用户名: 密码: 验证码:
循环载荷条件下模拟腰椎扳法对椎间盘内压的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
腰椎间盘突出症(Lumbar Disc Herniation, LDH)是最常见的椎间盘类疾病,是我国的慢性病、高发病之一。长期大量的临床实践证明,中医骨伤手法对该病疗效确切,是临床非手术疗法中首选的重要手段,其中扳法又是治疗该病的核心手法之一,操作简便、见效迅捷,临床应用十分广泛。荷兰保健委员会及北美脊柱外科协会临床指南均推荐在没有马尾神经综合症的早期患者腰椎间盘突出症采用保守治疗,其中包括手法。众多研究者采用更多的研究手段和方法从力学、神经生理学、解剖学等多角度阐明扳法的作用,扳法的研究取得了阶段性成果。更深层次的扳法研究是具有挑战性的。腰椎间盘退变很多扳法研究并没有紧密结合临床在体测量数据,力学参数也多从文献中汲取,其结果和结论难以充分说明扳法在临床病理状态下作用的力学效应机理。现有研究多采用非力学机制动物造模作为研究对象,较少采用全腰椎标本,模型缺乏脊柱力学作用机制特征,很难接近临床病理状态。本研究即针对上述问题,结合临床实际,采用离体腰椎标本进行研究,以期深入阐释扳法的作用机理及安全性等,为临床和科研提供重要的参考指标,并对指导临床使用具有重要现实意义。
     本研究来源于2010国家自然基金《模拟斜扳手法对腰椎突出节段内在结构影响的可视化研究》、北京市自然基金《“从病在筋,调之筋”研究按揉理筋手法在非特异性下腰痛中的力学机制》。研究分两个实验:首先通过在离体标本上进行循环载荷,以期模拟椎间盘退变或者突出的临床病理状态,通过腰椎CT扫描椎间隙、椎体高度和腰椎三维运动确认病理状态,在此基础上模拟扳法旋转时椎体角度位移变化,以阐释手法作用时椎体相关节段的运动方式;然后在此病理状态下通过BOSE动/静态材料试验机进行两种体位、四种载荷的扳法模拟,测试腰椎间盘内压,研究椎间盘退变状态下手法作用机制、安全性评估。
     本论文创新是对离体标本施加循环载荷,模拟出腰椎间盘退变病理状态,在此基础上探讨了脊柱在手法力作用下的运动变化特征;从手法作用力时椎间盘内压的变化,探讨了病理状态下手法作用机制和作用特点。在此基础上的研究数据和结论更加真实、更具有临床意义,此前国内尚未见同类研究,对现代中医骨科手法的基础研究应有启发和借鉴之处。
     实验一
     [研究目的]
     1、通过循环载荷模拟腰椎间盘退变病理状态,使扳法研究贴近临床实际而更具意义和价值;
     2、模拟椎间盘退变病理状态下,研究扳法旋转时腰椎共轭运动特征和操作特点。
     [研究方法]
     十二具离体腰椎处理后固定在BOSE动/静态材料试验机上,利用BOSE动/静态材料试验机控制循环载荷。加载方案:结合Adams M A、Hutton W C腰椎节段循环疲劳负荷力学造模方法,对标本进行6小时,60循环/分钟,21600转,300N初始压力,750N峰值压力,8°前屈的循环载荷,以正弦波形加载,初始时循环载荷为轻度,峰值压力逐渐增加到最大值。
     循环载荷前后分别连接力矩加载系统,悬挂加载6Nm扭矩,测试腰椎三维运动信息和模拟扳法旋转过程。依次进行前屈、后伸、左旋、右旋、左侧弯、右侧弯六个运动方向的测试,每组测试中立位、加载和卸载三种状态,利用Motion运动捕捉系统采集标本信息,频率60HZ,采集时间1s;全部采集所得运动信息以.p巧保存处理。
     循环载荷前后对标本采用GE公司Lightspeed16层螺旋CT扫描仪进行CT扫描。
     CT测量L3、L4、L5椎体前、中、后高度;L3-L4、L4-L5、L5-S1椎间隙前、中、后高度;三维运动分析系统计算L3-L4、L4-L5、L5-S1节段屈伸、侧弯、旋转最大运动范围、中性区;模拟扳法旋转时L3、L4、L5椎体屈伸、侧弯、旋转角度位移。
     统计分析:所有统计检验均采用双侧检验,使用SPSS13.0软件处理。符合正态分布者,用x±SD表示平均值加减标准差;组间用配对t检验,组内数据经方差齐性检验,方差相齐者用S-N-K双侧检验,方差不齐者用Dunnett's T3检验。P值小于或者等于0.05将被视为所有检验的差别有统计意义。
     [研究结果]
     1、循环载荷前后12个标本L3-L4、L4-L5. L5-S1共计36个间盘的椎间隙高度进行配对样本T检验,椎间隙前高、中高、后高在循环载荷后均降低,有显著性差异(P<0.05)。
     2、循环载荷前后12个标本L3、L4、L5共计36个椎体的高度进行配对样本T检验,椎体前高、中高、后高在循环载荷后均有降低趋势,无显著性差异(P>0.05)。
     3、循环载荷后,L3-L4、L4-L5、L5-S1节段屈伸、侧弯、旋转运动范围、中性区均增加,与加载前进行配对T检验,各节段屈伸、侧弯、旋转运动范围、中性区均有显著性差异(P<0.05)
     4、左、右侧旋转扳动过程中,L3、L4、L5椎体的运动是共轭运动,旋转同时椎体也进行屈或伸、侧弯运动。右侧旋转斜扳时各间盘组内屈伸、侧弯、旋转角度位移单因素方差分析,无显著性差异(P>0.05),轴向旋转角度位移有小于屈伸、侧弯角度位移的趋势;各间盘组间屈伸、侧弯、旋转角度位移单因素方差分析,无显著性差异(P>0.05),旋转角度位移L3>L4>L5依次减小,侧弯角度位移L3>L4>L5,依次减小。左侧旋转斜扳时L5椎体旋转角度位移小于屈伸角度位移,有显著性差异(P<0.05);其余各间盘组内屈伸、侧弯、旋转角度位移单因素方差分析,无显著性差异(P>0.05);各间盘组间进行屈伸、侧弯、旋转角度位移单因素方差分析,无显著性差异(P>0.05),但是旋转角度位移L3>L4>L5,依次减小。
     5、左、右侧旋转扳动过程中,不同椎体的角度位移比较。L3椎体在左右旋转时,屈伸、侧弯、旋转角度位移配对T检验,左旋转L3椎体侧弯角度位移小于右旋转,有显著性差异(P<0.05),其余方向的角度位移无显著性差异(P>0.05);L4、L5椎体在左右旋转时,屈伸、侧弯、旋转角度位移配对T检验,三方向角度位移变化无显著性差异(P>0.05)。
     [研究结论]
     1、有效的循环载荷可以模拟椎间盘退变的第二阶段—不稳定期。循环载荷后,椎间隙变窄,同时形成生理范围内小关节囊松弛,椎间关节小的异常活动和不稳定。
     2、屈伸角度位移变化有可能也是扳法治疗脊源性腰腿痛的联合作用机制之一,L3、L4、L5椎体旋转时,伴随更大角度的屈伸;侧弯角度位移在扳法中的作用仍需进一步研究。
     3、临床上在对L3、L4、L5椎体进行旋转扳动时,扳动难度和力量可能会依次逐渐增加;左右两侧扳动的差别部分来自患侧肌肉高应力或者长期肌肉紧张而产生的关节僵硬。
     实验二
     [研究目的]
     1、循环载荷条件下,分析两种体位、四种不同载荷扳法的椎间盘内压特征;
     2、循环载荷条件下,分析扳法操作的安全性;
     3、循环载荷条件下,研究扳法的作用机制;
     4、循环载荷条件下,研究扳法对不同间盘的操作特点。
     [研究方法]
     采用微型压力传感器(Model060)接驳放大器,通过USB7360数据采集系统连接电脑,建立压力测试采集系统;通过已知压力传感器标定微型压力传感器系数备用。
     十二具腰椎标本在实验一循环载荷后处理后,通过胸椎穿刺针或者直径2mm克氏针将微型压力传感器植入腰椎间盘,连接压力测试采集系统。然后标本固定在BOSE动/静态材料试验机上,模拟四种不同载荷扳法:-500N坐位旋转扳法,-300N坐位旋转扳法,ON卧位传统斜扳,+100N卧位斜扳。使用BOSE机Wintest软件控制扭矩和角度,编写运行程序。加载方案:预加载扭矩7.5Nm,扳动扭矩25Nm,扳动时间0.05s、0.10s、0.15s。实验前进行2次加载/卸载小量程预处理,减少腰椎粘弹性影响。每次处理后停留30秒,允许腰椎蠕变,使实验结果稳定,第3次加载时正式测量。
     采集卧位、坐位L3-L4、L4-L5、L5-S1椎间盘内压基线值;四种不同载荷扳法L3-L4、L4-L5、L5-S1椎间盘内压基线值和复位值;四种不同载荷扳法预加载相7.5Nm和扳动相25NmL3-L4、L4-L5、L5-S1椎间盘内压值;四种不同载荷扳法预加载相7.5Nm和扳动相25Nm腰椎旋转角度;25Nm扳动相时0.05s、O.10s、0.15s扳动时间L3-L4、L4-L5、L5-S1椎间盘内压值。
     统计分析:所有统计检验均采用双侧检验,使用SPSS13.0软件处理。符合正态分布者,用x±sD表示平均值加减标准差;组间用配对t检验,组内数据经方差齐性检验,方差相齐者用S-N-K双侧检验,方差不齐者用Dunnett's T3检验。P值小于或者等于0.05将被视为所有检验的差别有统计意义。
     [研究结果]
     1、四种载荷扳法实施过程中都会使椎间盘内压增高,并且随着旋转角度的不断变化,椎间盘内压呈线性增加;预加载相达到7.5Nm时,出现椎间盘内压短暂平台期,25Nm的扳动相时椎间盘内压快速增加,呈“V”型波谷,椎间盘内压在0.05s、0.10s、0.15s内达到最大值,然后完成自动复位。
     2、循环载荷条件下,两种体位间盘椎间盘内压均以L4-L5为最高,坐位椎间盘内压由高到低依次为:L4-L5>L5-S1>L3-L4,有显著性差异(P<0.05);卧位椎间盘内压L3-L4最低,与L4-L5相比有显著性差异(P<0.05);循环载荷条件下,两种体位对应椎间盘内压均以坐位高,有显著性差异(P<0.05)。
     3、循环载荷条件下,-300N、-500N组椎间盘内压基线值均以L4-L5为最高,有显著性差异(P<0.05);两组对应间盘内压基线值比较,-500N载荷组L3-L4、L4-L5压力均高于-300N(P<0.05),而两组间L5-S1间盘内压基线值无显著性差异(P>0.05)。
     4、循环载荷条件下,+100N、ON载荷组椎间盘内压基线值均以L4-L5为最高,有显著性差异(P<0.05);两组对应椎间盘内压基线值比较,ON载荷组L3-L4、L4-L5椎间盘内压均高于+100N(P<0.05),而两组间L5-S1椎间盘内压基线值无显著性差异(P>0.05)。
     5、循环载荷条件下,L3-L4、L4-5L、L5-S1间盘+100N、ON载荷组椎间盘内压基线值均低于坐位,有显著性差异(P<0.05);其中L4-L5椎间盘内压基线值-300N、ON、100N载荷组均低于-500N组。
     6、循环载荷条件下,L3-L4、L4-L5、L5-S1间盘在-500N、-300N、+100N、ON载荷组椎间盘内压基线值与复位值比较,均无显著性差异(P>0.05)。
     7、25Nm扳动相腰椎旋转角度与7.5Nm预加载相配对T检验,有显著性差异(P<0.05)。
     8、L3-L4椎间盘内压,25Nm在ON和+100N载荷组椎间盘内压值高于7.5Nm,有显著性差异(P<0.05);L4-L5椎间盘内压,25Nm在-500N、-300N和ON载荷组椎间盘内压值高于7.5Nm,有显著性差异(P<0.05);L5-S1椎间盘内压,在-500N、-300N和ON、+100N载荷组椎间盘内压值高于7.5Nm,有显著性差异(P<0.05)。
     9、7.5Nm预加载相和25Nm扳动相椎间盘内压差和旋转角度差相关分析,Pearson相关系数为0.919,呈显著相关。
     10、不同扳动相时间L3-L4、L4-L5、L5-S1椎间盘内压进行单因素方差分析,四种不同载荷扳法各椎间盘内压比较,无显著性差异(P>0.05)。
     [研究结论]
     1、循环载荷条件下,腰椎间盘内压特征:坐位椎间盘内压均高于卧位,两种体位椎间盘内压L4-L5最高,L3-L4最低;
     2、扳法操作过程中,椎间盘内压增高,会加重退变间盘形变,使操作安全性降低。
     3、从体位上看,扳法操作时卧位较坐位椎间盘内压低,ON卧位传统斜扳、+100N卧位斜扳更安全。
     4、牵引下扳动可以降低椎间盘内压,尤其对L3-L4、L4-L5间盘退变类疾病;坐位旋转扳时应减少前屈,给予200N的牵引,可以增加手法安全性。
     5、扳法治疗椎间盘退变类疾病的机制应是椎间盘内压快速升高和腰椎活动度增大的联合作用。
     6、临床上不同节段退变间盘可以采用更有针对性的扳法进行操作。L5-S1间盘四种载荷扳法均可采用;L4-5椎间盘-500N、-300N坐位旋转扳法和ON传统斜扳均有作用;L3-L4椎间盘ON传统斜扳和+100N牵伸斜扳更有针对性。
     7、在0.15s扳动时间以内,椎间盘内压都会产生变化显著,更大范围的有效扳动时间仍需进一步研究。
Lumbar Disc Herniation is the most common disc-like illness of chronic diseases, one of the high incidence diseases in our country. Long-term clinical practice has proved what China Journal of Orthopaedics and Traumatology manipulation is excat efficacy for this disease, which is an important means of clinical non-surgical therapy of choice.Manipulation is one of the core techniques of treatment of the disease, is simple, effective and quick, a wide range of clinical applications. The Dutch Health Care Committee and the North American Spine Surgery Association of clincal guidelines are recommended in early lumbar disc herniation of patients without cauda equina syndrome treated conservatively, including manipulations. Manipulation therapy used more and more widely, the mechanics of manipulation researched more and more deeply at home and abroad. Many researchers use more research means and methods to clarify the role of the manipulation,the study of manipulation acquired the stage of good results. Deeper research of manipulation is challenging.Manipulation used in lumbar disc degeneration or disc herniation is not closely combined with clinical in vivo measurement data in Biomechanical study,the mechanical parameters of the experimental setup is also much to learn from the literature, the results and conclusions are difficult to fully explain the mechanics of manipulation in clinical pathological state effect mechanism.Furthermore, the existing researches use non-mechanical mechanism of animal model as the Study objectless human lumbar spine specimens,which model lacks spine mechanics mechanism of characteristics, difficult to close a real clinical pathological state. This study is just to elaborate above-mentioned problems,and clinical practice,useing human lumbar specimens in vitro to studyjn order to elaborate deeply the mechanism of manipulation、the role of the characteristics and security, provide important reference for clinical and scientific research. and has important practical significance guidance clinical.
     This study comes from the2010National Natural Science Foundation 《A study to lumbar prominent segment of the internal structure visualization by analog manipulation》 and Beijing Natural Science Foundation《A study about Biomechanical mechanism of kneading manipulation of TCM in Non-specific Low Back Pain from the view point of the "Disease area in the soft tissues, cure the soft tissues"》. In response to these issues and clinical practice two experiments has explored:Firstly, a simulated model of IDD or LDH in vitro experiment under cyclic loading pressure conditions was done and this condition was confirmed by heights about anterior, mid and posterior vertebral body and intervertebral space and three-dimensional motion analysis; Secondly, in order to explain the motions of related segments, pure motion was loaded based on the LDH model and simulated manipulation of oblique-pulling on different vertebral angles were conducted. Thirdly, two positions and four simulated manipulation of oblique-pulling methods were conducted on BOSE dynamic/static material testing machine to test the lumbar intradiscal pressure, for the sake of evaluating the mechanism and safety of this manipulation.
     Experiment I
     Aims
     l.To study close to the clinical practice after conducting the manipulation in simulated experiment.
     2.To make an objective and clear description on the results from the changes of segments motions changes and operating characteristics of lumbar manipulation.
     Methods
     Twelve processed calf lumbar spine specimens were used on the BOSE dynamic/static material testing machine. The cyclic loading was conducted as following:
     The Adams, MA, Hutton WC lumbar segment cyclic fatigue loading mechanical modeling was referred to in the processing, which lasted6hours.60cycles/min,21600rpm,300N initial pressure,750N peak pressure,8°flexion of cyclic loading was loaded on the specimens in the whole processing. The loading in the form of sinusoidal waveform started from mild cyclic loading and the peak pressure is gradually increased to a maximum.
     Movement loading system was connected with the cyclic loading before and after the loading.6Nm movement was loaded to test lumbar three-dimensional motion and the process of the simulated manipulation. Six movement directions such as flexion, extension, left-handed, right-handed, left bending and right bending were tested in three statuses including neutral, loaded and unloaded status. Motion capturing system was used to collect information with60HZ fruquency and ls acquisition. All information was saved as.prj format.
     CT scanner (Lightspeedl6) was used to capture the cyclic loading process before and after the loading, which is produced by GE Company.
     The heights about anterior, mid and posterior vertebral body of L3, L4and L5were measured. The intervertebral space of L3-L4, L4-L5, and L5-S1from anterior, mid and posterior heights was measured. The segment maximum movement range of L3-L4, L4-L5, and L5-S1in six directions and neutral zone were measured. Angular displacements of L3, L4, and L5in six directions was measured.
     Statistic analysis:All statistical tests were two-sided tests. Measurement data were expressed as mean±SD and analyzed using SPSS13.0software. Data were subjected to homogeneity test for variance. Data of homogeneity of variance were analyzed with one-way analysis and mean between two groups was compared using Student-Newman-Keuls q test. Data of heterogeneity of variance were analyzed with Welch, and mean between two groups was compared using Dunnett T3test. P<0.05was considered statistically significant.
     Results
     1. Paired t test was used to compare the intervertebral space heights of L3-L4-. L4-L5、L5-S1in twelve specimens before and after cyclic loading. There is significant difference (P<0.05) and all the space heights were lower after the cyclic loading.
     2. Although, vertebral body heights of L3、L4、L5were lower, there is no significant difference after the cyclic loading by paired t test (P>0.05)
     3. There is a significant difference on segment movement of the L3-L4、L4-L5、 L5-S1in the six movement directions and neutral zone after cyclic loading by paired ttest (P<0.05)
     4.During the left-handed, right-handed, simulated manipulation of oblique-pulling, L3, L4, L5vertebral motions were coupled motion, while rotating happened the same time with the vertebral flexion or extension or bending movement.
     During the right side manipulation of oblique-pulling, single-factor analysis of variance showed that there is no significant difference in the disc group flexion and extension, lateral bending, rotation angle displacement (P>0.05), but the results showed a trend of the displacement of axial rotation angle less than flexion and extension, lateral bending.
     The single-factor analysis of variance between discs on flexion and extension, lateral bending, rotation angle displacement showed no significant difference (P>0.05), the rotation angle displacement reduced sequentially, like L3> L4> L5, bending angle displacement decreased like L3> L4> L5. During the left side manipulation of oblique-pulling, The vertebral rotation angle displacement of L5is less than the flexion and extension angle displacement with a statistically significant difference (P<0.05). However, the single-factor analysis of variance for the other discs movement in the six directions showed no statistic differences (P>0.05). The rotation angle displacement reduced sequentially like L3>L4>L5.
     5. The comparison between the left side and right side manipulation showed that the displacement in the left bending of the L3is less than the right rotation, with a statistically significant difference (P<0.05), but the other directions angle displacement analysis has no statistical differences (P>0.05) by paired T test. For L4and L5,there is no statistical differences in all movement directions (P>0.05).
     Conclusion
     1. It means that such a cyclic loading succeeded in simulating the second stage of disc degeneration-unstable period.After cyclic loading, a physiological joint capsule laxity has formed; there was a abnormal activity and instability for the small facet.
     2. It could explain that the angle displacement of flexion is one of the mechanisms of manipulation of oblique-pulling treating spinal endogenous waist and leg joint pain.Rotating manipulation of L3, L4, and L5vertebral body produced a conjugate movement including flexion than rotation; however, the angle displacemengt of lateral bending must to be explored.
     3. We also found that the pulling strength may gradually increase with rotating manipulation of oblique-pulling of L3, L4and L5, which make it more difficult in clinical practice. The difference between the left and right flipping may come from the ipsilateral muscle with high stress or long-term muscle tension and joint stiffness.
     Experiment Ⅱ
     Aims
     1. To explore two positions and four manipulation methods treating intradiscal pressure under cyclic loading.
     2. To evaluate the safety of the manipulation method under cyclic loading.
     3. To explore the mechanism of the manipulation method under cyclic loading.
     4. To investigate the effects on different discs by the manipulation method under cyclic loading.
     Methods
     A mini pressure sensor (Model060) with the amplifier was connected to the computer through the USB7360data acquisition system, to create a pressure testing systems.
     After experiment I twelve processed calf lumbar spine specimens were used on the on BOSE dynamic/static material testing machine. The mini pressure sensor was implanted in the lumbar disc by2mm Kirschner needles or thoracic puncture needles, which were connected with the pressure testing systems.Four different simulated loading conditions for the manipulation was set on the BOSE dynamic/static material testing machine,such as the-500N sitting rotating oblique pulling,-300N sitting rotating pulling, the ON supine traditional oblique pulling and the+100N supine oblique pulling.The loading program was written by the software of Wintest software control torque and angle on the BOSE machine. The details are pre-loading with7.5Nm, flip loading with25Nm, flipping time covering0.05s,0.10s and0.15s.Two small pre loading/unloading were done before the experiment, to reduce the impact of lumbar viscoelastic. There will be30seconds stay after each small pre loading/unloading, allowing the lumbar tiny moving. The formal measurement began with the3rd loading.
     Five sets of data were collected during this experiment including:
     a. the intervertebral disc pressure values at baseline on the supine and sitting positions for L3-L4, L4-L5and L5-S1;
     b. the intervertebral disc pressure values at baseline for L3-L4,L4-L5and L5-S1by four different pulling methods;
     c. the intradiscal pressure values by four different pulling methods with7.5Nm loading and25Nm loading for L3-L4, L4-L5and L5-S1;
     d. the intradiscal pressure values by four different pulling methods with7.5Nm loading and25NmL loading of lumbar rotation angle for L3-L4, L4-L5and L5-S1;
     e. the intradiscal pressure values by four different pulling methods with25NmL loading of three different time period (0.05s,0.10s, and0.15s flipping time) for L3-L4, L4-L5and L5-S1.
     Statistic analysis:All statistical tests were two-sided tests. Measurement data were expressed as mean±SD and analyzed using SPSS13.0software. Data were subjected to homogeneity test for variance. Data of homogeneity of variance were analyzed with one-way analysis and mean between two groups was compared using Student-Newman-Keuls q test. Data of heterogeneity of variance were analyzed with Welch, and mean between two groups was compared using Dunnett T3test. P<0.05was considered statistically significant.
     Results
     1. All the four manipulition methods could improve the intradiscal pressure. There was a linear increase of intradiscal pressure with the constant change of the rotation angle. There was an intradiscal pressure transient plateau when the preloading reached7.5Nm. The intradiscal pressure increased rapidly and a'V shaped trough could be formed during the25Nm flipping phase, in which the pressure reached a maximum at the time points,0.05s,0.10s and0.15s, and then reset automatically.
     2. The L4-L5disc intradiscal pressures were the highest in two different positions under the cyclic loading. One was in the sitting position, from high to low as following:L4-L5> L5-S1> L3-L4. The other was in the supine position, from high to low as following:L4-L5> L5-S1> L3-L4. There was a significant difference (P<0.05) between the L3-L4and L4-L5in both positions. However all intradiscal pressures in sitting position were higher than in supine position (P<0.05).
     3.The intradiscal pressure values of L4-L5at baseline in the position of-300N and-500N sitting oblique pulling were the highest, having a significant difference (P <0.05). The corresponding intervertebral disc pressure at baseline between the position of-300N group and-500N group, the pressures of L3-L4and L4-L5in-500N group were higher than in-300N group (P<0.05),but the pressure of L5-S1comparison having no significant difference (P>0.05)
     4.The intradiscal pressure values of L4-L5at baseline in the position of+100N and ON supine oblique pulling were the highest, having a significant difference (P<0.05). The corresponding intervertebral disc pressure at baseline between the position of+100N group and ON group, the pressures of L3-L4and L4-L5in+100N group were higher than in ON group (P<0.05),but the pressure of L5-S1comparison having no significant difference (P>0.05)
     5. All the intradiscal pressure values of L3-L4,L4-5L and L5-S1at baseline in the position of supine oblique pulling were lower than in the sitting position with significant difference (P<0.05). And the intradiscal pressure values of L4-5L at baseline in the positions of300N, ON and100N were lower than in the position of-500N.
     6.There were no significant differences for all the intradiscal pressure values of L3-L4,L4-5L and L5-S1in the positions of500N,-300N,+100N and ON before and after the manipulation of oblique-pulling (P>0.05)
     7. There was a significant difference (P<0.05) about the intradiscal pressures compared in the lumbar rotation angle with25Nm and the preloading of7.5Nm preloaded by the paired T-test.
     8. The intradiscal pressures of L3-L4in the positions of25Nm, ON and+100N were higher than in the position of7.5Nm, with significant difference (P<0.05). The intradiscal pressures of L4-L5in the positions of25Nm,-500N,-300N and ON were higher than in the position of7.5Nm, with significant difference (P<0.05). The intradiscal pressures of L4-L5in the positions of-500N,-300N. ON and+100N were higher than in the position of7.5Nm, with significant difference (P<0.05).
     9. The related statistical analysis showed that the intradiscal pressure differences in the position of simulated7.5Nm loading and the preloading25Nm have a significant correlation with the rotating angle, with the Pearson correlation coefficient0.919.
     10. The single-factor analysis of variance showed that the intradiscal pressures of L3-L4,L4-L5and L5-S1in different pulling phases and positions by four different oblique pulling methods have no statistical difference (P>0.05)
     Conclusions
     1. The characteristics of the lumbar intradiscal pressures under the cyclic loading are as following:pressures in the sitting position different from the supine position, the highest pressures from L4-L5. the lowest from L3-L4in both positions, all the pressures in the sitting positions higher than in the supine positions.
     2. During the manipulation, the intradiscal pressures increased and degenerative intervertebral disc deformation aggravated with more strength and lower safety.
     3. The intradiscal pressures in supine position are lower than in sitting position. The traditional manipulation of oblique-pulling and the+100N supine manipulation of oblique-pulling seems much safer.
     4. The manipulation of oblique-pulling could lower the intradiscal pressure with tractions, especially for the L3-L4and L4-L5disc degeneration diseases. The manipulation of oblique-pulling in the sitting position should minimize flexion, while giving200N traction, which could ensure the safety.
     5. We could conclude that the mechanism of the manipulation is dual roles of the intradiscal pressure quickly increasing and the activity of the lumbar spine increasing.
     6. We could infer that practitioners could use different manipulation of oblique-pulling methods according to different segments of disc degeneration flexibly. For instance, the four pulling methods could be used for the L5-S1disc degeneration diseases, four oblique wrench method can be used; sitting,-300N sitting position and the traditional oblique pulling could be used to treat the L4-5disc degeneration diseases; traditional oblique pulling and+100N oblique pull with tractions could be more helpful for the L3-L4disc degeneration diseases.
     7. The intradiscal pressure will produce a significant change within0.15s pulling-time and a wider range of effective pulling-time time still need further research.
引文
[1]李怡,金宏柱.腰椎斜扳法操作要领浅探[J].河南中医,2008,28(2):62.
    [2]张军,韩磊,宋铁兵,等.腰椎间盘突出症斜扳手法的操作规范[J].中国中医骨伤科杂志,2008(5):1-5.
    [3]张琴明,房敏,龚利.腰椎侧位斜扳法的改良及规范操作[J].按摩与导引,2003(4):6-7.
    [4]王晶石,赵长伟.牵扳手法治疗腰椎间盘突出症的临床规范化[J].当代医学,2010(25):71-72.
    [5]张睿.介绍一种新的腰椎斜扳法-腰椎定点牵扳法[J].中医正骨,2010,22(5):63-64.
    [6]刘洪波.颈椎扳法治疗顽固性呃逆1例[J].按摩与导引,2002,18(2):53.
    [7]姜劲挺,马喜凤.颈椎旋扳法治疗枕大神经卡压综合征[J].中医正骨,2004,16(5):40.
    [8]于健.手法加中药熏蒸治疗产后耻骨联合分离症15例[J].河南中医,2004,24(12):44.
    [9]马建军,陈书春.试论按摩配合斜扳牵引治疗股骨头坏死[J].按摩与导引,2001,17(1);39-40.
    [10]梁伍,黄伟明.腰椎斜扳法治疗肋间神经痛53例[J].中医研究,2008,21(1):51-53.
    [11]王海鸥.斜扳手法治疗髂腹股沟神经痛[J].中医正骨,2007,19(5):62.
    [12]荆兴泉,杨双石.颈部旋扳法致颈椎骨折并多发性椎间盘膨出1例[J].临床军医杂志,2006,34(4):445.
    [13]孙学安,王玉珂.枕骨矫正手法致眩晕加重1例[J].按摩与导引,2006,22(1):40.
    [14]陈远胜,赵明芹,彭雄明.扳颈椎致脊髓型颈椎病1例[J].按摩与导引,2005,21(5):42.
    [15]Dawn Carries, Thomas S. Mars, Brenda Mullinger, Robert Froud.Martin Underwood. Adverse events and manual therapy.Manual Therapy;2010 (15) 355-363.
    [16]Dabbs V, Lauretti WJ. A risk assessment of cervical manipulation vs. NSAIDs for the treatment of neck pain. Journal of Manipulative & Physiological Therapeutics 1995; 18(8):530-6.
    [17]Oliphant D. Safety of spinal manipulation in the treatment of lumbar disk herniations:a system aticreview and risk assessment. Journal of Manipulative& Physiological Therapeutics 2004;27(3):197-210.
    [18]Cashley MC, Cashley M, Me WilliamR, SteenL. BISIMAN study:the background incidence if stroke in manipulation in the UK. Clinical Chiropractic 2008.
    [19]Cassidy JD, BoyleE, CAtAP, HeY, Hogg-JohnsonS, SilverFL, etal. Risk of vertebrobasilar stroke and chiropractic care:results of a popu-lation-basedcase-control and case-crossover study.Spine2008;33(Suppl.4):S176-83.
    [1]范风源(译).慢性病按脊疗法[M].上海:科学书报社,1953.
    [2]上海中医学院附属医士学校.中医推拿学[M].上海:上海科技卫生出版社,1959.
    [3]乳山县人民医院海阳所分院.推拿疗法[M].济南:山东人民出版社,1976.
    [4]冯天有.中西医结合治疗软组织损伤[M].北京:人民卫生出版社.1977.
    [5]江苏省《针灸学·推拿学》编写组.针灸学·推拿学[M].南京:江苏科学技术出版社,1979.
    [6]季根林.推拿简编[M].北京:人民卫生出版社,1981.
    [7]俞大方.推拿学[M].上海:上海科学技术出版社,1985.
    [8]曹仁发.推拿手法学[M].上海:上海中医学院出版社,1987.
    [9]李茂林编著.按摩推拿手法萃锦[M].北京:人民卫生出版社,1989.
    [10]丁季峰.推拿大成M].郑州:河南科学技术出版社,1994.
    [11]王之虹,严隽陶,等.中国推拿大成[M].长春:长春出版社,1994.
    [12]周信文.推拿手法学[M].上海:上海中医药大学出版社,1996.
    [13]石学敏.针灸推拿学[M].北京:中国中医药出版社,1996.
    [14]石学敏.中华推拿奇术[M].天津:天津大学出版社,1998.
    [15]周文新.针灸推拿治疗学[M].上海:上海科学技术出版社,2001.
    [16]崔瑾,李珊,等.针灸推拿学[M].北京:中医古籍出版社,2003.
    [17]王国才.推拿手法学[M].北京:中国中医药出版社,2003.
    [18]严隽陶.推拿学[M].北京:中国中医药出版社,2003.
    [19]李义凯,叶淦湖主编.中国脊柱推拿手法全书[M].北京:军事医学出版社,2005.
    [20]于天源,王晓军主编.伤科推拿教程[M].北京:北京体育大学出版社,2008.
    [21]毕胜,李义凯,赵卫东,等.模拟腰部斜扳手法的生物力学研究[J].中国运动医学杂志,2002,21(3):323-324.
    [22]徐海涛,李松,刘澜,等.腰椎斜扳手法时椎间盘的有限元分析[J].中国组织工程研究与临床康复,2011,15(13):2335-2338.
    [23]顾云伍,韩慧,韦以宗,等.牵引斜扳整脊法治疗腰椎间盘突出症的力学测试[J].中国中医骨伤科杂志,2004,12(1):13-16.
    [24]马达,蒋位庄.脊柱旋转手法治疗腰椎间盘突出症的实验研究[J].中国骨伤,1994,7(5):7-9.
    [25]张勇,毕胜.腰椎旋转手法对髓核内压力和神经根位移的影响[J].颈腰痛杂志,2001,22(3):184-186.
    [26]侯筱魁,董凡,赵文成.斜扳时完整腰椎三维立体运动的研究[J].中国骨伤,1996,9(4):5-7.
    [27]李星,蒋位庄.手法治疗脊柱滑脱症的临床与实验研究[J].中国骨伤,1994,7(6):5-7.
    [28]陈烨乐.“四联整脊手法”干预对腰椎间盘突出症治疗效应及其机理研究[D].湖北中医学院,骨伤2008.
    [29]冯宇,高燕,张国荣.椎体位移与椎间盘内压力变化的实验研究[J].中国骨伤.2001,14(2),83-84.
    [30]乔宗瑞,郭朝堂.手法结合关节囊封闭治疗腰椎关节突关节错缝105例[J].中国中医急症.2008,14(10),1465-1466.
    [31]张荣凯,陈少明,欧金环.牵引配合手法复位治疗腰椎关节突关节紊乱症56例临床观察[J].颈腰痛杂志,2009,30(4),348-350.
    [32]毕胜,张德文.不同扭矩作用下腰椎有限元模型分析[J].医用生物力学,2002,17(1):20-23.
    [33]李延红.模拟拔伸手法对腰椎运动节段三维有限元模型生物力学作用的研究[D].甘肃中医学院,2008.
    [34]赵卫东,李鉴轶,张美超.现实与虚拟互动的骨科生物力学研究方法探讨[J]. 中国临床解剖学杂志,2003,21(3):297-298.
    [35]Solinger AB. Theory of small vertebral motions:an analytical mo-del compared to data. Clin Biomech (Bristol, Avon) 2000;15(2):87-94.
    [36]Keller TS, Colloca CJ. A rigid body model of the dynamic postero; anterior motion response of the human lumbar spine.J Manipulative Physiol Ther 2002;25(8):485-96.
    [37]Evans JM, Hill CR, Leach RA, Collins DL. The minimum energy hypothesis:a unified model of fixation resolution.J Manipulative Physiol Ther 2002;25(2):105-10.
    [38]Korr IM. Proprioceptors and somatic dysfunction. J Am Osteopath Assoc 1975;74:638-50.
    [39]Bolton PS, Holland CT. An in vivo method for studying afferent fibre activity from cervical paravertebral tissue during vertebral motion in anaesthetised cats. J Neurosci Methods 1998;85:2118.
    [40]Pickar JG. An in vivo preparation for investigating neural responses to controlled loading of a lumbar vertebra in the anesthetized cat. J Neurosci Methods 1999;89:87-96.
    [41]Sharpless SK. Susceptibility of spinal roots to compression block.Goldstein M. (No.15),155-161.1975. NINCDS-Research Status of Spinal Manipulation Therapy.
    [42]Olmarker K, Rydevik B, Hansson T, Holm S. Compression-induced changes of the nutritional supply to the porcine cauda equina. J Spinal Disord 1990;3:25-9.
    [43]Cornefjord M, Olmarker K, Farley DB, Weinstein JN, Rydevik B. Neuropeptide changes in compressed spinal nerve roots. Spine 1995;20:670-3.
    [44]Terrett ACJ, Vernon HT. Manipulation and pain tolerance:a controlled study of the effect of spinal manipulation on paraspinal cutaneous pain tolerance levels. Am J Phys Med 1984;63:217-25.
    [45]徐海涛,徐达传,李义凯,等.腰椎斜扳手法所致”咔哒”声时推扳力的研究[J].中国康复医学杂志,2008,23(3):202-204.
    [46]徐海涛,李松,罗筱伟,等.身高对腰椎斜扳手法”咔哒”声响时推扳力的影响[J].中国疗养医学,2011,20(5):391-392.
    [47]何生华,张东友,严金林.倒悬牵引旋扳法治疗腰椎间盘突出症CT研究[J].中国中西医结合影像学杂志,2008,6(6):437-439.
    [48]吴山,林伟峰,林应强.腰椎提拉旋转斜扳法与斜扳法影像学分析[J].中医正骨,2003,15(2):7-8
    [49]王道全,何雁玲,井夫杰,等.拔伸斜扳推拿法对颈椎间盘突出症血浆内皮素的影响[J].中华中医药学刊,2010(9).
    [50]Haynes MJ, Cala LA, Melsom A, Mastaglia FL, Milne N, McGeachie JK. Vertebral arteries and cervical rotation:modeling and magnetic resonance angiography studies.J Manipulative Physiol Ther 2002;25:370-82.
    [51]Li YK, Zhang YK, Lu CM, Zhong SZ. Changes and implications of blood flow velocity of the vertebral artery during rotation and extension of the head. J Manipulative Physiol Ther 1999;22:91-5.
    [52]Licht P, Christensen HW, Hojgaard P, Hoilund-Carlsen PF.Triplex ultrasound of vertebral artery flow during cervical rotation. J Manipulative Physiol Ther 1998;21:27-31.
    [1]Jayson MIV, Sims-Williams H, Young S, Baddeley H, Collins E. Mobilization and manipulation for low-back pain. Spine 1981;6:409-16.
    [2]Shekelle PG. Spine update:spinal manipulation. Spine 1994;19:858-61.
    [3]Adams M A, Hutton W C. Gradual disc prolapse[J]. Spine (Phila Pa 1976),1985, 10(6):524-531.
    [4]欧阳林.腰椎退行性病变CT分型[J].实用放射学杂志.2007,23(8),1074.
    [5]Heliovaara M. Occupation and risk of herniated lumbar intervertebral disc or sciatica leading tohospitalization. J Chronic Dis,1987,40,259-264.
    [6]刘耀升,陈其听,廖胜辉等.椎间盘高度降低及退变对腰椎生物力学影响的有限元分析[J].中国临床解剖学杂志.2006,24(5),566.
    [7]陈之青、陈其昕、李方财.腰椎退变时椎体的形态变化及其临床意义[J].中国脊柱脊髓杂志.2003,13(7),398.
    [8]赵凤东等主译.腰痛的生物力学[M].Michael A.adams Nikolai Bogduk Kim Burton The Biomechanics of Back Pain北京:北京大学医学出版社.2005
    [9]李义凯主编.脊柱推拿的基础与临床[M].北京:军事医学出版社.2001.
    [10]王惠聪,赵清澄,侯铁胜.椎间盘部分切除对腰椎运动特性影响的生物力学研究[J].同济大学学报,1990(3):335-342.
    [11]侯筱魁,董凡,赵文成,等.平行光三维运动测量系统的研制及其在人体完整腰椎上的应用[J].医用生物力学,1994(4):207-211.
    [12]朱青安,胡庆茂,李慧友,等.脊柱三维运动分析系统及其在腰椎稳定性分析中的应用[J].中国脊柱脊髓杂志,1995(4):153-156.
    [13]余斌,靳安民,邵强,等.单侧多节段后部结构切除对腰椎旋转稳定性影响的生物力学研究[J].中国临床解剖学杂志,1997(3):69-70.
    [14]丁宇,阮狄克.下腰椎不同融合方法的即刻与疲劳后稳定性[J].中国脊柱脊髓杂志,2002(5):28-31.
    [15]黄文华,李书纲,原林,等.一种新型椎弓根螺钉内固定系统对不稳腰椎的稳定性效果评价[J].第一军医大学学报,2003(3):222-224.
    [16]黄文华,李义凯,赵卫东,等.一种新型颈前路钢板的三维稳定性生物力学评价[J].医用生物力学,2001(4):219-221.
    [17]姜永立,邹远文,黄学进,等.人体脊柱三维运动测量及力学加载进展[J].医用生物力学,2009(4):311-316.
    [18]陈更新,于柏龙,杜劲松,等.青老年腰椎三维运动范围的实验研究[J].生物医学工程学杂志,1999(4):438-440.
    [19]Oxland T R, Lund T, Jost B, et al. The relative importance of vertebral bone density and disc degeneration in spinal flexibility and interbody implant performance. An in vitro study[J]. Spine (Phila Pa 1976),1996,21(22):2558-2569.
    [20]Adams M A, Dolan P. Spine biomechanics[J]. J Biomech,2005,38(10): 1972-1983.
    [21]詹红生.手法的力学效应研究进展[C].第11界全国中西医结合骨伤科学术研讨会论文汇编.中国兰州:2003,147-149.
    [22]Humphreys BK, Kenin S, Hubbard BB, Cramer GD.Investigation of connective tissue attachments to the cervical spinal dura mater. Clin Anat 2003;16:152-9.
    [23]王家鄞,赵文成,洪钟瑜,等.人体完整腰椎骨三维运动的测量研究[J].华东工业大学学报,1995,17(3):67-71.
    [1]张明才等.基于“骨错缝、筋出槽”诊治椎间盘病症[J].中国骨伤,2008(6):441-443.
    [2]Health Council of the Netherlands. Management of the Lumbosacral Radicular Syndrome (sciatica). The Hague:Health Council of the Netherlands; 1999.
    [3]Wong DA,Mayer TG,Errico TJ,et al.Herniated Disc:phase 3 Clinical Guidelines for Multidisciplinary Spine Care Specialists. La Grange,IL:North American Spine Society;2000.
    [4]王芃等.中医手法治疗腰椎间盘突出症的现况调查[J].中医正骨,2010(3):23-25.
    [5]秦杰,李振宇.三法十式手法配合中药腰痹汤治疗腰椎间盘突出症[J].中医正骨,2011(2):71-72.
    [6]李兵等.手法治疗腰椎间盘突出症111例临床观察[J].北京中医药,2011(3):210-211.
    [7]柏树令主编.系统解剖学(七年制)[M].北京:人民卫生出版社,2005.
    [8]谭军,郝定均主译.麦氏腰背痛(第四版)[M].北京:人民军医出版社,2009.
    [9]张勇,毕胜.腰椎旋转手法对髓核内压力和神经根位移的影响[J].颈腰痛杂志,2001,22(3):184-186.
    [10]冯敏山.旋提手法的力学测量及模拟手法对颈椎髓核内压力影响的实验观察[D].中国中医科学院,中医骨伤科学,2007.
    [11]Nachemson,A.L.Lumber intradiscal pressure. Acta Orthopaedica Scandinavica supplementum 43,1-104.
    [12]McNally, D.S., Adams, M.A. Internal intervertebral disc mechanics as revealed by stress profilometry. Spine 17,66-73.
    [13]胡有谷主编.腰椎间盘突出症(第三版)[M].北京:人民卫生出版社,2004.
    [14]Gibbons P, Tehan P. HVLA thrust techniques:What are the risks?[J]. International Journal of Osteopathic Medicine,2006,9(1):4-12.
    [15]Burton A, Tillotson K, Cleary J. Single-blind randomised controlled trial of chemonucleolysis and manipulation in the treatment of symptomatic lumbar disc herniation. Eur Spine J 2000; 9:202-7.
    [16]Oliphant D. Safety of spinal manipulation in the treatment of lumbar disk herniations:a systematic review and risk assessment.J Manipulative Physiol Ther 2004;27:197-210.
    [17]Gudavalli MR. Biomechanics research on flexion-distraction procedure. In:Cox JM, editor. Low back pain:mechanisms,diagnosis and treatment.6th ed. Philadelphia (Pa)7 Lippincot Williams & Wilkins; 1999.263-8.
    [18]Gudavalli MR, Cox JM, Baker JA, Cramer GD, Patwardhan AG. Intervertebral disc pressure changes during the flexiondistraction procedure for low back pain. Proceedings of the International Society for the Study of the Lumbar Spine (abstract). Singapore; 1997.165.
    [19]Sheng B, Yi-Kai L, Wei-dong Z. Effect of simulating lumbar manipulations on lumbar nucleus pulposus pressures.J Manipulative Physiol Ther 2002;25:333-6.
    [20]Nachemson A, Morris J. Lumbar Discometry Lumbar Intradiscal Pressure Measurements In Vivo[J]. The Lancet,1963,281(7291):1140-1142.
    [21]王遵来.推拿整脊治疗腰椎间盘突出症研究进展.[J]世界中西医结合杂志.2009,4(10):755.
    [22]Paris S. Anatomy as related to function and pain. Symposium on evaluation and care of lumbar spine problems. Orthop Clin North Am 1983;14:476-89.
    [23]Cramer GD, Fournier JT, Henderson CNR, Wolcott CC. Degenerative changes following spinal fixation in a small animal model. J Manipulative Physiol Ther 2004;27(3):141-54.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700