用户名: 密码: 验证码:
天宝岩长苞铁杉林倒木的基础特征及其环境效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
天宝岩国家级自然保护区内的长苞铁杉是我国特有珍稀濒危植物,在促进森林演替、维持生态系统平衡稳定以及涵养水源方面,发挥着十分重要的作用,然而,其立地条件贫瘠及更新困难的问题已成为困扰长苞铁杉保护和重建的关键问题。倒木是森林生态系统中重要的结构性和功能性的组成要素,不仅能够为森林生物多样性提供生境,而且还是重要的营养库,在森林营养物质循环、能量流动、更新演替及土壤形成等方面扮演着重要角色,这些特殊的生态功能,为长苞铁杉林的系统稳定及天然更新提供了一条富有挑战的新思路。
     本研究在倒木数量特征调查的基础上,对倒木的养分贮量、能量贮量及环境因子(包括地形、干扰、林分结构、气象因子及倒木接触处土壤微环境)进行跟踪监测研究,探讨长苞铁杉林倒木在森林生态系统物质循环及能量流动中的生态功能,为后期苗床实验的选址和倒木的选择,提供理论和实践依据,也为森林资源的管理和保护,提供了借鉴依据。研究结果显示:
     (1)天宝岩长苞铁杉林内倒木主要由低腐烂等级、0~10cm径级及1~3m长度级倒木构成,数量密度随径级及长度级的升高而降低,体积随径级升高而升高,倒木的密度、总体体积贮量及覆盖面积呈现出随海拔下降而升高的趋势;就腐烂等级而言,倒木密度随腐烂等级升高而下降,体积贮量和覆盖面积在腐烂等级间呈近似正态分布,腐烂等级及林型对倒木数量特征分布的影响较为显著;研究区倒木的体积贮量为18.14m~3/hm~2,后期苗床实验中,若仅考虑最适幼苗着生的第Ⅳ腐烂等级,则可用于苗床实验的倒木体积仅有3.37m~3/m~2。
     (2)不同腐烂等级间倒木全C、全K含量差异不显著(P>0.05),全N、全P及C/N差异极显著(P<0.01);全N、全P含量随腐烂等级升高大致呈递增趋势,C/N随腐烂等级升高而递减,高腐烂等级倒木养分贮量大于低腐烂等级;C总贮量2.316t/hm~2,N总贮量9.832kg/hm~2,P总贮量1.154kg/hm~2,K总贮量1.713kg/hm~2,长苞铁杉纯林内养分贮量最小,长苞铁杉+毛竹混交林内最大,其中,C贮量的分布服从长苞铁杉纯林<长苞铁杉+阔叶树<长苞铁杉+猴头杜鹃<长苞铁杉+毛竹,氮磷钾贮量的分布服从长苞铁杉纯林<长苞铁杉+猴头杜鹃<长苞铁杉+阔叶树<长苞铁杉+毛竹,不同养分元素的贮量随倒木分解大致呈下降趋势,但释放量较小,说明倒木分解缓慢,其养分的归还也较慢,在参与森林生态系统的生物地球化学循环中,对维持森林稳定与可持续发展中扮演着十分重要的角色,特别对于珍稀濒危植物长苞铁杉贫瘠的立地条件而言,显得更为重要。
     (3)综合燃烧指数及熵权系数法的评价结果显示,天宝岩长苞铁杉林内倒木的燃烧性随腐烂等级升高而降低,长苞铁杉纯林内倒木的燃烧性及潜在能量最小,而长苞铁杉+毛竹混交林内倒木的燃烧性及潜在能量最大,研究区倒木属于低燃烧性可燃物,其产生火灾的可能性也较小,在森林经营的过程中可保留现有倒木,而暂不做清除或部分移除措施,这有利于最大限度地发挥倒木的生态功能。
     (4)采用方差分析、相关分析、通径分析及因子分析对倒木接触处土壤特性展开研究,结果显示,经倒木覆盖后土壤容重、pH值降低、总孔隙度提高、碳氮钾养分含量提高,土壤蛋白酶、脲酶、纤维素酶、蔗糖酶及酸性磷酸酶5种酶的活性显著升高,总体上提高了森林土壤的生产力。随腐烂等级升高,倒木接触处土壤有机碳含量升高,腐烂等级间有机碳含量差异显著,其他土壤特性在腐烂等级间差异不显著,季节及林型对倒木接触处土壤特性变化存在显著影响,土壤特性指标之间显著相关,其中,土壤有机碳与所选理化性质指标极显著相关,全氮与所选土壤酶指标极显著。有机碳、全N及C/N比3者成为影响该区5种酶活性的主要指标。综合看来,倒木的覆盖有利于提高土壤肥力质量,促进土壤环境的物质循环和能量流动。
     (5)采用冗余分析(redundancy analysis,RDA)排序分析方法探讨倒木与环境的生态关系,结果表明,海拔是该研究区倒木各项特征分布的主要影响因素;所选环境因子中,海拔对倒木数量特征、养分贮量及能量贮量分布的影响效应最大,降雨量对碳贮量、氮贮量、磷贮量及潜在能量释放的影响最小。除人为干扰外,长苞铁杉林内倒木主要来源于雪灾或风害的干扰影响,较少产生于林木自然稀疏与衰老。越往南坡,高腐烂等级相对增加,土壤酶活性升高,倒木养分和能量的释放增加,说明温度的升高,会加速该区倒木的分解,缩短了倒木作为苗床使用的时间,后期苗床实验中倒木的放置不应过于靠南坡。坡度对倒木数量特征及接触处土壤酶活性的影响最小,对倒木养分及能量的释放影响效应中等;有幼苗着床的倒木主要出现在中坡位,第Ⅳ腐烂等级倒木上的生物多样性更丰富,也更有利于幼苗的着生。
     因此,综合上述研究可以得出,天宝岩长苞铁杉林内倒木的存在,既有利于系统养分的固定,也提高了土壤的生产力及异质性,参与了生态系统的物质循环与能量流动,促进森林生态系统的稳定性发展;后期苗床实验中,若选择第Ⅳ腐烂等级倒木作为更新苗床,可置于中坡位,其坡度要求不大,但应注意倒木的放置不应过于靠南坡。
Tsuga longibracteata W. C. Cheng, a rare and endangered coniferous species endemic to China,plays an important role in promoting forest succession,maintaining the balance and stability offorest ecosystems, and water conservation. However, barren site condition and poor naturalregeneration were critical problem for the protection and restoration of Tsuga longibracteata forest.Fallen logs play important roles in maintaining the structural and functional integrity of forestecosystems;they provide habitat for forest species, act as a long-term nutrient store, and contributeto nutrient cycling,energy flow, regeneration succession and soil formation. These functionsprovide evidence for the importance of logs for forest ecosystem. A better knowledge of logs couldhelp in solving the problem of stability and regeneration in Tsuga longibracteata forest. Base onthe investigation on fallen logs quantity and quality,nutrient stock,energy stock and environmentalfactors(including topographic factors, human disturbance, stand structure, meteorological factors andsoil microenvironment under fallen logs)were track monitoring, the present study try to demonstratethe logs ecological function in nutrient cycling and energy flow,and found the right site for seedbedstudy.It also contribute to a reference basis for conservation and sustainable management of Tsugalongibracteata forest. The results showed that:
     (1) The fallen logs in Tsuga longibracteata forest in Tianbaoyan National Nature Reserve,mainly belonged to slightly decayed and small-classed logs,that is,they mainly distributed at therange of decay class I~II, diameter class0~10cm, length class1~3m.Logs density were decreasedwhile volume increased with the increased of diameter class(length class), Logs density, volumeand covered area were increased with the decreased of elevation.Logs density were decreased withthe increased of decay class, volume and covered area distribution were close to normal distribution.fallen logs quantity and quality were differed significantly among decay class and forest types (P<0.05). fallen logs volume in this area was18.14m~3/hm~2, and the selective volume was only3.37m~3/hm~2when we chose class IV for seedbed study.
     (2) The content of C, K were not significantly in different decay classes(P>0.05), whileN, P and C/N were extremely significantly(P<0.01); With the increased of the decayclass, thecontent of N, P displayed the increased trend, however C/N decreased; logs nutrient stocks inhighly decay class were larger than slightly decayed; and the total C stock was2.316t/hm~2,while N stock was9.832kg/hm~2,P stock was1.154kg/hm~2,K stock was1.713kg/hm~2. Nutrient stocks waslowest in Tsuga longibracteata pure forest, and largest in Tsuga longibracteata+Phyllostachysedulis forest, C stock in different forest types showed the following trend: Tsuga longibracteatapure forest      (3)Burnable logs index and burnable entropy results showed that fallen logs combustibility weredecreased with the increased of decay class, logs in Tsuga longibracteata pure forest were thelowest combustibility and potential energy, whereas highest in Tsuga longibracteata+Phyllostachysedulis forest; in this area,logs were low combustibility and had lower ignition potential,so in theforest management,retain but not remove the current logs could optimize meet their function.
     (4) Soil properties under fallen logs were analyzed by variance analysis,correlationanalysis,path analysis and factor analysis,the results showed that soil bulk density and pH werelower, while porosity, SOC, TN, TK, protease, urease, invertase, cellulose and acid phosphataseactivity were higher in soil beneath fallen logs, which indicated that fallen logs were contributed toimprove the soil productivity; SOC were increased with the increased of decay class, SOC wereextremely significant difference in soils under fallen logs of all decay classes, while the other soilproperties were no significant difference; season were significant effects on most soil properties(P<0.05); Soil properties showed a significant correlation between each other, Highly significantcorrelation was found between SOC and the selected physical and chemical properties,while thesame between TN and the five soil enzyme activities. SOC,TN and C/N were the most importantindex on the five soil enzyme activities.Comprehensively, fallen logs was contributed to improvesoil quality, and promote nutrient cycling and energy flow in soil environment.
     (5) Redundancy analysis(RDA) were performed to determine therelationships between fallenlogs and environmental factors, and the results showed that fallen logs quantity and quality was strongly effected by elevation, precipitation have the lowest effect on the release of C,N and Pstock. Except for human disturbance, fallen logs were not mainly from self-thinning and senescence,but mostly origin from snow or wind disturbance.The highly decayed logs, soil enzymeactivities,nutrient and energy release stock were increased from northern to southern slope, whichindicated that elevated temperature will accelerate the decomposition of fallen logs in the studyarea, and thus shorten the duration of its function as a seedbed, so sampling logs that use forseeding experiment should not be overly concentrated on southern slopes in further study. Slopegradient had the least effect on logs quantity and quality and soil enzyme activity under fallenlogs,but middle effect on nutrient and energy release,seedbed logs were found on middleslope,biodiversity was richer on class Ⅳ, which were advantage for seedlings colonization.
     Thus,all the results suggested that fallen logs on Tsuga longibracteata forest floor acted aslong-term storage for nutrients,contributed to soil fertility and heterogeneity, the accumulation oflogs would lead to accelerated nutrient cycling and energy flow,which would promoted the stabilityof forest ecosystem.In addition, if the class Ⅳwas chooseen for seedbed experiment, they shouldput in middle slope,and without considering slope gradient, but not be overly concentrated onsouthern slope.
引文
1. Acosta-Martinez V,Cruz L,Sotomayor-Ramirez D.Enzyme activities as affected by soil properties and landuse in a tropical watershed[J].Applied Soil Ecology,2007,35:35~45
    2. Acosta-Martinez V,Zobeck TM,Gill TE,et al.Enzyme activities and microbial community structure ofagricultural semiarid soils[J].Biology and Fertility of Soils,2003,38:216~227
    3. Astrup R,Coates KD,Hall E.Recruitment limitation in forests: lessons from an unprecedented mountain pinebeetle epidemic[J].Forest Ecology and Management,2008,256:1743~1750.
    4. Bace R,Svoboda M,Pouska V,et al.Natural regeneration in Central-European subalpine spruce forests:which logs are suitable for seeding recruitment[J].Forest Ecology and Management,2012,266:254~262.
    5. Barber B L,Vanlear D H.Weight loss and nutrient dynamics in decomposing woody loblolly pine loggingslash[J].American Journal of Soil Science,1984,48:906~910
    6. Barker J S.Decomposition of Douglas-fir coarse woody debris in response to different moisture content andinitial heterotrophic colonization[J].Forest Ecology and Management,2008,255:598~604.
    7. Bellingham P J,Richardson S J.Tree seedling growth and survival over6year across different microsites in atemperate rain forest[J].Canadian Journal of Forest Research,2006,36:910~918.
    8. Bolton N W,DAmato A W.Regeneration responses to gap size and coarse woody debris within naturaldisturbance-based silvicultural systems in northeastern Minnesota,USA[J].Forest Ecology and Management,2011,262:1215~1222
    9. Botting R S,DeLong C.Macrolichen and bryophyte responses to coarse woody debris characteristics insub-boreal spruce forest[J].Forest Ecology and Management,2009,258s:585~594
    10. Boyce JS.The deterioration of felled western yellow pine on insect control projects[J].Bulletion of the USDA(no.1140)U.S.Gov.Print,Washington,D.C.1923.
    11. Brang P,Moran J,Puttonen P,et al.Regeneration of Picea engelmannii and Abies lasiocarpa in high-elevationforests of south-central British Columbia depends on nurse logs[J].The forestry Chronicle,2003,79(2):273~279
    12. Brassard B W,Chen H Y H.Effects of forest type and disturbance on diversity of coarse woody debris inboreal forest[J].Ecosystems,2008,11:1078~1090.
    13. Burke DJ,Weintraub MN,Hewins CR,et al.Rrelationship between soil enzyme activities,nutrient cyclingand soil fungal communities in a northern hardwood forest[J].Soil Biology and Biochemistry,2011,43:795~803
    14. Castagneri D,Garbarino M,Berretti R,et al.Site and stand effects on coarse woody debris in montane mixedforests of Eastern Italian Alps[J].Forest Ecology and Management,2010,260:1592~1598
    15. Chambers J Q,Schimel J P,Nobre A D.Respiration from coarse wood litter in cetral Amazonforests[J].Biogeochemistry,2001,52:115~131
    16. Cheng W C.A new Tsuga from southwestern China[J].Contributions from the Biological Laboratory of theScience Society of China:Botanical Series,1932,7:1~3.
    17. Clark D B,Clark D A,Brown S,et al.Stocks and flows of coarse woody debris across a tropical rain forestnutrient and topography gradient[J].Forest Ecology and Management,2002,164:237~248
    18. Clark JS, Macklin E, Wood L.Stages and spatial scales of recruitment limitation in southern Appalachianforests[J].Ecological Monographs,1998,68:213~235.
    19. Cliton P W,Allwn R B,Davis M R.Nitrogen storage and availability during stand development in a NewZealand Nothofagus forest[J].Canadian Journal of Forest Research,2002,32(2):344~352.
    20. Cornaby BW,Waide JB.Nitrogen fixation in decaying chestnut logs[J].Plant soil,1973,39
    21. Crockett J S,Engle D M.Combustion characteristics of bison(Bison bison)fecal pats ignited by grasslandfire[J].The Amefican Midland Naturalist,1999,141(1):12-15.
    22. Cromer R B,Gresham C A,Goddard M,et al.Associations between two bottomland hardwood forest shrewspecies and hurricane-generated woody debris[J].Southeastern Naturalist,2007,6:235~246
    23. Currie W S,Nadelhoffer K J.The imprint of land use history:patterns of carbon and nitrogen in downedwoody debris at the Harvard forest[J].Ecosystems,2002,5:446~460
    24. David AL,Steven KS,Russelll KM.Links between microbial population dynamics and nitrogen availabilityin an alpine ecosystem[J].Ecology,1999,80(5):1623~1631
    25. Davis JC,Castleberry SB,Kilgo JC.Influence of coarse woody debris on herpetofaunal communities inupland pine stands of southeastern Coastal Plain[J].Forest Ecology and Management,2010,259:1111~1117
    26. Dechene A D and Buddle C M.Decomposing logs increase oribatid mite assemblage diversity in mixedwoodboreal forest[J].Biodiversity Conservation,2010,19:237~256
    27. Elton CS.Dying and dead wood in the pattern of Animal Community[J].Wiley,New York,1966,279~306.
    28. Fogel R, Cromack K.Effects of habitat and substrate quality on Douglas-fir litter decomposition in westernOregon[J].Canadian Journal of Botany,1977,55:1632~1640
    29. Forrester JA,Mladenoff DJ,Gower ST,et al.Interactions of temperature and moisture with respiration fromcoarse woody debris in experimental forest canopy gaps[J].Forest Ecology and Management,2012,265:124~132
    30. Foster J R,Lang G E.Decomposition of red sprace and balsam fir botes in the White Mountains of NewHampshire[J].Canadian Journal of Forest Research,1982,12:617~626.
    31. Franzen DW,Hofman VL,Halvorson AD,et al.Sampling for site specific farming topography and nutrientconsiderations.Better Grop,1996,80(3):14~18
    32. Fukasawa Y,Osono T,Takeda H.Dynamics of physicochemical properties and occurrence of fungal bodiesduring decomposition of coarse woody debris of Fagus crenata[J].Journal of Forestry Research,2009,14:20~29.
    33. Ganjegunte GK,Condron LM,Clinton PW,et al.Decomposition and nutrient release from radiata pine(Pinus radiata)coarse woody debris[J].Forest Ecology and Management,2004,187:197~211
    34. Gardenfors U.Rodlistade arter Sverige~The2005Red List of Swedish Species[J].Uppsala:SLU,SwedishSpecies Information Centre,2005.
    35. Garrett L G,Oliver G R,Pearce S H,et al.Decomposition of Pinus radiata coarse woody debris in NewZealand[J].Forest Ecology and Management,2008,255:3839~3845
    36. Garrett LG,Kimberley MO,Oliver GR,et al.Decomposition of coarse woody roots and branches in managedpinus radiata plantations in New Zealand-a time series approach[J].Forest Ecology and Management,2012,269:116~123
    37. Gartner S M,Lieffers V J,Macdonald S E.Ecology and management of natural regeneration of white sprucein the boreal forest[J].Environmental Reviews,2011,19:461~478.
    38. Gates G M,Mohammed C,Wardlaw T,et al.The ecology and diversity of wood-inhabiting macrofungi ina native Eucalyptus obliqua forest of southern Tasmania Australia[J].Fungal Ecology,2011,4:56~67
    39. Geisseler D,Horwath WR.Relationship between carbon and nitrogen availability and extracellular enzymeactivities in soil[J].Pedobiologia,2009,53:87~98
    40. Graham SA.The felled tree trunk as an ecological unit[J].Ecology,1925,6(4):397~411
    41. Gray A N,Spies T A.Microsite controls on tree seedling establishment in conifer forest canopygaps[J].Ecology,1997,78:2458~2473.
    42. Greed I F,Webster K L,Morrison D L.A comparison of techniques for measuring density and concentrationsof carbon and nitrogen in coarse woody debris at different stages of decay[J].Canadian Journal of ForestResearch,2004,34:744~753
    43. Grier CCA.Tsuga heterophylla-Picea sitchensis ecosystem of coastal Oregon:decomposition and nutrientbalances of fallen logs[J].Canadian Journal of Forest Research,1978,43:373~400
    44. Grifith BG.The natural regeneration of sprucein central British Columbia[J].The Forestry Chronicle,1931,7:204~219
    45. Guo LB,Bek E,Gifford RM.Woody debris in a16-year old pinus radiata plantation in Australia:mass,carbon and nitrogen stocks,and turnover[J].Forest Ecology and Management,2006,228:145~151
    46. Hafner S D,Groffman P M,Mitchell M J.Leaching of dissolved organic carbon,dissolved organic nitrogen,and other solutes from coarse woody debris and litter in a mixed forest in New YorkState[J].Biogeochemistry,2005a,74:257~282.
    47. Hafner S D,Groffman P M.Soil nitrogen cycling under litter and coarse woody debris in a mixed forest inNew York State[J].Soil Biology and Biochemistry,2005b,37:2159~2162
    48. Hagemann U,Moroni M T,Glei ner J,et al.Disturbance history influences downed woody debris and soilrespiration[J].Forest Ecology and Management,2010,260:1762~1772.
    49. Hardt R A,Swank W T A.Comparison of structure and compositional characteristics of Southern Appalachianyoung second-growth,maturing second-growth,and old-growth stands[J].Natural Areas Journal,1997,17(1):42~52
    50. Harmon M E,Nadelhoffer K J,Blair J M.Measuring decomposition,nuttient turnover, and stores in plantlitter[A].In:RobertaonG P,Coleman D C,Bledsee C S,et al.Standard Soil Methods fur Long TermEcological Research[M].New York Oxford:Oxford University Press,1999:202~234.
    51. Harmon M E,Sexton J.Water balance of conifer logs in the earlystages of decomposition[J].Plant and Soil,1996,172:141~152.
    52. Harmon M E,Cromack J K.Coarse woody debris in mixed-conifer forests,Sequoia national ParkCalifornia[J].Canadian Journal of Forest Research,1987,17:1265~1272
    53. Harmon M E,Franklin J F,Swanson F J,et al.Ecology of coarse woody debris in temperateecosystems[J].Advance in Ecological Research,1986,15:133~302
    54. Harmon M E, Franklin J F. Tree seedlings on logs in Picea-Tsuga forests of Oregon andWashington[J].Ecology,1989,70:48~59
    55. Huang S L,Crabtree R L,Potter C,et al.Estimating the quantity and quality of coarse woody debris inYellowstone post-fire forest ecosystem from fusion of SAS and optical data[J].Remote Sensing ofEnvironment,2009,113:1926~1938.
    56. Idol TW,Figler RA,Pope PE,et al.Characterization of coarse woody debris across a100yearchronosequence of upland oak-hickory forests[J].Forest Ecology and Management,2001,149:153~161
    57. Iijima H,Shibuya M,Saito H,et al.The effect of moss height on survival and growth of Picea jezoensisseedlings on fallen logs[J].Jouranl of Japanese Forestry Society,2004,86(4):358~364
    58. Iijima H,Shibuya M,Saito H.Effects of surface and light conditions of fallen logs on the emergence andsurvival of coniferous seedlings and saplings[J].Japanese Forest Research,2007,12:262~269.
    59. Iijima H,Shibuya M,Saito H.The water relation of seedlings of Picea jezoensis on fallen logs[J].CanadianJournal of Forest Research,2006,36(3):664~670.
    60. Iijima H,Shibuya M.Evaluation of suitable conditions for natural regeneration of Picea jezoensis on fallenlogs[J].Japanese Forest Research,2010,15:46~54.
    61. Iyyemperumal K,Shi W.Soil enzyme activities in two forage systems following application of different ratesof swine lagoon effluent or ammonium nitrate[J].Applied Soil Ecology,2008,38:128~136
    62. Jabin M,Mohr D,Kappes H,et al.Influence of deadwood on density of soil macro-arthropods in a managedoak-beech forest[J].Forest Ecology and Management,2004,194:61~69
    63. Jacoba J M,Spence J R and Langor D W.Influence of boreal forest succession and dead wood qualities onsaproxylic beetles[J].Agricultural and Forest Entomology,2007,9:3~16
    64. Janisch J E,Harmon M E,Chen H,et al.Decomposition of coarse woody debris originating by clear-cuttingof an old-growth conifer forest[J].Ecoscience,2005,12:151~160
    65. Jomura M,Kominami Y,Tamai K,et al.The carbon budget of coarse woody debris in a temperatebroad-leaved secondary forest in Japan[J].Tellus B,2007,59(2):211~222
    66. Junninen K,Komonen A.Conservation ecology of boreal polypores:A review[J].Biology Conservation,2011,144:11~20
    67. Kappes H,Topp W,Zach P,et al.Coarse woody debris,soil properties and snails (Mollusca:Gastropoda)in European primeval forests of different environmental conditions[J]. European Journal of SoilBiology.2006,42:139~146
    68. Kathke S, Bruelheide H. Interaction of gap age and microsite type for the regeneration of Piceaabies[J].Forest Ecology and Management,2010,259:1597~1605
    69. Kennedy P G,Quinn T.Understory plant establishment on old-growth stumps and the forest floor in westernWashington.Forest Ecology and Management,2001,154:193~200
    70. Kim R H,Son Y H,Lim J H,et al.Coarse woody debris mass and nutrient in forest ecosystems ofKorea[J].Ecological Research,2006,21:819~827
    71. Kubota Y,Hara T.Recruitment processes and species coexistence in a sub-boreal forest in northernJapan[J].Annals of Botany,1996,78:741~748.
    72. Laiho R,Prescott CE.The contribution of coarse woody debris to carbon,nitrogen,and phosphorus cyclesin three Rocky Mountain coniferous forests[J].Canadian Journal of Forestry Research,1999,29:1592~1603
    73. Lambert RL,Lang GE,Reiners WA.Loss of mass and chemical change in decaying boles of a subalpine firforests[J].Ecology,1980,61(6):1460~1473
    74. Lang GE,Forman RTT.Detritus dynamics in a mature oak forest Hutchenson Memorial Forest,NewJersey[J].Ecology,1978,59(3):580~595
    75. Lemon P C.Wood as a substratum for perennial plants in the Southeast[J].American Midland Naturalist,1945,34:744~749.
    76. LePage PT,Canham CD,Coates KD,et al.Seed abundance versus substrate limitation of seedling recruitmentin northern temperate forests of British Columbia[J].Canadian Journal of Forest Research,2000,30:415~427.
    77. Lonsdale D,Pautasso M,Holdenrieder O.Wood-decaying fungi in the forest:conservation needs andmanagement options[J].European Journal of Forest Research,2008,127:1~22
    78. Magnusson H.Epixylic lichens and bryophytes in young managed forests:substrate preferences and amountsof dead wood[J].Uppsala:SLU,Dept. of Ecology,2010
    79. Marx L,Walters M B.Survival of tree seedlings on different species of decaying wood maintains treedistribution in Michigan hemlock-hardwood forests[J].Journal of Ecology,2008,96:505~513
    80. McCarthy BC,Small CJ,Rubino DL.Composition structure and dynamics of Dysart Woods,an old-growthmixed mesophytic forest of southeastern Ohin[J].Forest Ecology and Management,2001,140:193~213
    81. McCullough AH.Plant succession on fallen logs in a virgin spruce-fir forest[J].Ecology,1948,29(4):508~513
    82. Mengak M T,Guynn Jr D C.Small mamal microhabitat use on young loblolly pine regenerationareas[J].Forest Ecology and Management,2003,173:309~317
    83. Merganicova K,Merganic J.Coarse woody debris carbon stocks in natural spruce forests of Babiahora[J].Journal of Forest Science,2010,56(9):397~405.
    84. Metzger K L,Smithwick E A H,Tinker D B,et al.Influence of coarse wood and pine saplings on nitrogenmineralization and microbial communities in young postfire Pinus contorta[J]. Forest Ecology andManagement,2008,256:59~67.
    85. Miegroet HV,Moore PT,Tewksbury CE,et al.Carbon sources and sinks in high-elevation spruce-fir forestsof the Southeastern US[J].Forest Ecology and Management,2007,238:249~260
    86. Mills S,Macdonald S.Predictors of moss and livewort species diversity of microsite in conifer dominatedboreal forest[J].Journal of Vegetation Science,2004,15:189~198
    87. Mori A,Mizumachi E.Season and substrate effects on the first-year establishment of current-year seedlingsof major conifer species in an old-growth subalpine forest in central Japan[J].Forest Ecology andManagement,2005,210:461~467
    88. Motta R,Berretti R,Lingua E,et al.Coarse woody debris, forest structure and regeneration in the ValbonaForest Reserve,Pan eveggio,Italian Alpas[J].Forest Ecology and Management,2006,235:155~163.
    89. Nakagawa M,Kurahashi A,Hogetsu T.The regeneration characteristic of Picea jezoensis and Abiessachalinensis on cut stumps in the subboreal forests of Hokkaido Tokyo University Forest[J].Forest Ecologyand Management,2003,180:353~359
    90. Nakagawa M,Kurahashi A,Kaji M,et al.The effects of selection cutting on regeneration of Picea jezoensisand Abies sachalinensis in the sub-boreal forests of Hokkaido,northern Japan[J].Forest Ecology andManagement,2001,146:15~23
    91. Narukawa Y,Iida S,Tanouchi H,et al.State of fallen logs and the occurrence of conifer seedlings andsaplings in boreal and subalpine old-growth forests in Japan[J].Ecology Research,2003a,18:267~277.
    92. Narukawa Y,Yamamoto S.Development of conifer seedlings roots on soil and fallen logs in boreal andsubalpine coniferous forests of Japan[J].Forest Ecological Management,2003b,175:131~139.
    93. Noguchi M,Yoshida T.The regeneration in partially cut conifer-hardwood mixed forests in northern Japan:roles of establishment substrate and dwarf bamboo[J].Forest Ecology and Management,2004,190:335~344
    94. Olajuyigbe SO,Tobin B,Gardiner P,et al.Stocks and decay dynamics of above-and belowground coarsewoody debris in management Sitka spruce forests in Ireland[J].Forest Ecology and Management,2011,262:1109~1118
    95. Owens A K,Moseley K R,McCay T S,et al.Amphibian and reptile community response to coarse woodydebris manipulations in upland loblolly pine(pinus taeda)forests[J].Forest Ecology and Management,2008,256:2078~2083
    96. Palviainen M,Finer L,Kurka A M,et al.Decomposition and nutrient release from logging residues afterclear-cutting of mixed boreal forest[J].Plant and Soil,2004,263:53~67
    97. Palviainen M,Finer L,Laiho R,et al.Carbon and nitrogen release from decomposing Scots pine,Norwayspruce and silver brich stumps[J].Forest Ecology and Management,2010,259:390~398
    98. Pedlar J H,Pearce J L,Venier L A,et al.Coarse woody debris in relation to disturbance and forest type inboreal Canada[J].Forest Ecology and Management,2002,158:189~194.
    99. Pollmann W.Effects of natural disturbance and selective logging on Nothosfagus forests in south-centralChile[J].Journal of Biogeography,2002,29:955~970
    100. Pouska V,Svoboda M,Lepsova A.The diversity of wood-decaying fungi in relation to changing siteconditions in an old-growth mountain spruce forest,Central Europe[J].European Journal of Forest Research,2010,129:219~231
    101. Puglisi E,Delre AAM,Rao MA,et al.Development and validation of numerical indexes integrating enzymeactivities of soils[J].Soil Biology and Biochemistry,2006,38:1673~1681
    102. Qiu Y J,Kang M,Ning Z L,et a1.Isolation and characterizationof polymorphic microsatellite markers in theendangered Nothotsuga longibracteata(Pinaceae)[J].Molecular Ecology Notes,2007,7(6):1335-1337.
    103. Radtke P J,Amateis R L,Prisley S P,et al.Modeling production and decay of coarse woody debris in loblollypine plantation[J].Forest Ecology and Management,2009,257:790~799.
    104. Rajandu E,Kikas K,Paal J.Bryophytes and decaying wood in Hepatica site-type boreo-nemoral Pinussylvestris forests in Southern Estonia[J].Forest Ecology and Management,2009,257:994~1003
    105. Ran F,Wu C,Peng G,et al.Physiological difference in Rhododendron calophytum seedings regenerated inmineral soil or fallen dead wood of different decaying stages[J].Plant Soil,2010,337:205~215
    106. Rebertus A J,Veblen T T.Structure and tree-fall gap dynamics of old-growth Nothosfagus forests in Tierra delFuego,Argentina[J].Journal of Vegetation Science,1993,4:461~654
    107. Rubino DL,McCarthy BC.Evaluation of coarse woody debris and forest vegetation across topographicgradients in a southern Ohio forest[J].Forest Ecology and Management,2003,183:221~238
    108. Sain JD,Schilling EB,Aust WM.Evaluation of coarse woody debris and forest litter based on harvesttreatment in a tupelo-cypress wetland[J].Forest Ecology and Management,2012,280:2~8
    109. Sandstrom F,Petersson H,Kruys N,et al.Biomass conversion factors(density and carbon concentration)by decay classes for dead wood of Pinus sylvestris,Picea abies and Betula spp. In boreal forests ofSweden[J].Forest Ecology and Management,2007,243:19~27
    110. Savely HE.Ecological relations of certain animals in dead pine and oak logs[J].Ecological Monographs,1939,9:322~385
    111. Scott L S,Jason J M.Fuel treatment effects on snags and coarse woody debris in a Sierra Nevada mixedconifer forest[J].Forest Ecology and Management,2005,214:53~64
    112. Sollins P,Cline SP,Verhoeven T,et al.Pattern of log decay in old growth Douglas-fir forest[J].CanadianJournal of Forest Research,1987,17:1585~1595
    113. Sollins P,Grier CC,McCorison FM,et al.The internal element cycles of an old-growth douglas-fir ecosystemin western Oregon[J].Ecological Monographs,1980,50(3):261~285
    114. Sollins P. Input and decay of coarse weedy debris in coniferous stands in western Oregon andWashington[J].Canadian Journal of Forest Research,1982,12:18~28
    115. Spears J D H,Lajtha K.The imprint of coarse woody debris on soil chemistry in the western OregonCascades[J].Biogeochemistry,2004,71:163~175
    116. Spies TA,Franklin JF,Thomas TB.Coarse woody debris in Douglas-fir forests of western Oregon andWashington[J].Ecology,1988,69:1689~1702
    117. Stephens SL,Fry DL,Franco-Vizcaino E,et al.Coarse woody debris and canopy cover in an old-growthJeffrey pine-mixed conifer forest from the Sierra San Pedro Martir,Mexico[J]. Forest Ecology andManagement,2007,240:87~95
    118. Strahm B D,Harrison R B,Terry T A,et al.Soil solution nitrogen concentrations and leaching rates asinfluence by organic matter retention on a highly productive Douglas-fir site[J].Forest Ecology andManagement,2005,218:74~88
    119. Sugita H,Nagaike T.Microsites for seedling establishment of subalpine conifers in a forest with moss-typeundergrowth on Mt.Fuji,central Honshu,Japan[J].Ecology Research,2005,20:678~685
    120. Szabo H V and Buddle C M.On the relationships between ground-dwelling spider (Araneae)assemblagesand dead wood in a northern sugar maple forest[J].Biodiversity and Conservation,2006,15:4119~4141
    121. Takahashi M,Sakai Y,Ootomo R,et al.Establishment of tree seedlings and water-soluble nutrients in coarsewoody debris in an old-growth Picea-Abies forest in Hokkaido, northern Japan[J].Canadian Journal of ForestResearch,2000,30:1148~1155.
    122. Tedersoo L,Gates G,Dunk C W,et al.Establishment of ectomycorrhizal fungal community on isolatedNothofagus cunninghamii seedlings regenerating on dead wood in Australian wet temperate forests:doesfruit-body type matter[J].Mycorrhiza,2009,19:403~416
    123. Ter Braak CJF,Smilauer FP. CANOCO reference manual and CanoDraw for Windows User’s guide softwarefor Canonical Ordination(version4.5)[M].New York:Microcomputer power,Ithaca,2002
    124. Todd B D,Andrews K M.Response of a reptile guild to forest harvesting[J].Conservation Biology,2008,22:753~761
    125. Todd B D,Luhring T M,Rothermal B B,et al.Effects of forest removal onamphibian migrations:implicationsfor habitat and landscape connectivity[J].Journal of Applied Ecology,2009,46:554~561
    126. Todd B D,Rothermel B B,Reed R N,et al.Habitat alteration increase invasive fire ant abundance to thedetriment of amphibians and reptiles[J].Biological Invasions,2008,10:539~546
    127. USDA Forest Service.DRAFT National report on sustainable forests–2010.Washington DC:USDA ForestService,2010,2~60
    128. Vanha-Majamaa I,Lilja S,Ryoma R,et al.Rehabilitating boreal forest structure and species composition inFinland through logging, dead wood creation and fire: The EVO experiment[J].Forest Ecology andManagement,2007,250:77~88
    129. Vavrova P,Penttila T,Laiho R.Decomposition of Scots pine fine woody debris in boreal conditions:implications for estimating carbon pools and fluxes[J].Forest Ecology and Management,2009,257:401~412
    130. Waldien D L,Hayes J P,Huso M P P.Use of downed wood by Townsend’s chipmunks(Tamias townsendii)in western Oregon[J].Journal of Mammalogy,2006,87:454~460
    131. Wall A.Effect of removal of logging residue on nutrient leaching and nutrient pools in the soil afterclearcutting in a Norway spruce stand[J].Forest Ecology and Management,2008,256:1372~1383
    132. Wang C K,Bond-Lamberty B,Gower S T.Environmental controls on Carbon dioxide flux from black sprucecoarse woody debris[J].Oecologia,2002,132:374~381
    133. Wang Q,Xiao F,Wang S,et al. Response of selected soil biological properties to stump presence and agein a managed subtropical forest ecosystem[J].Applied Soil Ecology,2012,57:59~64
    134. Weaver J K,Kenefic L S,Seymour R S,et al.Decaying wood and tree regeneration in the Acadian Forest ofMaine,USA[J].Forest Ecology and Management,2009,257:1623~1628.
    135. Wilcke W,Hess T,Bengel C,et al.Coarse woody debris in a montane forest in Ecuador:mass,C and nutrientstock,and turnover[J].Forest Ecology and Management,2005,205:139~147
    136. Woodall C W,Liknes G C.Climatic regions as an indicator of forest coarse and fine woody debris carbonstocks in the United States[J].Carbon Balance and Management,2008b,3:5
    137. Woodall C W,Liknes G C.Relationships between forest fine and coarse woody debris carbon stocks acrosslatitudinal gradients in the United States as an indicator of climate change effects[J].Ecological Indicators,2008a,8:686~690
    138. Woodall C W,Nagel L M.Coarse woody type: A new method for analyzing coarse woody debris and forestchange[J].Forest Ecology and Management,2006,227:115~121.
    139. Woodall C W. Carbon flux of down woody materials in forests of the North Central UnitedStates[J].International Journal of Forestry Research,2010,1~9
    140. Yan ER,Wang XH,Huang JJ,et al.Long-lasting legacy of forest succession and forest management:characteristics of coarse woody debris in an evergreen broad-leaved forest of eastern china[J].Forest Ecologyand Management,2007,252:98~107
    141. Yang F F,Li Y L,Zhou G Y,et al.Dynamics of coarse woody debris and decomposition rates in anold-growth forest in lower tropical China[J].Forest Ecology and Management,2010,259:1666~1672
    142. Yano Y,Lajtha K,Sollins P,et al.Chemistry and dynamics of dissolved organic matter in a temperateconiferous forest on andic soils:effects of litter quality[J].Ecosystems,2005,8:286~300
    143. Yao H,Bowman D,Shi W.Seasonal variations of soil microbial biomass and activity in warm-andcool-season turfgrass systems[J].Soil Biology and Biochemistry,2011,43:1536~1543
    144. Yatskov M,Harmon M E,Krankina O N.A chronosequence of wood decomposition in the boreal forests ofRussia[J].Canadian Journal of Forest Research,2003,33:1211~1226
    145. You H M,He D J,You W B,et al.Spatial distribution pattern of coarse woody debris(CWD)in two typicalforest types in Tianbaoyan National Nature Reserve.World Automation Congress,2080-2087,United States,2012.
    146. Yu X,Chen L,Niu J,et al.Hydrological effects of CWD in sub-alpine dark coniferous ecosystem of upperreaches of Yangtze River[J].Science of Soil and Water Conservation,2004,2(4):117~122
    147. Zalamea M,Gonzalez G,Ping CL,et al.Soil organic matter dynamics under decaying wood in a subtropicalwet forest:effect of tree species and decay stage[J].Plant Soil,2007,296:173~185
    148. Zhu XL.Effect of gap size on seedling establishment of Tsuga longibracteata.Chinese Forestry Science andTechnology,2007,6(3):66-71
    149. Zielonka T.When does dead wood turn into a substrate for spruce replacement[J].Journal of VegetationScience,2006,17:739~746
    150.班勇.兴安落叶松老龄林落叶松林木死亡格局以及倒木对更新的影响[J].应用生态学报,1997,8(5):449~454.
    151.曹靖,陈琦,常雅军,等.甘肃兴隆山自然保护区森林演替对土壤肥力影响的评价[J].水土保持研究,2009,16(4):89~99.
    152.陈华,徐振邦.长白山红松针阔混交林倒木站杆树种组成和储量的调查[J].生态学杂志,1991b,11(1):17~12.
    153.陈华,徐振邦.粗死木质物残体生态研究历史、现状和趋势[J].生态学杂志,1991a,109(1):45~50.
    154.代力民,徐振邦.阔叶红松林倒木贮量的变化规律[J].生态学报,2000,20(3):412~416.
    155.代力民.长白山红松阔叶混交林生态系统倒木生态学研究[D].北京:中国科学院生态环境研究中心,2002
    156.单延龙,关山,廖光煊.长白山林区主要可燃物类型地表可燃物载量分析[J].东北林业大学学报,2006,34(6):34~36
    157.单延龙.大兴安岭森林可燃物的研究[D].哈尔滨:东北林业大学博士学位论文,2003
    158.邓云,张文富,邓晓宝,等.西双版纳热带季节雨林粗死木质残体储量及其空间分布[J].生态学杂志,2012,31(2):261~270
    159.段晓峰,孙宝年,李加军,等.熵权属性识别模型在水质动态评价中的应用[J].安全与环境学报,2010,10(2):109~112
    160.傅立国.中围植物红皮书——稀有濒危植物:第一册[M].北京:科学出版社,1991:124~125.
    161.谷会岩,代力民,王顺忠,等.人为干扰对长白山红松针阔叶混交林粗木质残体的影响[J].林业科学,2006,42(10):1~5.
    162.谷会岩,金靖博,陈祥伟,等.人为干扰对大兴安岭北坡兴安落叶松林粗死木质残体的影响[J].应用生态学报.2009,20(2):265~270
    163.关松荫.土壤酶及其研究法[M].北京:中国农业出版社.1986.
    164.郭泺,余世孝,夏北成,等.地形对山地森林景观格局多尺度效应[J].山地学报,2006,24(2):150~155
    165.郝占庆,吕航.木质物残体在森林生态系统中的功能评述[J].生态学进展.1989,6(8):179~183.
    166.郝占庆.长白山北坡岳桦云冷杉林中倒木在森林天然更新中的作用[D].沈阳:中国科学院沈阳应用生态研究所,1988
    167.何东进,何小娟,洪伟,等.天宝岩猴头杜鹃林粗死木质残体数量特征[J].福建林学院学报,2008,28(4):293~298
    168.何东进,何小娟,洪伟,等.森林生态系统粗死木质残体的研究进展[J].林业科学研究,2009,22(5):715~721
    169.何帆,王得祥,张宋智,等.小陇山林区主要森林群落凋落物及死木质残体储量[J].应用与环境生物学报,2011,17(1):46~50
    170.何小娟.天宝岩3种典型森林类型粗死木质残体生态学特征研究[D].福州:福建农林大学,2009,3
    171.贺红士,常禹,胡远满,等.森林可燃物及其管理的研究进展与展望[J].植物生态学报,2010,34(6):741~752
    172.贺旭东,杨智杰,郭剑芬,等.万木林自然保护区常绿阔叶林木质残体贮量及其组成[J].亚热带资源与环境学报,2010,5(2):46~52
    173.洪伟,闫淑君,吴承祯.福建森林生态系统安全和生态响应[J].福建农林大学学报(自然科学版),2003,32(1):79~83.
    174.侯平,潘存德.森林生态系统中的粗死木质残体及其功能[J].应用生态学报,2001,12(2):309~314
    175.胡海清,牛树奎,金森,等.林火生态与管理[M].北京:中国林业出版社,2005:17~91
    176.金光泽,刘志理,蔡慧颖,等.小兴安岭谷地云冷杉林粗木质残体的研究[J].自然资源学报,2009,24(7):1256~1266.
    177.阚显照,乔才元,高卉,等.长苞铁杉nrDNA内转录间隔区及5.8s的二级结构分析研究[J].激光生物学报,2007b,16(3):227~333.
    178.阚显照,乔才元,朱国萍,等.长苞铁杉nrDNA ITS区假基因化拷贝的克隆及序列分析研究[J].激光生物学报,2007a,16(2):208~215.
    179.赖志华,朱小龙,李振基,等.低温胁迫对长苞铁杉幼苗的生理影响[J].厦门大学学报,2008,47(1):122~126
    180.赖志华.长苞铁杉幼苗对极端温度和外源钙的适应与响应机制[D].厦门:厦门大学,2007
    181.李国雷,刘勇,李瑞生,等.油松人工林土壤质量的演变[J].林业科学,2008,44(9):76~81
    182.李林初.长苞铁杉的核型分析及其分类学意义[J].云南植物研究,1991,13(3):309-313.
    183.李小川,吴泽鹏,陈宏通,等.广东省珠江三角洲城市森林抗火树种筛选研究[J].热带热带植物学报,2003,11(4):316~318
    184.李志,刘文兆,王秋贤.黄土塬区不同地形部位和土地利用方式对土壤物理性质的影响[J].应用生态学报,2008,19(6):1303~1308
    185.梁宏温,温琳华,温远光,等.特大冰雪灾害干扰下大明山常绿阔叶林木质残体的贮量特征[J].林业科学,2012,48(3):11~16
    186.梁瀛,张思玉,努尔古丽,等.天山中部林区主要树种理化性质及燃烧性分析[J].林业科学,2011,47(12):101~105
    187.林金星.中国特有植物长苞铁杉的生物学特性及其保护[J].生物多样性,1995,3(3):147~152
    188.林琴琴,吴承祯,洪伟,等.珍稀濒危植物长苞铁杉林物种多样性的梯度效应研究[J].江西农业大学学报,2005,27(5):713~718.
    189.林勇明,吴承祯,洪伟,等.珍稀濒危植物长苞铁杉群落的植物生活型及叶特征分析[J].植物资源与环境学报,2004,13(4):35-38.
    190.刘翠玲,潘存德,师瑞峰.鳞毛蕨天山云杉林倒木更新分析[J].干旱区研究,2007,24(6):821~825.
    191.刘菲.帽儿山森林可燃物热分析的研究[D].哈尔滨:东北林业大学硕士学位论文,2005
    192.刘惠英,张思玉,吉霞.粗死木质残体的水土保育功能[J].世界林业研究,2004,17(3):25~28
    193.刘美英.马家塔复垦区土壤质量评价及其平衡施肥研究[D].内蒙古:内蒙古农业大学,2009:38
    194.刘强,杨智杰,贺旭东,等.中亚热带常绿阔叶林粗死木质残体呼吸季节动态及影响因素[J].生态学报,2012,32(10):3061~3068
    195.刘妍妍,金光泽.地形对小兴安岭阔叶红松(Pinus koraiensis)林粗死木质残体分布的影响[J].生态学报,2009,29(3):1398~1406
    196.刘妍妍,金光泽.小兴安岭阔叶红松林粗木质残体基础特征[J].林业科学,2010a,46(4):8~14.
    197.刘妍妍,金光泽.小兴安岭阔叶红松林粗木质残体空间分布的点格局分析[J].生态学报,2010b,30(22):6072~6081
    198.柳泽鑫,张璐,区余端,等.冰灾后粤北常绿阔叶林粗死木质残体的组成与结构[J].西南林业大学学报,2011,31(4):18~23
    199.鲁如坤.土壤农化分析方法[M].北京:中国农业出版社,1999,296~338
    200.陆耀东,薛立,曹鹤,等.去除地面枯落物对加勒比松(Pinus caribaea)林土壤特性的影响[J].生态学报,2008,28(7):3205~3211
    201.吕春花.黄土高原子午岭地区土壤质量对植被恢复过程的响应[D].陕西:西北农林科技大学,2009:3
    202.吕琨珑,饶良懿,李菲菲,等.中国森林粗死木质残体储量及其影响因素[J].浙江农林大学学报,2013,30(1):114~122
    203.吕明和,周国逸,张德强,等.鼎湖山锥栗粗死木质残体的分解和元素动态[J].热带热带植物学报,2006,14(2):107~111
    204.罗军刚,解建仓,阮本清.基于熵权的水资源短缺风险模糊综合评价模型及应用[J].水利学报,2008,39(9):1092~1104
    205.罗献宝,张颖清,徐浩,等.温带阔叶红松林中不同树种和倒木对土壤性质的影响[J].生态环境学报,2011,20(12):1841~1845.
    206.马雪华.降雨在杉木和马尾松人工林养分循环中的作用[J].林业科学研究,1988,(2):123~131
    207.牛赟,敬文茂.祁连山北坡主要植被下土壤异质性研究[J].水土保持研究,2008,15(4):258~263
    208.彭鸿,Wolfg. M.枯倒木更新:一种应用于中欧的新的森林更新方法[J].世界林业研究,1999,6(12):73
    209.钱莲文,吴承祯,洪伟,等.长苞铁杉林林隙自然干扰规律[J].应用与环境生物学报.2004,10(6):718~723.
    210.邱迎君,李作洲,黄宏文.濒危植物长苞铁杉的年龄结构与空问格局的研究[J].武汉植物学研究,2008,26(5):495-500.
    211.邱迎君,易官美,宁祖林,等.濒危植物长苞铁杉的地理分布和资源现状及致危因素分析[J].植物资源与环境学报,2011,20(1):53~59
    212.舒立福,田晓瑞,李红,等.我国亚热带若干树种的抗火性研究[J].火灾科学,2000,9(2)
    213.宋泽伟,唐建维.西双版纳热带季节雨林的粗死木质残体及其养分元素[J].生态学杂志,2008,27(12):2033~2041
    214.孙秀云,王传宽.东北主要树种倒木分解释放的CO2通量[J].生态学报,2007,27(12):5130~5137
    215.唐旭利,周国逸.南亚热带典型森林演替类型粗死木质残体贮量及其对碳循环的潜在影响[J].植物生态学报,2005,29(4):559~568.
    216.汪思龙,陈楚莹.森林残落物生态学[M].北京:科学出版社.2010
    217.汪松,解焱.中国物种红色名录(第一卷):红色名录[M].北京:高等教育出版社,2004:305.
    218.王飞,张秋良,王冰,等.不同年龄杜香-兴安落叶松粗死木质残体贮量及特征[J].生态学杂志,2012,31(12):2981-2989
    219.王俊峰.长白山过伐区主要森林类型空间分布格局与林分更新研究[D].北京:北京林业大学,2005
    220.王文娟,常禹,刘志华,等.大兴安岭呼中林区粗死木质残体贮量及其环境梯度[J].应用生态学报,2009a,20(4):773~778
    221.王文娟,常禹,刘志华,等.大兴安岭呼中林区火烧迹地粗死木质残体特征[J].应用生态学报,2009b,20(8):1805~1810
    222.王晓丽,牛树奎,马钦彦,等.以地表死可燃物评估八达岭林场森林燃烧性[J].生态学报,2009,29(10):5313~5319
    223.王晓丽.北京山区森林燃烧性研究[D].北京:北京林业大学博士学位论文,2010
    224.王应军,鲜俊仁,杨理艳.四川王朗自然保护区原始冷杉粗木质残体的储水潜力评估[J].水土保持学报,2010,24(5):126~134
    225.吴承祯,洪伟,吴继林,等.长苞铁杉群落种问竞争的研究[J].西北植物学报,2001,21(1):154-158.
    226.吴承祯,洪伟,吴继林,等.珍稀濒危植物长苞铁杉的分布格局[J].植物资源与环境学报,2000,9(1):31-34.
    227.吴承祯,廖成章,洪伟,等.长苞铁杉林主要木本植物种类组成的局域分布[J].福建林学院学报,2002,22(3):193-196.
    228.吴家兵,关德新,韩士杰,等.长白山地区红松和紫椴倒木呼吸研究[J].北京林业大学学报,2008,30(2):14~19
    229.武军.森林地表细小可燃物载量和含水率分布特性的研究[D].北京:中国科学技术大学硕士学位论文,2011
    230.向伟,李振基,龙寒,等.不同群落类型的长苞铁杉林的根际微生物研究[J].厦门大学学报(自然科学版),2005,44:62~65
    231.闫恩荣,王希华,黄建军.森林粗死木质残体的概念及其分类[J].生态学报,2005,25(1):158~167
    232.杨方方,李跃林,刘兴诏.鼎湖山木荷(Schima Superba)粗死木质残体的分解研究[J].山地学报,2009,27(4):442~448
    233.杨方方,李跃林.鼎湖山粗死木质残体生物量特征[J].应用与环境生物学报,2011,17(5):750-752
    234.杨方方,李跃林.鼎湖山锥栗粗死木质残体雨季呼吸特征研究[J].中南林业科技大学学报,2010,30(10):18~23
    235.杨礼攀,刘文耀,杨国平,等.哀牢山湿性常绿阔叶林和次生林木质物残体的组成与碳储量[J].应用生态学报,2007,18(10):2153~2159
    236.杨礼攀.哀牢山山地湿性常绿阔叶林木质物残体的贮量、组成和生态学功能研究[D].云南:中国科学院西双版纳热带植物园,2007
    237.杨丽韫,代力民,张扬建.长白山北坡暗针叶林倒木贮量和分解的研究[J].应用生态学报,2002a,13(9):1069~1071.
    238.杨丽韫,代力民.长白山北坡苔藓红松暗针叶林倒木分解及其养分含量[J].生态学报,2002b,22(2):185~189.
    239.杨丽韫.长白山北坡暗针叶林倒木分解的研究[D].沈阳:中国科学院沈阳应用生态研究所,2000
    240.杨青青,王克林,岳跃民.桂西北石漠化空间分布及尺度差异[J].生态学报,2009,29(7):3629~3640
    241.叶更新,叶希莹.长白山区林下可燃物含水率的观测特征和相关分析[J].中国农学通报,2011,27(22):22~27
    242.游惠明,何东进,洪伟,等.海拔对天宝岩长苞铁杉林粗死木质残体分布的影响[J].福建农林大学学报(自然科学版),2011,40(4):365~369
    243.游惠明,何东进,刘进山,等.天宝岩3种典型森林类型CWD持水能力的比较[J].热带热带植物学报,2010,18(6):680~685
    244.袁杰,侯琳,蔡靖,等.秦岭火地塘林区倒木及其土壤化学元素含量特征[J].林业科学,2011,47(11),19~24
    245.岳跃民,王克林,张伟,等.基于典范对应分析的喀斯特峰丛洼地土壤-环境关系研究[J].环境科学,2008,29(5):1400~1405
    246.张超,刘国彬,薛萐,等.黄土丘陵区不同林龄人工刺槐林土壤酶演变特征[J].林业科学,2010,46(12):23~29
    247.张海东.广州三种典型森林粗死木质残体(CWD)储量研究[D].广州:中山大学硕士学位论文,2008
    248.张利敏,王传宽,唐艳.11种温带树种粗木质残体呼吸的时间动态[J].生态学报,2010b,30(12):3126~3134.
    249.张利敏,王传宽,唐艳.11种温带树种粗木质残体分解初期结构性成分和呼吸速率的变化[J].生态学报,2011,31(17):5017~5024
    250.张利敏,王传宽.东北东部山区11种温带树种粗木质残体分解与碳氮释放[J].植物生态学报,2010a,34(4):368~374
    251.张庆费,宋永昌,由文辉.浙江天童植物群落次生演替与土壤肥力的关系[J].生态学报,1999,19(2):174~178.
    252.张琼,洪伟,吴承祯,等.长苞铁杉天然林群落种内及种间竞争关系研究[J].广西植物,2005,25(1):14-17.
    253.张星.自然灾害灾情的熵权综合评价模型[J].自然灾害学报,2009,18(6):189~192
    254.赵鹏武,海龙,宋彩玲.大兴安岭北部兴安落叶松原始林倒木研究[J].干旱区资源与环境,2010,24(3):173~177.
    255.赵秀海.长白山红松针阔混交林倒木对天然更新的影响(Ⅰ):倒木自身特点对天然更新[J].吉林林学院学报,1996a,12(1):1~4.
    256.赵秀海.长白山红松针阔混交林倒木对天然更新的影响(Ⅱ):林冠空隙对森林天然更新[J].吉林林学院学报,1996b,12(1):5~7.
    257.赵秀海.长白山红松针阔混交林中倒木的分布格局[J].吉林林学院学报,1995,11(4):200~204.
    258.郑关关,洪伟,吴承祯,等.灵石山常绿次生林不同海拔CWD贮量特征[J].福建林学院学报,2009,29(1):6~10
    259.郑金双.菌根接种对长苞铁杉幼苗生长的影响[J].亚热带植物科学,2006,35(4):41~44.
    260.郑凌峰.长苞铁杉的生态生物学特性[J].植物资源与环境学报,2000,9(4):59~60.
    261.朱小龙,宋爱琴,王建林,等.光照条件对长苞铁杉种子萌发与幼苗生长的影响[J].福建林学院学报,2008,28(3):262-266
    262.朱小龙.长苞铁杉天然更新生态学研究[D].厦门:厦门大学,2006
    263.邹惠渝,张凤春.长苞铁杉和铁杉属数量分类的研究[J].南京林业大学学报(自然科学版),1996,20(1):43~47
    264.邹惠渝,周晓白.珍稀树种长苞铁杉更新特性的研究[J].南京林业大学学报,1994,18(1):45-50.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700