urography Working Group of the European Society of Urogenital Radiology (ESUR). CT urography:definition, indications and techniques-a guideline for clinical practice [J]. Eur Radiol,2008,18:4-17.
    16. Sadow CA, Wheeler SC, Kim J, et al. Positive Predictive Value of CT Urography in the Evaluation of Upper Tract Urothelial Cancer [J]. AJR,2010,195:W337-W343.
    17. Kim JK, Park S, Ahn HJ, et al. Bladder cancer:analysis of multi-detector row helical CT enhancement pattern and accuracy in tumor detection and perivesical staging [J]. Radiology,2004,231:725-731.
    18. Sadow CA, Silverman SG, O'Leary MP, et al. Bladder Cancer Detection with CT Urography in an Academic Medical Center [J]. Radiology,2008,249:195-202.
    19. Kim JK, Ahn JH, Park T, et al. Virtual cystoscopy of the contrast material-filled bladder in patients with gross hematuria [J]. AJR,2002,179:763-768.
    20. Lammle M, Beer A, Settles M, et al. Reliability of MR imaging-based virtual cystoscopy in the diagnosis of cancer of the urinary bladder [J]. AJR,2002,178: 1483-1488.
    21. Brenner DJ, Hall EJ. Computed tomography:an increasing source of radiation exposure [J]. N Engl J Med,2007,357:2277-2284.
    22. Vrtiska TJ, Hartman RP, Kofler JM, et al. Spatial resolution and radiation dose of a 64-MDCT scanner compared with published CT urography protocols [J]. AJR,2009,192: 941-948.
    23. Chow LC, Kwan SW, Olcott EW, et al. Split-bolus MDCT urography with synchronous nephrographic and excretory phase enhancement [J]. AJR,2007,189:314-322
    24. Kekelidze M, Dwarkasing RS, Dijkshoorn ML, et al. Kidney and urinary tract imaging: triple-bolus multidetector CT urography as a one-stop shop-protocol design, opacification, and image quality analysis [J]. Radiology,2010,255:508-516.
    25. Shinagara AB, Sahni VA, Sadow CA, et al. Feasibility of Low-Tube-Voltage Excretory Phase Images During CT Urography:Assessment Using a Dual-Energy CT Scanner [J]. AJR,2011,197:1146-1151.
    26. De Cecco CN, Buffa V, Fedeli S, et al. Dual energy CT (DECT) of the liver: conventional versus virtual unenhanced images [J]. Eur Radiol,2010,20:2870-2875.
    27. Zhang LJ, Peng J, Wu SY, et al. Liver virtual non-enhanced CT with dual-source, dual-energy CT:a preliminary study [J]. Eur Radiol,2010,20:2257-2264.
    28. Takahashi N, Vrtiska TJ, Kawashima A, et al. Detectability of Urinary Stones on Virtual Nonenhanced Images Generated at Pyelographic-Phase Dual-Energy CT [J]. Radiology, 2010,256:184-190.
    1. American Cancer Society(2004). Cancer Facts & Figures 2004 [M]. American Cancer Society, Atlanta, GA, USA:30329.
    2. Joffe SA, Servaes S, Okon S, et al. Multi-detector row CT urography in the evaluation of hematuria [J]. Radiographic,2003,23:1441-1455.
    3. Dillman JR, Caoili EM, Cohan RH. Multi-detector CT urography:a one-stop renal and urinary tract imaging modality [J]. Abdom Imaging,2007,32:519-529.
    4. Silverman SG, Leyendecker JR, Amis ES Jr. What is the current role of CT urography and MR urography in the evaluation of the urinary tract? [J]. Radiology,2009,250: 309-323.
    5. Van Der Molen AJ, Cowam NC, Muller-Lisse UG, et al. CT urography:definition, indications and techniques. A guideline for clinical practice [J]. Eur Radiol,2008,18:4-17.
    6. Konstantinos C, Nicholas T, Spyros Y, et al. Performance of computed tomographic urography in diagnosis of upper urinary tract urothelial carcinoma, in patients presenting with hematuria Systematic review and meta-analysis [J]. Eur J Radiol,2010,73:334-338.
    7.邱乾德,郑文龙,相世峰,等.肾盂移行上皮细胞癌影像诊断价值比较研究[J].医学影像学杂志,2009,19:1176-1180.
    8. Caoili EM, Cohan RH, Inampudi P, et al. MDCT urography of upper tract urothelial neoplasms [J]. AJR,2005,184:1873-1881.
    9. Tsili AC, Efremidis SC, Kalef-Ezra J, et al. Multi-detector row CT urography on a 16-row CT scanner in the evaluation of urothelial tumors [J]. Eur Radiol,2007,17: 1046-1054.
    10. Mueller-Lisse UG, Mueller-Lisse UL, Hinterberger J, et al. Multidetector-row computed tomography(MDCT) in patients with a history of previous urothelial cancer or painless macroscopic haematuria [J]. Eur Radiol,2007,17:2794-2803.
    11. Dillman JR, Caoili EM, Cohan RH, et al. Detection of upper tract urothelial neoplasms: sensitivity of axial coronal reformatted, and curved-planar reformatted image-types utilizing 16-row multi-detector CT urography [J]. Abdom Imaging,2008,33:707-716.
    12. Sadow CA, Silverman SG, O'Leary MP, et al. Bladder cancer detection with CT urography in an academic medical center [J]. Radiology,2008,249:195-202.
    13. Vrtiska TJ, Takahashi N, Fletcher JG, et al. Genitourinary applications of dual-energy CT [J]. AJR,2010,194:1434-1442.
    1. Hounsfield GN. Computerized transverse axial scanning (tomography).1. Description of system [J]. Br J Radiol,1973,46:1016-1022.
    2. Genant HK, Boyd D. Quantitative bone mineral analysis using dual energy computed tomography [J]. Invest Radiol,1977,12:545-551.
    3. Goldberg HI, Cann CE, Moss AA, et al. Noninvasive quantitation of liver iron in dogs with hemochromatosis using dual-energy CT scanning[J]. Invest Radiol,1982,17: 375-380.
    4. Chiro GD, Brooks RA, Kessler RM, et al. Tissue signatures with dual-energy computed tomography [J]. Radiology,1979,131:521-523.
    5. Johnson TR, Krauss B, Sedlmair M, et al. Material differentiation by dual energy CT: initial experience [J]. Eur Radiol,2007,17:1510-1517.
    6. Fletcher JG, Takahashi N, Hartman R, et al. Dual-energy and dual-source CT:is there a role in the abdomen and pelvis? [J] Radiol Clin North Am,2009,47:41-57.
    7. Alvarez RE, Macovski A. Energy-selective reconstructions in x-ray computerized tomography [J]. Phys Med Biol,1976,21:733-744.
    8. Coursey CA, Nelson RC, Boll DT, et al. Dual-energy multidetector CT:how does it work, what can it tell us, and when can we use it in abdominopelvic imaging?[J]. Radiographic,2010,30:1037-1055.
    9. Krauss B, Schmidt B, Flohr TG. Dual source CT. In:Johnson TRC, Fink C, Schonberg SO, Reiser MF, eds. Dual energy CT in clinical practice [M]. Berlin, Germany: Springer-Verlag,2011:11-20.
    10. Chandra N, Langan DA. Gemstone detector:dual energy imaging via fast kVp switching. In:Johnson TRC, Fink C, Schonberg SO, Reiser MF, eds. Dual energy CT in clinical practice [M]. Berlin, Germany:Springer-Verlag,2011:35-41.
    11. Li B, Yadava G, Hsieh J, et al. Head and body CTDIw of dual-energy x-ray CT with fast-kVp switching. In:Samei E, Pelc NJ, eds. Proceedings of SPIE:medical imaging 2010. Vol 7622 [M]. Bellingham, Wash:International Society for Optical Engineering,2010.
    12. Hidas G, Eliahou R, Duvdevani M, et al. Determination of renal stone composition with dual-energy CT:in vivo analysis and comparison with x-ray diffraction [J]. Radiology,2010, 257:394-401.
    13. Vlassenbroek A. Dual layer CT. In:Johnson TRC, Fink C, Schonberg SO, Reiser MF, eds. Dual energy CT in clinical practice [M]. Berlin, Germany:Springer-Verlag,2011: 21-34.
    14. Israel GM, Bosniak MA. How I do it:evaluating renal masses [J]. Radiology,2005,236: 441-450.
    15. Silverman SG, Israel GM, Herts BR, et al. Management of the incidental renal mass [J]. Radiology,2008,249:16-31.
    16. Bosniak MA. The Bosniak renal cyst classification:25 years later [J]. Radiology,2012, 262:781-785.
    17. Brown CL, Hartman RP, Dzyubak OP, et al. Dual-energy CT iodine overlay technique for characterization of renal masses as cyst or solid:a phantom feasibility study [J]. Eur Radiol,2009,19:1289-1295.
    18. Kaza RK, Caoili EM, Cohan RH, et al. Distinguishing enhancing from nonenhancing renal lesions with fast kilovoltage-switching dual-energy CT [J]. AJR,2011,197: 1375-1381.
    19. Grase A, Johnson TRC, Hecht EM, et al. Dual-Energy CT in Patients Suspected of Having Renal Masses:Can Virtual Nonenhanced Images Replace True Nonenhanced Images [J]. Radiology,2009,252:433-440.
    20. Gervais DA, McGovern FJ, Arellano RS, et al. Radiofrequency ablation of renal cell carcinoma:part 1, Indications, results, and role in patient management over a 6-year period and ablation of 100 tumors [J]. AJR,2005,185:64-71.
    21. David JB, Elizabeth ER, Brian ST, et al. Management of renal tumors by image-guided radiofrequency ablation:experience in 105 tumors [J]. Cardiovasc Intervent Radiol,2007, 30:1089-1095.
    22. Pavlovich CP, Walther MM, Choyke PL, et al. Percutaneous radio frequency ablation of small renal tumors:initial results [J]. J Urol,2002,167:10-15.
    23. Davenport MS, Caoili EM, Cohan RH, et al. MRI and CT characteristics of successfully ablated renal masses:imaging surveillance after radiofrequency ablation [J]. AJR,2009,192:1571-1578.
    24. Graser A, Becker CR, Staehler M, et al. Single-phase dual-energy CT allows for characterization of renal masses as benign or malignant [J]. Invest Radiol,2010,45: 399-405.
    25. Coe FL, Evan A, Worcester E. Kidney stone disease [J]. J Clin Invest,2005,115: 2598-2608.
    26. Kambadakone AR, Eisner BH, Catalano OA, et al. New and evolving concepts in the imaging and management of urolithiasis:urologists' perspective [J]. RadioGraphics,2010, 30:603-623.
    27. Eliahou R, Hidas G, Duvdevani M, et al. Determination of renal stone composition with dual-energy computed tomography:an emerging applacation [J]. Semin Ultrasound CT MR, 2010,31:315-320.
    28. Takahashi N, Vrtiska TJ, Kawashima A, et al. Detectability of Urinary Stones on Virtual Nonenhanced Images Generated at Pyelographic-Phase Dual-Energy CT [J]. Radiology, 2010,256:184-190.
    29. Primak AN, Fletcher JG, Vrtiska TJ, et al. Noninvasive differentiation of uric acid versus non-uric acid kidney stones using dual-energy CT [J]. Acad Radiol,2007,14: 1441-1447.
    30. Stolzmann P, Kozomara M, Chuck N, et al. In vivo identification of uric acid stones with dual-energy CT:diagnostic performance evaluation in patients [J]. Abdom Imaging, 2010,35:629-635.
    31. Joshi M, Langan DA, Sahani DS, et al. Effective atomic number accuracy for kidney stone characterization using spectral CT. In:Samei E, Pelc NJ, eds. Proceedings of SPIE: medical imaging 2010 [M]. Vol 7622. Bellingham, Wash:International Society for Optical Engineering,2010.
    32. Vrtiska TJ, Takahashi N, Fletcher JG, et al. Genitourinary applications of dual-energy CT[J]. AJR,2010,194:1434-1442.
    33. Hidas G, Eliahou R, Duvdevani M, et al. Determination of renal stone composition with dual-energy CT:in vivo analysis and comparison with x-ray diffraction [J]. Radiology,2010, 257:394-401.
    34..Zilberman DE, Ferrandino MN, Preminger GM, et al. In Vivo Determination of Urinary Stone Composition Using Dual Energy Computerized Tomography With Advanced Post-Acquisition Processing [J]. J Uro,2010,184:2354-2359.
    35. Thomas C, Heuschmid M, Schilling D, et al. Urinary Calculi Composed of Uric Acid, Cystine, and Mineral Salts:Differentiation with Dual-Energy CT at a Radiation Dose Comparable to That of Intravenous Pyelography [J]. Radiology,2010,257:402-409.
    36. Dillman JR, Caoili EM, Cohan RH. Multi-detector CT urography:a one-stop renal and urinary tract imaging modality [J]. Abdom Imaging,2007,32:519-529.
    37. Choyke PL, Bluth EI, Bush WH Jr, et al. Clinical condition:hematuria-American College of Radiology appropriateness criteria. American College of Radiology Website. www.acr.org/ac. [EB] Published October 2008. Accessed October 27,2009
    38. Van Der Molen AJ, Cowan NC, Mueller-Lisse UG, et al; CT Urography Working Group of the European Society of Urogenital Radiology (ESUR). CT urography:definition, indications and techniques-a guideline for clinical practice [J]. Eur Radiol,2008,18:4-17.
    39. Konstantinos C, Nicholas T, Spyros Y, et al. Performance of computed tomographic urography in diagnosis of upper urinary tract urothelial carcinoma, in patients presenting with hematuria Systematic review and meta-analysis [J]. Eur J Radiol,2010,73:334-338.
    40. Cauberg ECC, Nio CY, de la Rosette JMCH, et al. Computed Tomography-Urography for Upper Urinary Tract Imaging:Is It Required for All Patients Who Present with Hematuria? [J] J Endourol,2011,25:1733-1740.
    41. Jinzaki M, Matsumoto K, Kikuchi E, et al. Comparison of CT Urography and Excretory Urography in the Detection and Localization of Urothelial Carcinoma of the Upper Urinary Tract [J]. AJR,2011,196:1102-1109.
    42. Ho LM, Yoshizumi TT, Hurwitz LM, et al. Dual energy versus single energy MDCT: measurement of radiation dose using adult abdominal imaging protocols [J]. Acad Radiol, 2009,16:1400-1407.
    43. Yu L, Primak AN, Liu X, et al. Image quality optimization and evaluation of linearly mixed images in dual-source, dual-energy CT [J]. Med Phys,2009,36:1019-1024.
    44. Thomas C, Patschan O, Ketelsen D, et al. Dual-energy CT for the characterization of urinary calculi:in vitro and in vivo evaluation of a low-dose scanning protocol [J]. Eur Radiol,2009,19:1553-1559.
    45. Zhang D, Li X, Liu B. Objective characterization of GE discovery CT750 HD scanner: gemstone spectral imaging mode [J]. Med Phys,2011,38:1178-1188.
    46. Li B, Yadava G, Hsieh J, Chandra N, Kulpins MS. Head and body CTDIw of dual-energy x-ray CT with fast-kVp switching. In:Samei E, Pelc NJ, eds. Proceedings of SPIE:medical imaging 2010 [M]. Vol 7622. Bellingham, Wash:International Society for Optical Engineering,2010.
    47. De Cecco CN, Buffa V, Fedeli S, et al. Dual energy CT (DECT) of the liver: conventional versus virtual unenhanced images [J]. Eur Radiol,2010,20:2870-2875.
    48. Zhang LJ, Peng J, Wu SY, et al. Liver virtual non-enhanced CT with dual-source, dual-energy CT:a preliminary study [J]. Eur Radiol,2010,20:2257-2264.
    49. Coursey CA, Nelson RC, Boll DT, et al. Dual-energy multidetector CT:how does it work, what can it tell us, and when can we use it in abdominopelvic imaging?[J]. Radiographic,2010,30:1037-1055.
    50. Kaza RK, Platt JF, Cohan RH, et al. Dual-Energy CT with Single- and Dual-Source Scanners:Current Applications in Evaluating the Genitourinary Tract [J]. Radiographics, 2012,32:353-369.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700