用户名: 密码: 验证码:
溪黄草有效成分分离纯化、结构鉴定及活性评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
溪黄草是一种华南特色的中药资源,具有多种生理活性,极具研究开发前景。溪黄草中有效成分复杂,至今尚未完全明晰。本论文通过现代色谱及波谱技术分离和鉴定溪黄草的有效成分,阐明了溪黄草中主要活性物质,包括活性小分子化合物、多糖及挥发性成分;阐明了二萜类化合物抗肿瘤活性的构效关系及一种二萜化合物对鼻咽癌细胞抑制增殖作用、诱导凋亡作用的作用机制;探讨了大孔吸附树脂对溪黄草多酚类化合物的吸附动力学与热力学;研究了加工方式(包括热处理及干燥技术)对溪黄草叶活性成分、功效的影响。本研究有助于阐明溪黄草药食两用的物质基础,并且可对其高附加值产品的开发提供理论和方法的指导。
     (1)本论文优化了顶空固相微萃取(HS-SPME)法提取溪黄草叶挥发性成分的条件,即:选择CAR/PDMS萃取头;平衡时间为10min萃取温度为50℃;萃取时间为40min。通过HS-SPME-气相色谱-质谱法分别从溪黄草茎、叶中提取、分离、鉴定得到48及56种挥发性成分,包括醇类、醛类、烃类、酮类、酸类、酯类及芳香族类化合物。溪黄草叶中最主要的挥发性成分包括:1-辛烯-3-醇、2-己烯醛及1,顺-3-辛二烯。阴干叶中挥发性成分种类最多。溪黄草茎、叶中挥发性成分差异较大。聚类分析结果表明:HS-SPME与SDE(同时蒸馏萃取)法对溪黄草挥发性物质的萃取性能有显著性差异。HS-SPME法所提取的挥发性物质更能体现溪黄草特有的风味。
     (2)从溪黄草中分离得到20种化合物,包括:(a)4种多酚类化合物:迷迭香酸(溪黄草中含量最高的化合物)、迷迭香酸甲酯、胡麻素及芦丁;(b)9种二萜类化合物:包括8种7,20-环氧-对映-贝壳杉烷型(6种已知化合物包括parvifolin G、lasiodin、effusanin E、rabdosichuanin D、lushanrubescensin F及parvifoliside;2种新化合物effusanin F及effusanin G)和1种6,7-断裂-对映-贝壳杉烷型(nodosin);(c)5种三萜类化合物:β-谷甾醇、豆甾醇、齐墩果酸、熊果酸及β-胡萝卜苷;(d)2种其它类化合物:棕榈酸及蔗糖。其中,迷迭香酸甲酯、胡麻素、parvifolin G、effusanin E、rabdosichuanin lushanrubescensin F及parvifoliside为首次从溪黄草中分离得到。多酚类化合物是溪黄草提取物发挥抗氧化作用的关键物质基础。该类化合物不仅具有卓越的抗氧化活性;而且对酪氨酸酶及α-葡萄糖苷酶具有一定的抑制活性。二萜类化合物是溪黄草提取物呈现抑菌及抗肿瘤活性的重要物质基础。Lasiodin、effusanin E及effusanin F显现出很强的抑菌活性;lasiodin和effusanin G具有与顺铂相同或更高的抑制HepG-2(人肝癌细胞株)、MCF-7(人乳腺癌细胞株)及HL-60(人早幼粒细胞白血病细胞株)细胞增殖活性。
     (3)研究了HP-20及XAD-7HP大孔树脂对溪黄草多酚类化合物的静态吸附动力学及热力学。两种树脂对多酚类化合物的吸附以准二级动力学为最佳模型,且吸附过程受表面扩散与颗粒内扩散过程的影响。两种树脂对多酚类化合物的吸附行为是单分子层吸附,且属于放热过程。通过大孔树脂柱层析法,得到不同浓度乙醇洗脱组分,其中以30%乙醇洗脱组分中总酚含量最高,可达63%以上,其中93%以上的多酚类化合物是迷迭香酸。
     (4)首次研究了lasiodin在鼻咽癌细胞及动物水平上的抗肿瘤作用及其作用机制。Lasiodin不仅能在细胞水平上抑制鼻咽癌细胞增殖、改变细胞形态、抑制细胞体外成瘤与转化能力、并能抑制鼻咽癌细胞侵袭迁移能力;还能在动物水平上抑制肿瘤的增殖,起到体内抗肿瘤作用。采用免疫荧光图像分析及Western印迹技术,研究了lasiodin对鼻咽癌细胞的抑制增殖作用、诱导凋亡作用的作用机制。结果表明:lasiodin通过调控细胞色素C/caspase凋亡通路、P13K/AKT信号传导通路、MAPKs信号传导通路、NF-KB与COX-2信号传导通路抑制鼻咽癌细胞增殖,诱导细胞凋亡。
     (5)利用不同截留分子量的超滤膜对溪黄草茎、叶多糖进行分级与富集,得到分子量>10kDa的溪黄草茎、叶粗多糖。通过离子交换柱层析进一步分离纯化,分别得到1种中性多糖及2种酸性多糖。茎、叶中性多糖的平均分子量较大,分别为736kDa及766kDa:而茎、叶酸性多糖主要是以低分子量多糖为主。葡萄糖、半乳糖及阿拉伯糖构成了茎、叶中性多糖的骨架结构;而酸性多糖由阿拉伯糖及半乳糖构成骨架。茎、叶中性多糖中_6)-Glcp-(1→6)-Galp-(1→以及→5)-Araf-(1→残基含量最高。叶酸性多糖中Araf-(1→、→5)-Araf-(1→以及→6)-Galp-(1→残基含量较高;茎酸性多糖中Araf-(1→以及→2,3,6)-Galp-(1→残基含量最高。
     (6)研究了热水漂烫及蒸汽灭酶对溪黄草鲜叶中POD(过氧化氢酶)及PPO(多酚氧化酶)的灭活参数,灭活PPO所需要的活化能Ea为52.30kJ·mol-1,高于灭活POD所需要的活化能(20.15kJ·mol-1)。表明溪黄草鲜叶中PPO比POD具有更高的耐热性。选择热处理参数为:90℃热水漂烫90s,或100℃蒸汽处理90s,不仅能高效地灭活POD及PPO,还能在最大程度上保留溪黄草鲜叶中的多酚类化合物。冷冻干燥是最适合溪黄草鲜叶的干燥方式,而晒干与阴干会造成叶中多酚类化合物的损失。保持叶片的完整性,对于溪黄草叶中多酚类化合物的保留是十分关键的。
Rabdosia serra (Maxim.) Hara is a typical traditional Chinese medicine in South China,which possesses a variety of biological activities and is of great prospect for research anddevelopment. The acitive ingredients of R. serra are complex, which are not comprehensivelyinvestigated. The acitive ingredients of R. serra were purified and identified in terms ofmodern chromatographic and spectroscopic techniques, which illustrated the main activecomponents in R. serra including volatiles, polysaccharides and bioactive compounds. Therelationship between structure of diterpenoids and their antitumor activities were wellillustrated. And the underlying mechanisms of lasiodin-induced inhibitions of humannasopharyngeal carcinoma cells (NPC) proliferation were investigated. The adsorptionkinetics and thermodynamics of adsorption processes by macroporous resin for R. serraphenolics were also studied. The effects of processing methods of R. serra leaf includingblanching and drying on active compounds and their biological activities were illustrated. Thecomprehensive investigation of R. serra could clarify the active ingredients responsible forthe pharmaceutical activities of R. serra and provide theories and methods for thedevelopment of relative products.
     (1) HS-SPME (headspace solid-phase microextraction) method was optimized forextraction of volatiles of R. serra leaf. A total of56and48compounds including alcohols,aldehydes, hydrocarbons, ketones, carboxylic acid, ester, and aromatics were identified in leafand stem by optimized HS-SPME method (CAR/PDMS fibre; incubation time,10min;extraction temperature,50°C; extraction time,40min), which were seperated and identifiedby gas chromatography-mass spectrometry. The major volatile compounds of leaf were1-octen-3-ol,(2E)-hexenal, and (3E)-1,3-octadiene. The highest diversity of volatiles wasfound in air dried leaf. Furthermore, the volatile diversity of leaf and stem were different.Cluster analysis indicated that there were significant differences between HS-SPME and SDE(simultaneous-distillation extraction) methods. HS-SPME is a useful technique for theanalysis of readily volatile components for the characteristics of R. serra aroma.
     (2) Twenty compounds were purified from R. serra, which include four phenolicsconsisting of rosmarinic acid (the most abundant compound in R. serra), methyl rosmarinate,pedalitin and rutin; nine diterpenoids consisting of eight7,20-epoxy-ent-kauranes (includingsix known compounds: parvifolin G, lasiodin, effusanin E, rabdosichuanin D,lushanrubescensin F and parvifoliside; and two new compounds: effusanin F and effusanin G)and one6,7-seco-ent-kauranes namely nodosin; five triterpenoids consisting of β-sitosterol, stigmasterol, oleanolic acid, ursolic acid and β-daucosterol; two other compounds consistingof palmitic acid and sucrose. It was the first time that methyl rosmarinate, pedalitin, parvifolinG, effusanin E, rabdosichuanin D, lushanrubescensin F and parvifoliside were found in R.serra. Phenolics are responsible for the good antioxidant capacity of R. serra ethanol extract.Phenolics possessed excellent antioxidant activities, which also exhibited inhibitory effects onboth tyrosinase and α-glucosidase. Diterpenoids are responsible for the good antitumoractivity of R. serra ethanol extract. Effusanin E, lasiodin and effusanin F exhibited stronginhibition against Gram-positive bacteria. Effusanin G and lasiodin exhibited stronginhibitory effects on the HepG-2(human hepatocellular liver carcinoma cell line), MCF-7(human breast adenocarcinoma cell line) and HL-60(human promyelocytic leukemia cell line)cell, and their inhibitory effects were comparable to cisplatin with broad clinical use.
     (3) The adsorption kinetics and thermodynamics of adsorption processes by HP-20andXAD-7HP resins for R. serra phenolics were studied. The pseudo-second-order kineticsmodel was the most favorable for illustrating the whole exothermic adsorption processes,which were affected by the mutual effects of boundary layer diffusion and intraparticlediffusion kinetics. The adsorption behaviors were of monomolecule layer adsorption. Thenegative enthalpy changes indicated that the adsorption processes were exothermic. From thedynamic adsorption/desorption experiments through column packed with HP-20orXAD-7HP resins, phenolics, antioxidants and rosmarinic acid were enriched in30%ethanolfractions. Total phenolics took up over63%in30%ethanol fractions. And rosmarinic acidaccounted for over93%of total phenolics in30%ethanol fractions.
     (4) It is the first time that in vitro and in vivo antitumor activity of lasiodin wasinvestigated. Our results provide new insights into the molecular mechanisms oflasiodin-mediated NPC cell suppression. Treatment with lasiodin inhibited cell viability andmigration, mediated cell morphology change, and induced apoptosis in NPC cells. Lasiodinalso significantly suppressed tumor growth with a low toxicity in human NPC tumor-bearingmice. It is the first time that molecular mechanisms of lasiodin-mediated NPC cellsuppression were studied. Lasoidin inhibits NPC tumor growth by simultaneously activatingthe Apaf-1/caspase-dependent apoptotic pathway and suppressing the PI3K/AKT, MAPKsand COX-2/NF-κB signaling.
     (5) Water-soluble polysaccharides of Rabdosia serra leaf and stem were fractionated byultrafiltration and DEAE-Sepharose fast flow chromatogram to obtain one neutralpolysaccharides and two acidic polysaccharides. The average molecular weights of the neutralpolysaccharides of leaf and stem were estimated to be766and736kDa, respectively. However, acidic polysaccharides possessed lower molecular weights. Glucose, galactose andarabinose constructed the backbone for neutral polysaccharides. Arabinose and galactose werethe major monosaccharides in acidic polysaccharides. The branched neutral polysaccharideswere composed mainly of→6)-Glcp-(1→,→6)-Galp-(1→, and→5)-Araf-(1→residues.Acidic polysaccharides of leaf were composed mainly of Araf-(1→→5)-Araf-(1→and→6)-Galp-(1→residues. Araf-(1→and→2,3,6)-Galp-(1→residues distributed widely inacidic polysaccharides of stem.
     (6) Inactivation kinetics of peroxidase and polyphenol oxidase in fresh Rabdosia serraleaf were determined by hot water and steam blanching. Activation energy (52.30kJ·mol-1) ofpolyphenol oxidase inactivation was higher than that (20.15kJ·mol-1) of peroxidaseinactivation. Water blanching at90°C or steam blanching at100°C for90s wasrecommended as the preliminary processing for retention of phenolics. The intact fresh leafafter freeze drying retained the initial quality only. Significant losses of phenolics in Rabdosiaserra leaf after sun-, air-drying were observed. The retention of integrity of fresh leaf wasessential to keep the original quality.
引文
[1] Zhou L.G., Wu J.Y. Development and application of medicinal plant tissue cultures forproduction of drugs and herbal medicinals in China [J]. Natural Product Reports,2006,23(5):789-810.
    [2] Gomez-galera S., Pelacho A.M., Gene A., et al. The genetic manipulation of medicinaland aromatic plants [J]. Plant Cell Reports,2007,26(10):1689-715.
    [3]孙科,杨培,闫微.药用植物在生物技术领域中的研究及应用[J].现代农业科技,2007,19):115-7+9.
    [4]Jiang Y, David B., Tu P., et al. Recent analytical approaches in quality control of traditional Chinese medicines-A review [J]. Analytica Chimica Acta,2010,657(1):9-18.
    [5]中国科学院中国植物志编辑委员会.中国植物志[J].北京:科学出版社,1977,433-4.
    [6]陈建南,蒋东旭,赵爱国,等.溪黄草药材的显微鉴别研究[J].广州中医药大学学报,2006,01):52-5.
    [7]邓乔华.溪黄草资源分布与开发利用的研究[J].今日药学,2009,09):21-5+8.
    [8]Cai Y.Z., Luo Q., Sun M., et al. Antioxidant activity and phenolic compounds of112traditional Chinese medicinal plants associated with anticancer [J]. Life Sciences,2004,74(17):2157-84.
    [9]张龙,周光雄,李茜,等.狭基线纹香茶菜的化学成分[J].沈阳药科大学学报,2006,12):768-70+87.
    [10]赵洁.溪黄草黄酮类成分的HPLC-MS-MS分析[J].中药材,2009,01):70-2.
    [11]Feng W.S., Zang X.Y., Zheng X.K., et al. A new phenylethanoid glycoside from Rabdosia lophanthoides (Buch.-Ham.ex D.Don) Hara [J]. Chinese Chemical Letters,2009,20(4):453-5.
    [12]Feng W.S., Zang X.Y., Zheng X.K., et al. Two new dihydrobenzofuran lignans from Rabdosia lophanthoides (Buch.-Ham.ex D.Don) Hara [J]. Journal of Asian Natural Products Research,2010,12(7):557-61.
    [13]邓洁薇,张翠仙,林朝展,等.狭基线纹香茶菜的化学成分研究Ⅰ[J].中药新药与临床药理,2009,06):551-3.
    [14]胡英杰,赖小平,刘中秋,等.狭基线纹香茶菜(溪黄草)的化学成分与抗乙肝病毒作用研究[J].中草药,2005,11):1612-5.
    [15]姜北,陈兴荣,卢泽勤,等.狭基线纹香茶菜中一个新的木脂素类化合物[J].植物学报,2000,42(1):1.
    [16]赵清治,张雁冰,薛华珍,等.溪黄草化学成分研究[J].河南医科大学学报,1997,04):80.
    [17]Liu P., Du Y, Zhang X., et al. Rapid Analysis of27Components of Isodon serra by LC-ESI-MS-MS [J]. Chromatographia,2010,72(3-4):265-73.
    [18]Pietta P.G. Flavonoids as antioxidants [J]. Journal of Natural Products,2000,63(7):1035-42.
    [19]Chen J.H., Ho C.T. Antioxidant activities of caffeic acid and its related hydroxycinnamicacid compounds [J]. Journal of Agricultural and Food Chemistry,1997,45(7):2374-8.
    [20]Lu Y.R., Foo L.Y. Antioxidant activities of polyphenols from sage (Salvia officinalis)[J].Food Chemistry,2001,75(2):197-202.
    [21]Iacopini P., Baldi M., Storchi P., et al. Catechin, epicatechin, quercetin, rutin andresveratrol in red grape: Content, in vitro antioxidant activity and interactions [J]. Journal ofFood Composition and Analysis,2008,21(8):589-98.
    [22]Ho C.H., Noryati I., Sulaiman S.F., et al. In vitro antibacterial and antioxidant activitiesof Orthosiphon stamineus Benth. extracts against food-borne bacteria [J]. Food Chemistry,2010,122(4):1168-72.
    [23]Ani V., Varadaraj M.C., Naidu K.A. Antioxidant and antibacterial activities ofpolyphenolic compounds from bitter cumin (Cuminum nigrum L.)[J]. European FoodResearch and Technology,2006,224(1):109-15.
    [24]Dogasaki C., Shindo T., Furuhata K., et al. Identification of chemical structure ofantibacterial components against Legionella pneumophila in a coffee beverage [J]. YakugakuZasshi-Journal of the Pharmaceutical Society of Japan,2002,122(7):487-94.
    [25]Plaper A., Golob M., Hafner I., et al. Characterization of quercetin binding site on DNAgyrase [J]. Biochemical and Biophysical Research Communications,2003,306(2):530-6.
    [26]Mirzoeva O.K., Grishanin R.N., Calder P.C. Antimicrobial action of propolis and some ofits components: the effects on growth, membrane potential and motility of bacteria [J].Microbiological Research,1997,152(3):239-46.
    [27]Bernard F.X., Sable S., Cameron B., et al. Glycosylated flavones as selective inhibitors oftopoisomerase IV [J]. Antimicrobial Agents and Chemotherapy,1997,41(5):992-8.
    [28]Geronikaki A.A., Gavalas A.M. Antioxidants and inflammatory disease: Synthetic andnatural antioxidants with anti-inflammatory activity [J]. Combinatorial Chemistry&HighThroughput Screening,2006,9(6):425-42.
    [29]Swarup V., Ghosh J., Ghosh S., et al. Antiviral and anti-inflammatory effects ofrosmarinic acid in an experimental murine model of Japanese encephalitis [J]. AntimicrobialAgents and Chemotherapy,2007,51(9):3367-70.
    [30]Valerio D.A., Georgetti S.R., Magro D.A., et al. Quercetin Reduces Inflammatory Pain:Inhibition of Oxidative Stress and Cytokine Production [J]. Journal of Natural Products,2009,72(11):1975-9.
    [31]Surh Y.J., Chun K.S., Cha H.H., et al. Molecular mechanisms underlying chemopreventive activities of anti-inflammatory phytochemicals:down-regulation of COX-2and iNOS through suppression of NF-kappa B activation [J]. Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis,2001,480(243-68.
    [32]Mahmoud N.N., Carothers A.M., Grunberger D, et al. Plant phenolics decrease intestinal tumors in an animal model of familial adenomatous polyposis [J]. Carcinogenesis,2000,21(5):921-7.
    [33]Moon D.O., Kim M.O., Lee J.D., et al. Rosmarinic acid sensitizes cell death through suppression of TNF-alpha-induced NF-kappa B activation and ROS generation in human leukemia U937cells [J]. Cancer Letters,2010,288(2):183-91.
    [34]Folkman J. Angiogenesis in cancer, vascular, rheumatoid and other disease [J]. Nature Medicine,1995,1(1):27-30.
    [35]Huang S.S., Zheng R.L. Rosmarinic acid inhibits angiogenesis and its mechanism of action in vitro [J]. Cancer Letters,2006,239(2):271-80.
    [36]Chen Q.X., Kubo I. Kinetics of mushroom tyrosinase inhibition by quercetin [J]. Journal of Agricultural and Food Chemistry,2002,50(14):4108-12.
    [37]Sun H.D., Huang S.X., Han Q.B. Diterpenoids from Isodon species and their biological activities [J]. Natural Product Reports,2006,23(5):673-98.
    [38]Yunlong X., Dan W., Xiaojie L., et al. Abietane quinones from rabdosia lophanthoides [J]. Phytochemistry,1989,28(1):189-91.
    [39]Xu Y, Ma Y, Zhou L., et al. Abietane quinones from Rabdosia lophanthoides [J]. Phytochemistry,1988,27(11):3681-2.
    [40]陈兴良,杨秀萍,侯爱君,等.贵州产线纹香茶菜的化学成分[J].云南植物研究,1998,02):116-8.
    [41]Shi H.(1S*,2S*,5R*,8S*, HS*,14R*,17S*,20R*)-14-Methyl-6-methylene-10,16,18-trioxahexacyclo12.5.1.1(5,8).0(1,11).0(2,8).0(17,20)-henicosane-7,9-dione:natural diterpenoid macrocalyxoformin B [J]. Acta Crystallographica Section E-Structure Reports Online,2008,64(079-U3224.
    [42]Shi H. Guidongnin A, a natural diterpenoid [J]. Acta Crystallographica Section E-Structure Reports Online,2007,63(O4890-U6775.
    [43]Shi H., Pan Y.J., Zhang X.Q., et al. Octahydro-7a,8'-dimethyl spiro isobenzofuran-4(1H),4'(3'H)-1H-7,9a methanocyclohepta c pyran1',3,9'(3aH,4aH)-trione [J]. Acta Crystallographica Section E-Structure Reports Online,2001,57(01007-09.
    [44]Shi H., Pan Y.J., Jin Z.M. Natural diterpenoid ludongnin, octahydro-5'-hydroxy-7a-methyl-8'-methylenespiro isobenzofuran-4(1H),4'(3'H)-1H-7,9a methanocyclohepta c pyran1',3,9'(3aH,4'aH)-trione [J]. Acta Crystallographica Section E-Structure Reports Online,2001,57(0685-07.
    [45]Jiang B., Lu Z.Q., Zhang H.J., et al. Diterpenoids from Isodon lophanthoides [J]. Fitoterapia,2000,71(4):360-4.
    [46]Liu Y.H., Huang S.X., Zhao Q.S., et al. A new ent-kauranoid from Isodon lophanthoides var. geradianus [J]. Natural Product Research,2008,22(10):860-4.
    [47]Lin C.Z., Zhang C.X., Xiong T.Q., et al. Gerardianin A, a new abietane diterpenoid from Isodon lophanthoides var. gerardianus [J]. Journal of Asian Natural Products Research,2008,10(9):841-4.
    [48]Li C.Y., Gao H., Jiao W.H., et al. Three New Diterpenoids from Rabdosia lophanthoides var. gerardiana [J]. Helvetica Chimica Acta,2010,93(3):450-6.
    [49]Zhao A.H., Li S.H., Li Y.W., et al. Two new abietane quinones from Isodon lophanthoides var. micranthus [J]. Chinese Chemical Letters,2003,14(6):591-3.
    [50]Zhao A.H., Li S.H, Zhao Q.S., et al. Micranthin C, a novel13(12->11)abeo-abietanoid from Isodon lophanthoids var. micranthus [J]. Helvetica Chimica Acta,2003,86(10):3470-5.
    [51]金人玲,程培元,徐光漪.溪黄草乙素的结构研究[J].中国药科大学学报,1987,03):172-4.
    [52]金人玲,程培元,徐光漪.溪黄草甲素的结构研究[J].药学学报,1985,05):366-71.
    [53]刘斤秀,高慧敏,王智民,等.溪黄草化学成分研究[J].中国现代中药,2007,08):10-1.
    [54]Fujita E., Taoka M. Terpenoids. XX. Structure and absolute configuration of lasiokaurin and lasiodonin, new diterpenoids from Isodon lasiocarpus [J]. Chemical&Pharmaceutical Bulletin,1972,20:1752-4.
    [55]Zhao A.H., Zhang Y, Xu Z.H., et al. Immunosuppressive ent-kaurene diterpenoids from Isodon serra [J]. Helvetica Chimica Acta,2004,87:3160-6.
    [56]李广义,宋万志,季庆义,等.溪黄草二萜成分的研究[J].中药通报,1984,05):29-30.
    [57]Takeda Y, Fujita T., Chen C.C. Structures of lasiocarpanin, rabdolasional, and carpalasionin:new diterpenoids from Rabdosia lasiocarpa [J]. Chemistry Letters,1982:833-6.
    [58]Fujita E., Taoka M., Fujita T. Terpenoids. XXVI. Structures of lasiokaurinol and lasiokaurinin, two novel diterpenoids of Isodon lasiocarpus [J]. Chemical Pharmaceutical Bulletin,1974,22:280-5.
    [59]Xiao C., Renan L., Qinglan X. Abietane diterpenes from Rabdosia serra (maxim) hara [J]. Journal of Chemical Research-S,2001,4):148-9.
    [60]Chen X.A., Deng F.J., Liao R.A., et al. Abietane quinones from Rabdosia serra [J]. Chinese Chemical Letters,2000,11(3):229-30.
    [61]陈晓,廖仁安,谢庆兰,等.溪黄草化学成分的研究[J].中草药,2000,03):13-4.
    [62]Yan F., Zhang L., Zhang J., et al. Two new diterpenoids and other constituents from Isodon serra [J]. Journal of Chemical Research-S,2007,6):362-4.
    [63]Yan F.L., Bin Zhang L., Zhang J.X., et al. Two new diterpenoids from Isodon serra [J]. Chinese Chemical Letters,2007,18(11):1383-5.
    [64]Kabouche A., Kabouche Z., Ozturk M., et al. Antioxidant abietane diterpenoids from Salvia barrelieri [J]. Food Chemistry,2007,102(4):1281-7.
    [65]Gaspar-Marques C., Rijo P., Simoes M.F., et al. Abietanes from Plectranthus grandidentatus and P. hereroensis against methicillin-and vancomycin-resistant bacteria [J]. Phytomedicine,2006,13:267-71.
    [66]Evans G.B., Furneaux R.H., Gravestock M.B., et al. The synthesis and antibacterial activity of totarol derivatives. Part1:modifications of ring-C and pro-drugs [J]. Bioorganic&Medicinal Chemistry,1999,7:1953-64.
    [67]Urzua A., Rezende M.C., Mascayano C., et al. A structure-activity study of antibacterial diterpenoids [J]. Molecules,2008,13:882-91.
    [68]Areche C., Schmeda-Hirschmann G, Theoduloz C., et al. Gastroprotective effect and cytotoxicity of abietane diterpenes from the Chilean Lamiaceae Sphacele chamaedryoides (Balbis) Briq [J]. Journal Pharmacy and Pharmacology,2009,61:1689-97.
    [69]Koch A., Orjala J., Mutiso PC., et al. An antimalarial abietane diterpene from Fuerstia africana T.C.E. Fries [J]. Biochemical Systematics Ecology,2006,34:270-2.
    [70]Topcu G, Turkmen Z., Schilling J.K., et al. Cytotoxic Activity of Some Anatolian Salvia Extracts and Isolated Abietane Diterpenoids [J]. Pharmaceutical Biology,2008,46:180-4.
    [71]Kubo I., Taniguchi M., Satomura Y, et al. Antibacterial activity and chemical structure of diterpenoids [J]. Agricultural and Biological Chemistry,1974,38:1261-2.
    [72]海广范,闫琰,刘巨源,等enmein、serrin B、nodosin和lasiodonin对HL60细胞株和LOVO细胞株的增殖抑制作用[J].新乡医学院学报,2008,06):564-6.
    [73]Xiang W., Li R.T., Wang Z.Y, et al. ent-Kaurene diterpenoids from Isodon oresbius [J]. Phytochemistry,2004,65:1173-7.
    [74]He F., Xiao W.L., Pu J.X., et al. Cytotoxic ent-kaurane diterpenoids from Isodon sinuolata [J]. Phytochemistry,2009,70:1462-6.
    [75]Fujita E., Nagao Y, Node M., et al. Antitumor activity of the isodon diterpenoids: structural requirements for the activity [J]. Experientia,1976,32:203-6.
    [76]Liu J., Yang F., Zhang Y, et al. Studies on the cell-immunosuppressive mechanism of Oridonin from Isodon serra [J]. International Immunopharmacology,2007,7:945-54.
    [77]Zhang Y, Liu J., Jia W., et al. Distinct immunosuppressive effect by Isodon serra extracts [J]. International Immunopharmacology,2005,5:1957-65.
    [78]Ling W.H., Jones P.J.H. Dietary phytosterols:a review of metabolism, benefits and side effects [J]. Life Sciences,1995,57:195-206.
    [79]Liu J. Pharmacology of oleanolic acid and ursolic acid [J]. Journal of Ethnopharmacology,1995,49:57-68.
    [80]Ikeda Y, Murakami A., Ohigashi H. Ursolic acid:an anti-and pro-inflammatory triterpenoid [J]. Molecular Nutrition&Food Research,2008,52:26-42.
    [81]Park J.H., Yoon S.H. Ceramide, a crucial functional lipid, and its metabolic regulation by acid ceramidase [J]. Food Science and Biotechnology,2010,19:859-64.
    [82]梁均方.线纹香茶菜化学成分的研究[J].嘉应大学学报(自然科学),1996,01):59-62.
    [83]孟艳辉,邓芹英,许国.溪黄草的化学成分研究(Ⅱ)[J].天然产物研究与开发,2000,03):27-9.
    [84]陈晓,廖仁安,谢庆兰.溪黄草化学成分的研究(Ⅱ)[J].中草药,2001,07):18-9.
    [85]Yang B., Jiang Y, Zhao M., et al. Structural characterisation of polysaccharides purified from longan (Dimocarpus longan Lour.) fruit pericarp [J]. Food Chemistry,2009,115(2):609-14.
    [86]段志芳.溪黄草多糖含量测定与活性研究[J].时珍国医国药,2007,04):802-3.
    [87]Wen L., Lin L., You L., et al. Ultrasound-assited extraction and structural identification of polysaccharides from Isodon lophanthoides var. gerardianus (Bentham) H. Hara [J]. Carbohydrate Polymers,2011,85(3):541-7.
    [88]谢华娣,陈鸿珊.十味溪黄草颗粒对乙型肝炎病毒的体外抑制作用[J].广东药学,2004,06):60-3.
    [89]韩坚,钟志勇,林煌权,等.溪黄草茶浸膏对化学性肝损伤的保护作用[J].中药新药与临床药理,2005,06):414-7.
    [90]罗斌,刘元,姚树汉,等.桑椹溪黄草冲剂保肝实验研究[J].广西中医药,2000,03):53-5.
    [91]廖雪珍,廖惠芳,叶木荣,等.线纹香茶菜、狭基线纹香茶菜、溪黄草水提物抗炎、保肝作用初步研究[J].中药材,1996,07):363-5.
    [92]刘银花,梁利球,沈婕,等.溪黄草、虎杖煎剂对家兔胆囊运动及胆道括约肌紧张性的影响[J].安徽农业科学,2010,15):7845-6+79.
    [93]谢春英.溪黄草提取物对小鼠免疫功能的影响[J].中药材,2008,01):116-7.
    [94]何春兰,林红英,张继东.溪黄草类植物提取物对鸡常见致病菌的抑菌效果[J].养禽与禽病防治,2008,07):4-7.
    [95]郑秋桦.粤北山区溪黄草体外抗菌实验研究[J].韶关学院学报,2009,06):85-7+95.
    [96]段志芳,黄晓伟.溪黄草提取物抗脂质过氧化作用研究[J].西北药学杂志,2008,02):93-4.
    [97]何颖,李辉莹,康丽群,等.溪黄草抗乙肝及抗肿瘤活性成分的体外筛选(英文)[J].中国现代医学杂志,2011,12):1449-56+75.
    [98]孙朋Ad-OSM对鼻咽癌抑癌效应的实验研究[D]:苏州大学,2012.
    [99]姜汉国PI3K/AKT信号传导通路与鼻咽癌侵袭转移关系的研究[D]:山东大学,2010.
    [100]李明耀.鼻咽癌辐射抗拒细胞株CNE-2R模型的构建及其化疗药物敏感性初步研究[D]:广西医科大学,2011.
    [101]段文君.天然药物水飞蓟宾和吴茱萸碱诱导人纤维肉瘤HT1080细胞死亡的机制研究[D]:沈阳药科大学,2010.
    [102]乔爱敏EMD-621和N-去甲基克拉霉素诱导肿瘤细胞凋亡机制研究[D]:沈阳药科大学,2006.
    [103]殷世亮.高三尖杉酯碱对白血病细胞的凋亡诱导作用及机制研究[D]:沈阳药科大学,2011.
    [1] Ozek G., Demirci F., Ozek T., et al. Gas chromatographic-mass spectrometric analysis ofvolatiles obtained by four different techniques from Salvia rosifolia Sm., and evaluation forbiological activity [J]. Journal of Chromatography A,2010,1217(5):741-8.
    [2] Yu J.Q., Lei J.C., Zhang X.Q., et al. Anticancer, antioxidant and antimicrobial activitiesof the essential oil of Lycopus lucidus Turcz. var. hirtus Regel [J]. Food Chemistry,2011,126(4):1593-8.
    [3] Riu-Aumatell M., Vargas L., Vichi S., et al. Characterisation of volatile composition ofwhite salsify (Tragopogon porrifolius L.) by headspace solid-phase microextraction(HS-SPME) and simultaneous distillation-extraction (SDE) coupled to GC-MS [J]. FoodChemistry,2011,129(2):557-64.
    [4] Lu Z.M., Tao W.Y., Xu H.Y., et al. Analysis of volatile compounds of Antrodiacamphorata in submerged culture using headspace solid-phase microextraction [J]. FoodChemistry,2011,127(2):662-8.
    [5] Kataoka H., Lord H.L., Pawliszyn J. Applications of solid-phase microextraction in foodanalysis [J]. Journal of Chromatography A,2000,880(1-2):35-62.
    [6] Maggi F., Papa F., Cristalli G., et al. Characterisation of the mushroom-like flavour ofMelittis melissophyllum L. subsp melissophyllum by headspace solid-phase microextraction(HS-SPME) coupled with gas chromatography (GC-FID) and gas chromatography-massspectrometry (GC-MS)[J]. Food Chemistry,2010,123(4):983-92.
    [7] Bicchi C., Drigo S., Rubiolo P. Influence of fibre coating in headspace solid-phasemicroextraction-gas chromatographic analysis of aromatic and medicinal plants [J]. Journal ofChromatography A,2000,892(1-2):469-85.
    [8] Augusto F., Valente A.L.P., Tada E.D., et al. Screening of Brazilian fruit aromas usingsolid-phase microextraction-gas chromatography-mass spectrometry [J]. Journal ofChromatography A,2000,873(1):117-27.
    [9] Carasek E., Pawliszyn J. Screening of tropical fruit volatile compounds using solid-phasemicroextraction (SPME) fibers and internally cooled SPME fiber [J]. Journal of Agriculturaland Food Chemistry,2006,54(23):8688-96.
    [10]Ezquerro O., Pons B., Tena M.T. Development of a headspace solid-phasemicroextraction-gas chromatography-mass spectrometry method for the identification ofodour-causing volatile compounds in packaging materials [J]. Journal of Chromatography A,2002,963(1-2):381-92.
    [11]Asekun O.T., Grierson D.S., Afolayan A.J. Effects of drying methods on the quality andquantity of the essential oil of Mentha longifolia L. subsp Capensis [J]. Food Chemistry,2007,101(3):995-8.
    [12]Sellami I.H., Wannes W.A., Bettaieb I., et al. Qualitative and quantitative changes in theessential oil of Laurus nobilis L. leaves as affected by different drying methods [J]. FoodChemistry,2011,126(2):691-7.
    [13]Diaz-Maroto M.C., Perez-Coello M.S., Cabezudo M.D. Effect of drying method on thevolatiles in bay leaf (Laurus nobilis L.)[J]. Journal of Agricultural and Food Chemistry,2002,50(16):4520-4.
    [14]Wurzenberger M., Grosch W. Enzymic oxidation of linolenic acid to1,Z-5-octadien-3-ol,Z-2,Z-5-octadien-1-ol and10-oxo-E-8-decenoic acid by a protein fraction from mushrooms(Psalliota bispora)[J]. Lipids,1986,21:261-6.
    [15]Li N., Zheng F.P., Chen H.T., et al. Identification of volatile components in ChineseSinkiang fermented camel milk using SAFE, SDE, and HS-SPME-GC/MS [J]. FoodChemistry,2011,129(3):1242-52.
    [16]Combet E., Henderson J., Eastwood D.C., et al. Eight-carbon volatiles in mushrooms andfungi: properties, analysis, and biosynthesis [J]. Mycoscience,2006,47:317-26.
    [17]Chai Q., Wu B., Liu W., et al. Volatiles of plums evaluated by HS-SPME with GC-MS atthe germplasm level [J]. Food Chemistry,2012,130(2):432-40.
    [18]Wang Y., Yang C., Li S., et al. Volatile characteristics of50peaches and nectarinesevaluated by HP-SPME with GC-MS [J]. Food Chemistry,2009,116(1):356-64.
    [19]Selli S., Cayhan G.G. Analysis of volatile compounds of wild gilthead sea bream (Sparusaurata) by simultaneous distillation-extraction (SDE) and GC-MS [J]. Microchemical Journal,2009,93(2):232-5.
    [20]Kishimoto K., Matsui K., Ozawa R., et al. Volatile C6-aldehydes and allo-ocimeneactivate defense genes and induce resistance against Botrytis cinerea in Arabidopsis thaliana[J]. Plant Cell Physiol,2005,46:1093-102.
    [21]Oliveira A.P., Silva L.R., De Pinho P.G., et al. Volatile profiling of Ficus carica varietiesby HS-SPME and GC-IT-MS [J]. Food Chemistry,2010,123(2):548-57.
    [22]Shah J. Plants under attack: systemic signals in defence [J]. Current Opinion in PlantBiology,2009,12(4):459-64.
    [1] Huang D.J., Ou B.X., Hampsch-Woodill M, et al. High-throughput assay of oxygenradical absorbance capacity (ORAC) using a multichannel liquid handling system coupledwith a microplate flourescence reader in96-well format [J]. Journal of Agricultural and FoodChemistry,2002,50(16):4437-44.
    [2] Huang Q.S., Zhu Y.J., Li H.L., et al. Inhibitory Effects of Methyl trans-Cinnamate onMushroom Tyrosinase and Its Antimicrobial Activities [J]. Journal of Agricultural and FoodChemistry,2009,57(6):2565-9.
    [3] Kerem Z., Bilkis I., Flaishman M.A., et al. Antioxidant activity and inhibition ofalpha-glucosidase by trans-resveratrol, piceid, and a novel trans-stilbene from the roots ofIsraeli Rumex bucephalophorus L [J]. Journal of Agricultural and Food Chemistry,2006,54(4):1243-7.
    [4] Lin L., Dong Y., Yang B., et al. Chemical Constituents and Biological Activity of ChineseMedicinal Herb 'Xihuangcao'[J]. Combinatorial Chemistry&High Throughput Screening, 2011,14(8):720-9.
    [5]Huang D.J., Ou B.X., Prior R.L. The chemistry behind antioxidant capacity assays [J]. Journal of Agricultural and Food Chemistry,2005,53(6):1841-56.
    [6]Sun H.D., Huang S.X., Han Q.B. Diterpenoids from Isodon species and their biological activities [J]. Natural Product Reports,2006,23(5):673-98.
    [7]Liu H.M., Yan X.B., Kiuchi F., et al. A new diterpene glycoside from Rabdosia rubescens [J]. Chemical&Pharmaceutical Bulletin,2000,48(1):148-9.
    [8]Ticli F.K., Hage L.I.S., Cambraia R.S., et al. Rosmarinic acid, a new snake venom phospholipase A(2) inhibitor from Cordia verbenacea (Boraginaceae):antiserum action potentiation and molecular interaction [J]. Toxicon,2005,46(3):318-27.
    [9]梁成钦,龚受基,周先丽,等.红海榄化学成分[J].中国实验方剂学杂志,2011,17(02):76-9.
    [10]Li L.M., Li G.Y., Huang S.X., et al.7alpha,20-epoxy-ent-kauranoids from Isodon parvifolius [J]. Journal of Natural Products,2006,69(4):645-9.
    [11]Wang S.M., Zhang Y.B., Liu H.M., et al. Mild and selective deprotection method of acetylated steroids and diterpenes by dibutyltin oxide [J]. Steroids,2007,72(1):26-30.
    [12]Yan F.L., Guo L.Q., Bai S.P, et al. Two new diterpenoids and other constituents from Isodon nervosus [J]. Journal of the Chinese Chemical Society,2008,55(4):933-6.
    [13]Fujita T., Takeda Y, Shingu T., et al. Structures of effusanins, antibacterial diterpenoids from Rabdosia effusa [J]. Chemistry Letter,1980:1635-8.
    [14]Bai S.P., Wei Q.Y, Jin X.L., et al. Two novel ent-kauranoid diterpenoids from Isodon japonica leaves [J]. Planta Medica,2005,71(8):764-9.
    [15]Han Q.B., Li M.L., Li S.H., et al. Ent-kaurane diterpenoids from Isodon rubescens var. lushanensis [J]. Chemical&Pharmaceutical Bulletin,2003,51(7):790-3.
    [16]Li W.W., Li B.G., Chen YZ. Diterpenoids from Rabdosia lihsienensis [J]. Phytochemistry,1998,49(8):2433-5.
    [17]Paulo A., Jimeno M.L., Gomes E.T., et al. Steroidal alkaloids from Cryptolepis obtusa [J]. Phytochemistry,2000,53(3):417-22.
    [18]陈华国,李明,龚小见,等.金铁锁化学成分研究[J].中草药,2010,41(02):204-6.
    [19]张前军,杨小生,朱海燕,等.连钱草化学成分研究(英文)[J].天然产物研究与开发,2006,01):55-7.
    [20]沈晓丹,王冰,刘春宇,等.蓝萼香茶菜的化学成分研究(Ⅰ)[J].中草药,2009,40(12):1883-5.
    [21]段洁,李巍,胡旭佳,等.九子参化学成分研究[J].中草药,2009,40(04):528-30.
    [22]罗永明,刘爱华,余邦伟,等.中药草珊瑚的化学成分研究[J].中国药学杂志,2005,17):1296-8.
    [23]杨岚,赵玉英,屠呦呦.荚果蕨贯众化学成分的研究[J].中国中药杂志,2003,03):89-90.
    [24]Han Q.B., Zhao A.H., Zhang J.X., et al. Cytotoxic Constituents of Isodon rubescens var. lushiensis [J]. Journal Natural Products,2003,66:1391-4.
    [25]Jiang B., Hou A.J., Li M.L., et al. Cytotoxic ent-kaurane diterpenoids from Isodon sculponeata [J]. Planta Medica,2002,68:921-5.
    [26]Masuoka N., Isobe T., Kubo I. Antioxidants from Rabdosia japonica [J]. Phytotherapy Research,2006,20:206-13.
    [27]Zhang H.Y. Structure-Activity Relationships and Rational Design Strategies for Radical-Scavenging Antioxidants [J]. Current Computer-Aided Drug Design,2005,1(3):257-73.
    [28]Cheng Z.Y., Ren J., Li Y.Z., et al. Study on the multiple mechanisms underlying the reaction between hydroxyl radical and phenolic compounds by qualitative structure and activity relationship [J]. Bioorganic&Medicinal Chemistry,2002,10(12):4067-73.
    [29]Kondo K., Kurihara M., Miyata N., et al. Mechanistic studies of catechins as antioxidants against radical oxidation [J]. Archives of Biochemistry and Biophysics,1999,362(1):79-86.
    [30]George B., Pizzi A., Simon C., et al. Leather light stability/tannins antioxidant characteristics for leather made with vegetable tannins/MUF resins [J]. Journal of the American Leather Chemists Association,2004,99(1):1-11.
    [31]Rice-Evans C.A., Miller N.J., Paganga G. Structure-antioxidant activity relationships of flavonoids and phenolic acids [J]. Free radical biology&medicine,1996,20(7):933-56.
    [32]Fujita E., Nagao Y, Kaneko K., et al. The antitumor and antibacterial activity of the Isodon diterpenoids [J]. Chemical&Pharmaceutical Bulletin,1976,24:2118-27.
    [33]Urzua A., Rezende M.C., Mascayano C., et al. A structure-activity study of antibacterial diterpenoids [J]. Molecules,2008,13(4):882-91.
    [34]Fujita E., Nagao Y, Node M., et al. Antitumor activity of the isodon diterpenoids: structural requirements for the activity [J]. Experientia,1976,32:203-6.
    [35]Yong G, Leone C., Strothkamp K.G Agaricus bisporus metapotyrosinase:preparation, characterization, and conversion to mixed-metal derivatives of the binuclear site [J]. Biochemistry,1990,29(41):9684-90.
    [36]Kim Y.J., Uyama H. Tyrosinase inhibitors from natural and synthetic sources: structure,inhibition mechanism and perspective for the future [J]. Cellular and Molecular Life Sciences,2005,62(15):1707-23.
    [37]Nerya O., Vaya J., Musa R., et al. Glabrene and isoliquiritigenin as tyrosinase inhibitorsfrom licorice roots [J]. Journal of Agricultural and Food Chemistry,2003,51(5):1201-7.
    [38]Gong S.Z., Cheng J.A., Yang Z.R. Inhibitory effect of ferulic acid on oxidation ofL-DOPA catalyzed by mushroom tyrosinase [J]. Chinese Journal of Chemical Engineering,2005,13(6):771-5.
    [39]Iwai K., Kishimoto N., Kakino Y., et al. In vitro antioxidative effects and tyrosinaseinhibitory activities of seven hydroxycinnamoyl derivatives in green coffee beans [J]. Journalof Agricultural and Food Chemistry,2004,52(15):4893-8.
    [40]Kang H.S., Kim H.R., Byun D.S., et al. Rosmarinic acid as a tyrosinase inhibitors fromSalvia miltiorrhiza [J]. Natural Product Science,2004,10:80-4.
    [41]Ding H.Y., Chou T.H., Liang C.H. Antioxidant and antimelanogenic properties ofrosmarinic acid methyl ester from Origanum vulgare [J]. Food Chemistry,2010,123(2):254-62.
    [42]Xie L.P., Chen Q.Y., Huang H., et al. Inhibitory effects of some flavonoids on the activityof mushroom tyrosinase [J]. Biochemistry-Moscow,2003,68(4):487-91.
    [43]Heim K.E., Tagliaferro A.R., Bobilya D.J. Flavonoid antioxidants: chemistry, metabolismand structure-activity relationships [J]. Journal of Nutritional Biochemistry,2002,13(10):572-84.
    [44]Kim M.H., Jo S.H., Jang H.D., et al. Antioxidant Activity and alpha-GlucosidaseInhibitory Potential of Onion (Allium cepa L.) Extracts [J]. Food Science and Biotechnology,2010,19(1):159-64.
    [45]Brownlee M. The pathobiology of diabetic complications-A unifying mechanism [J].Diabetes,2005,54(6):1615-25.
    [46]Adisakwattana S., Chantarasinlapin P., Thammarat H., et al. A series of cinnamic acidderivatives and their inhibitory activity on intestinal alpha-glucosidase [J]. Journal of EnzymeInhibition and Medicinal Chemistry,2009,24(5):1194-200.
    [47]Wang H., Du Y.J., Song H.C. alpha-Glucosidase and alpha-amylase inhibitory activitiesof guava leaves [J]. Food Chemistry,2010,123(1):6-13.
    [48]Kwon Y.I.I., Vattem D.A., Shetty K. Evaluation of clonal herbs of Lamiaceae species formanagement of diabetes and hypertension [J]. Asia Pacific Journal of Clinical Nutrition,2006,15(1):107-18.
    [1] Abdel-Hameed E.S.S. Total phenolic contents and free radical scavenging activity ofcertain Egyptian Ficus species leaf samples [J]. Food Chemistry,2009,114(4):1271-7.
    [2] Nordberg J., Arner E.S.J. Reactive oxygen species, antioxidants, and the mammalianthioredoxin system [J]. Free Radical Biology and Medicine,2001,31(11):1287-312.
    [3] De Oliveira A.C., Valentim I.B., Silva C.A., et al. Total phenolic content and free radicalscavenging activities of methanolic extract powders of tropical fruit residues [J]. FoodChemistry,2009,115(2):469-75.
    [4] Amarowicz R., Pegg R.B., Rahimi-Moghaddam P., et al. Free-radical scavengingcapacity and antioxidant activity of selected plant species from the Canadian prairies [J]. FoodChemistry,2004,84(4):551-62.
    [5] Kolak U., Kabouche A., Ozturk M., et al. Antioxidant Diterpenoids from the Roots ofSalvia barrelieri [J]. Phytochemical Analysis,2009,20(4):320-7.
    [6] Dickson R.A., Houghton P.J., Hylands P.J. Antibacterial and antioxidant cassanediterpenoids from Caesalpinia benthamiana [J]. Phytochemistry,2007,68(10):1436-41.
    [7] Kabouche A., Kabouche Z., Ozturk M., et al. Antioxidant abietane diterpenoids fromSalvia barrelieri [J]. Food Chemistry,2007,102(4):1281-7.
    [8] Liu Y., Liu J., Chen X., et al. Preparative separation and purification of lycopene fromtomato skins extracts by macroporous adsorption resins [J]. Food Chemistry,2010,123(4):1027-34.
    [9] Jia G., Lu X. Enrichment and purification of madecassoside and asiaticoside fromCentella asiatica extracts with macroporous resins [J]. Journal of Chromatography A,2008,1193(1-2):136-41.
    [10]Liu W., Zhang S., Zu Y.G., et al. Preliminary enrichment and separation of genistein andapigenin from extracts of pigeon pea roots by macroporous resins [J]. Bioresource Technology,2010,101(12):4667-75.
    [11]Cho S.Y., Lee Y.N., Park H.J. Optimization of ethanol extraction and further purificationof isoflavones from soybean sprout cotyledon [J]. Food Chemistry,2009,117(2):312-7.
    [12]Matsumoto H., Hanamura S., Kawakami T., et al. Preparative-scale isolation of fouranthocyanin components of black currant (Ribes nigrum L.) fruits [J]. Journal of Agriculturaland Food Chemistry,2001,49(3):1541-5.
    [13]Dorman H.J.D., Peltoketo A., Hiltunen R., et al. Characterisation of the antioxidant properties of de-odourised aqueous extracts from selected Lamiaceae herbs [J]. Food Chemistry,2003,83(2):255-62.
    [14]Ho Y.S., Ng J.C.Y., Mckay G. Kinetics of pollutant sorption by biosorbents:Review [J]. Separation and Purification Methods,2000,29(2):189-232.
    [15]Lorenc-Grabowska E., Gryglewicz G. Adsorption of lignite-derived humic acids on coal-based mesoporous activated carbons [J]. Journal of Colloid and Interface Science,2005,284(2):416-23.
    [16]周扬,王津南,许丽,等.丙烯酸酯基吸附树脂对水体中单宁酸和没食子酸的吸附研究[J].离子交换与吸附,2010,26(03):202-9.
    [17]Gokmen V, Serpen A. Equilibrium and kinetic studies on the adsorption of dark colored compounds from apple juice using adsorbent resin [J]. Journal of Food Engineering,2002,53(3):221-7.
    [18]Liu P., Du Y, Zhang X., et al. Rapid Analysis of27Components of Isodon serra by LC-ESI-MS-MS [J]. Chromatographia,2010,72(3-4):265-73.
    [19]Chen J.H., Ho C.T. Antioxidant activities of caffeic acid and its related hydroxycinnamic acid compounds [J]. Journal of Agricultural and Food Chemistry,1997,45(7):2374-8.
    [20]Lu Y.R., Foo L.Y Antioxidant activities of polyphenols from sage (Salvia officinalis)[J]. Food Chemistry,2001,75(2):197-202.
    [21]Petersen M., Simmonds M.S.J. Molecules of interest-Rosmarinic acid [J]. Phytochemistry,2003,62(2):121-5.
    [1]Xiao W.W., Huang S.M., Han F., et al. Local Control, Survival, and Late Toxicities ofLocally Advanced Nasopharyngeal Carcinoma Treated by Simultaneous ModulatedAccelerated Radiotherapy Combined With Cisplatin Concurrent Chemotherapy Long-Term Results of a Phase2Study [J]. Cancer,2011,117(9):1874-83.
    [2]Shehzad A., Wahid F., Lee Y.S. Curcumin in Cancer Chemoprevention:Molecular Targets, Pharmacokinetics, Bioavailability, and Clinical Trials [J]. Archiv Der Pharmazie,2010,343(9):489-99.
    [3]Linden K.G., Carpenter P.M., Mclaren C.E., et al. Epigallocatechin gallate in the chemoprevention of non-melanoma skin cancer, with biomarker studies of actinic keratoses, sun-damaged, and non sun-damaged skin:Results of a clinical trial [J]. Cancer Epidemiology Biomarkers&Prevention,2003,12(11):1280S-S.
    [4]Kucuk O., Sarkar F., Adsay V, et al. Clinical trial of soy Isoflavones before breast cancer surgery [J]. Journal of Nutrition,2004,134(5):1262S-S.
    [5]刘利波,程青,唐忠志,等.塞来昔布抑制宫颈癌细胞株Hela体外迁移效应的研究[J].实用临床医药杂志,2011,15(19):114-6.
    [6]Pennati M., Folini M., Zaffaroni N. Targeting survivin in cancer therapy:fulfilled promises and open questions [J]. Carcinogenesis,2007,28(6):1133-9.
    [7]乔爱敏EMD-621和N-去甲基克拉霉素诱导肿瘤细胞凋亡机制研究[D]:沈阳药科大学,2006.
    [8]段文君.天然药物水飞蓟宾和吴茱萸碱诱导人纤维肉瘤HT1080细胞死亡的机制研究[D]:沈阳药科大学,2010.
    [9]Liu Y, Shi Q.F., Qi M., et al. Interruption of Hepatocyte Growth Factor Signaling Augmented Oridonin-Induced Death in Human Non-small Cell Lung Cancer A549Cells via c-Met-Nuclear Factor-kappa B-Cyclooxygenase-2and c-Met-Bcl-2-Caspase-3Pathways [J]. Biological&Pharmaceutical Bulletin,2012,35(7):1150-8.
    [10]Li C.Y., Wang E.Q., Cheng Y, et al. Oridonin:An active diterpenoid targeting cell cycle arrest, apoptotic and autophagic pathways for cancer therapeutics [J]. International Journal of Biochemistry&Cell Biology,2011,43(5):701-4.
    [11]Srinivasan S., Ranga R.S., Burikhanov R., et al. Par-4-dependent apoptosis by the dietary compound withaferin A in prostate cancer cells [J]. Cancer Research,2007,67(1):246-53.
    [12]Yang H.J., Chen D., Cui Q.Z.C., et al. Celastrol, a triterpene extracted from the Chinese "Thunder of God Vine," is a potent proteasome inhibitor and suppresses human prostate cancer growth in nude mice [J]. Cancer Research,2006,66(9):4758-65.
    [13]Decker P., Isenberg D., Muller S. Inhibition of caspase-3-mediated poly(ADP-ribose) polymerase (PARP) apoptotic cleavage by human PARP autoantibodies and effect on cells undergoing apoptosis [J]. Journal of Biological Chemistry,2000,275(12):9043-6.
    [14]Chen D.X., Stetler R.A., Cao GD., et al. Characterization of the rat DNA fragmentation factor35/inhibitor of caspase-activated DNase (short form)-The endogenous inhibitor of caspase-dependent DNA fragmentation in neuronal apoptosis [J]. Journal of Biological Chemistry,2000,275(49):38508-17.
    [15]Wang J., Xiao X., Zhang Y, et al. Simultaneous modulation of COX-2, p300, Akt, and Apaf-1signaling by melatonin to inhibit proliferation and induce apoptosis in breast cancer cells [J]. Journal of Pineal Research,2012,53(1):77-90.
    [16]姜汉国PI3K/AKT信号传导通路与鼻咽癌侵袭转移关系的研究[D]:山东大学,2010.
    [17]Sharma R.A., Gescher A., Plastaras J.P, et al. Cyclooxygenase-2, malondialdehyde and pyrimidopurinone adducts of deoxyguanosine in human colon cells [J]. Carcinogenesis,2001,22(9):1557-60.
    [18]Liou J.Y., Deng W.G, Gilroy D.W., et al. Colocalization and interaction of cyclooxygenase-2with caveolin-1in human fibroblasts [J]. Journal of Biological Chemistry,2001,276(37):34975-82.
    [19]Xiao X., Shi D., Liu L., et al. Quercetin Suppresses Cyclooxygenase-2Expression and Angiogenesis through Inactivation of P300Signaling [J]. Plos One,2011,6(8):
    [20]Blanco A.M., Valles S.L., Pascual M., et al. Ethanol-induced iNOS and COX-2expression in cultured astrocytes via NF-kappaB [J]. Alcoholism-Clinical and Experimental Research,2004,28(8):23A-A.
    [21]Kelly P.N., Strasser A. The role of Bcl-2and its pro-survival relatives in tumourigenesis and cancer therapy [J]. Cell Death and Differentiation,2011,18(9):1414-24.
    [22]Schmitz M.L., Baeuerle P.A. The p65subunit is responsible for the strong transcription activating potential of NF-kappa B [J]. The EMBO journal,1991,10(12):3805-17.
    [23]Ballard D.W., Dixon E.P., Peffer N.J., et al. The65-kDa subunit of human NF-kappa B functions as a potent transcriptional activator and a target for v-Rel-mediated repression [J]. Proceedings of the National Academy of Sciences of the United States of America,1992,89(5):1875-9.
    [24]Pikarsky E., Porat R.M., Stein I., et al. NF-kappa B functions as a tumour promoter in inflammation-associated cancer [J]. Nature,2004,431(7007):461-6.
    [25]Aggarwal B.B. Nuclear factor-kappa-B:The enemy within [J]. Cancer Cell,2004,6(3):203-8.
    [26]Jin H.R., Jin S.Z., Cai X.F., et al. Cryptopleurine Targets NF-kappa B Pathway, Leading to Inhibition of Gene Products Associated with Cell Survival, Proliferation, Invasion, andAngiogenesis [J]. Plos One,2012,7(6):
    [27]Leung C.H., Grill S.P., Lam W., et al. Novel mechanism of inhibition of nuclearfactor-kappa B DNA-binding activity by diterpenoids isolated from Isodon rubescens [J].Molecular Pharmacology,2005,68(2):286-97.
    [28]Karin M., Yamamoto Y., Wang Q.M. The IKKNF-kappa B system: A treasure trove fordrug development [J]. Nature Reviews Drug Discovery,2004,3(1):17-26.
    [29]Newman D.J., Cragg G.M. Natural products as sources of new drugs over the last25years [J]. Journal of Natural Products,2007,70(3):461-77.
    [1] Thetsrimuang C., Khammuang S., Chiablaem K., et al. Antioxidant properties andcytotoxicity of crude polysaccharides from Lentinus polychrous Lev [J]. Food Chemistry,2011,128(3):634-9.
    [2] Santos-Buelga C., Scalbert A. Proanthocyanidins and tannin-like compounds-nature,occurrence, dietary intake and effects on nutrition and health [J]. Journal of the Science ofFood and Agriculture,2000,80(7):1094-117.
    [3] Niu Y., Wang H., Xie Z., et al. Structural analysis and bioactivity of a polysaccharidefrom the roots of Astragalus membranaceus (Fisch) Bge. var. mongolicus (Bge.) Hsiao [J].Food Chemistry,2011,128(3):620-6.
    [4] Kozarski M., Klaus A., Niksic M., et al. Antioxidative and immunomodulating activitiesof polysaccharide extracts of the medicinal mushrooms Agaricus bisporus, Agaricusbrasiliensis, Ganoderma lucidum and Phellinus linteus [J]. Food Chemistry,2011,129(4):1667-75.
    [5] Dubois M., Gilles K., Hamilton J.K., et al. A colorimetric method for the determination ofsugars [J]. Nature,1951,168(4265):167.
    [6] Parikh A., Madamwar D. Partial characterization of extracellular polysaccharides fromcyanobacteria [J]. Bioresource Technology,2006,97(15):1822-7.
    [7] Yan J.K., Li L., Wang Z.M., et al. Structural elucidation of an exopolysaccharide frommycelial fermentation of a Tolypocladium sp fungus isolated from wild Cordyceps sinensis [J].Carbohydrate Polymers,2010,79(1):125-30.
    [8] Needs P.W., Selvendran R.R. Avoiding oxidative-degradation during sodium-hydroxidemethyl iodide-mediated carbohydrate methylation in dimethyl-sulfoxide [J]. CarbohydrateResearch,1993,245(1):1-10.
    [9] Lin L., Cui C., Wen L., et al. Assessment of in vitro antioxidant capacity of stem and leafextracts of Rabdosia serra (MAXIM.) HARA and identification of the major compound [J].Food Chemistry,2011,126(1):54-9.
    [10]Sheng J., Yu F., Xin Z., et al. Preparation, identification and their antitumor activities invitro of polysaccharides from Chlorella pyrenoidosa [J]. Food Chemistry,2007,105(2):533-9.
    [11]You L., Zhao M., Regenstein J.M., et al. Purification and identification of antioxidativepeptides from loach (Misgurnus anguillicaudatus) protein hydrolysate by consecutivechromatography and electrospray ionization-mass spectrometry [J]. Food ResearchInternational,2010,43(4):1167-73.
    [12]Awika J.M., Rooney L.W., Wu X.L., et al. Screening methods to measure antioxidantactivity of sorghum (Sorghum bicolor) and sorghum products [J]. Journal of Agricultural andFood Chemistry,2003,51(23):6657-62.
    [13]Prior R.L., Wu X.L., Schaich K. Standardized methods for the determination ofantioxidant capacity and phenolics in foods and dietary supplements [J]. Journal ofAgricultural and Food Chemistry,2005,53(10):4290-302.
    [14]Manrique G.D., Lajolo F.M. FT-IR spectroscopy as a tool for measuring degree of methylesterification in pectins isolated from ripening papaya fruit [J]. Postharvest Biology andTechnology,2002,25(1):99-107.
    [15]Cui F.J., Tao W.Y., Xu Z.H., et al. Structural analysis of anti-tumor heteropolysaccharideGFPS1b from the cultured mycelia of Grifola frondosa GF9801[J]. Bioresource Technology,2007,98(2):395-401.
    [16]Yang B., Jiang Y., Zhao M., et al. Structural characterisation of polysaccharides purifiedfrom longan (Dimocarpus longan Lour.) fruit pericarp [J]. Food Chemistry,2009,115(2):609-14.
    [17]Kuang H., Xia Y., Liang J., et al. Structural characteristics of a hyperbranched acidicpolysaccharide from the stems of Ephedra sinica and its effect on T-cell subsets and theircytokines in DTH mice [J]. Carbohydrate Polymers,2011,86(4):1705-11.
    [18]Chen R., Liu Z., Zhao J., et al. Antioxidant and immunobiological activity ofwater-soluble polysaccharide fractions purified from Acanthopanax senticosu [J]. FoodChemistry,2011,127(2):434-40.
    [19]Nandan C.K., Sarkar R., Bhanja S.K., et al. Isolation and characterization ofpolysaccharides of a hybrid mushroom (backcross mating between PfloVv12and Volvariellavolvacea)[J]. Carbohydrate Research,2011,346(15):2451-6.
    [20]Bao X.F., Wang X.S., Dong Q., et al. Structural features of immunologically activepolysaccharides from Ganoderma lucidum [J]. Phytochemistry,2002,59(2):175-81.
    [21]Ahmed A.E., Labavitch J.M. Cell Wall Metabolism in Ripening Fruit: I. cell wall changesin ripening;bartlett' pears [J]. Plant physiology,1980,65(5):1009-13.
    [22]Zha X.Q., Luo J.P., Luo S.Z., et al. Structure identification of a new immunostimulatingpolysaccharide from the stems of Dendrobium huoshanense [J]. Carbohydrate Polymers,2007,69(1):86-93.
    [23]Dourado F., Madureira P., Carvalho V., et al. Purification, structure and immunobiologicalactivity of an arabinan-rich pectic polysaccharide from the cell walls of Prunus dulcis seeds[J]. Carbohydrate Research,2004,339(15):2555-66.
    [24]Nie S.P., Cui S.W., Phillips A.O., et al. Elucidation of the structure of a bioactivehydrophilic polysaccharide from Cordyceps sinensis by methylation analysis and NMRspectroscopy [J]. Carbohydrate Polymers,2011,84(3):894-9.
    [25]Zhou C., Yu X., Zhang Y., et al. Ultrasonic degradation, purification and analysis ofstructure and antioxidant activity of polysaccharide from Porphyra yezoensis Udea [J].Carbohydrate Polymers,2012,87(3):2046-51.
    [1] Liu P., Du Y., Zhang X., et al. Rapid Analysis of27Components of Isodon serra byLC-ESI-MS-MS [J]. Chromatographia,2010,72(3-4):265-73.
    [2] Goncalves E.M., Pinheiro J., Abreu M., et al. Carrot (Daucus carota L.) peroxidaseinactivation, phenolic content and physical changes kinetics due to blanching [J]. Journal ofFood Engineering,2010,97(4):574-81.
    [3] Korus A., Lisiewska Z. Effect of preliminary processing and method of preservation onthe content of selected antioxidative compounds in kale (Brassica oleracea L. var. acephala)leaves [J]. Food Chemistry,2011,129(1):149-54.
    [4] Hossain M.B., Barry-Ryan C., Martin-Diana A.B., et al. Effect of drying method on theantioxidant capacity of six Lamiaceae herbs [J]. Food Chemistry,2010,123(1):85-91.
    [5] Duangmal K., Apenten R.K.O. A comparative study of polyphenoloxidases from taro(Colocasia esculenta) and potato (Solanum tuberosum var. Romano)[J]. Food Chemistry,1999,64(3):351-9.
    [6] Rudra S.G., Shivhare U.S., Basu S., et al. Thermal Inactivation Kinetics of Peroxidase inCoriander Leaves [J]. Food and Bioprocess Technology,2008,1(2):187-95.
    [7] Yi Z., Zhongli P., Mchugh T.H., et al. Processing and quality characteristics of appleslices processed under simultaneous infrared dry-blanching and dehydration with intermittentheating [J]. Journal of Food Engineering,2010,97(1):8-16.
    [8] Borchani C., Besbes S., Masmoudi M., et al. Effect of drying methods onphysico-chemical and antioxidant properties of date fibre concentrates [J]. Food Chemistry,2011,125(4):1194-201.
    [9] Ravichandran R., Parthiban R. Changes in enzyme activities (polyphenol oxidase andphenylalanine ammonia lyase) with type of tea leaf and during black tea manufacture and theeffect of enzyme supplementation of dhool on black tea quality [J]. Food Chemistry,1998,62(3):277-81.
    [10]Zheng H., Lu H. Effect of microwave pretreatment on the kinetics of ascorbic aciddegradation and peroxidase inactivation in different parts of green asparagus (Asparagusofficinalis L.) during water blanching [J]. Food Chemistry,2011,128(4):1087-93.
    [11]Lin L., Cui C., Wen L., et al. Assessment of in vitro antioxidant capacity of stem and leafextracts of Rabdosia serra (MAXIM.) HARA and identification of the major compound [J].Food Chemistry,2011,126(1):54-9.
    [12]Pietta P.G. Flavonoids as antioxidants [J]. Journal of Natural Products,2000,63(7):1035-42.
    [13]Cai Y.Z., Luo Q., Sun M., et al. Antioxidant activity and phenolic compounds of112traditional Chinese medicinal plants associated with anticancer [J]. Life Sciences,2004,74(17):2157-84.
    [14]Huang D.J., Ou B.X., Prior R.L. The chemistry behind antioxidant capacity assays [J].Journal of Agricultural and Food Chemistry,2005,53(6):1841-56.
    [15]Adisakwattana S., Chantarasinlapin P., Thammarat H., et al. A series of cinnamic acidderivatives and their inhibitory activity on intestinal alpha-glucosidase [J]. Journal of EnzymeInhibition and Medicinal Chemistry,2009,24(5):1194-200.
    [16]Gong S.Z., Cheng J.A., Yang Z.R. Inhibitory effect of ferulic acid on oxidation ofL-DOPA catalyzed by mushroom tyrosinase [J]. Chinese Journal of Chemical Engineering,2005,13(6):771-5.
    [17]Iwai K., Kishimoto N., Kakino Y., et al. In vitro antioxidative effects and tyrosinaseinhibitory activities of seven hydroxycinnamoyl derivatives in green coffee beans [J]. Journalof Agricultural and Food Chemistry,2004,52(15):4893-8.
    [18]Kwon Y.I.I., Vattem D.A., Shetty K. Evaluation of clonal herbs of Lamiaceae species formanagement of diabetes and hypertension [J]. Asia Pacific Journal of Clinical Nutrition,2006,15(1):107-18.
    [19]Wang H., Du Y.J., Song H.C. alpha-Glucosidase and alpha-amylase inhibitory activitiesof guava leaves [J]. Food Chemistry,2010,123(1):6-13.
    [20]Xie L.P., Chen Q.Y., Huang H., et al. Inhibitory effects of some flavonoids on the activityof mushroom tyrosinase [J]. Biochemistry-Moscow,2003,68(4):487-91.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700