用户名: 密码: 验证码:
巨尾桉脱落树皮形成过程及机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传统脱落树皮发生理论认为:“由于树皮内新周皮的形成,新周皮外侧的落皮层被切断水分和养料供应而死亡,在风吹雨淋等外力作用下发生脱落”。但该理论尚存多处疑问。从传统脱落树皮发生理论可见,周皮的形成对落皮层脱落具有重要作用。离区和离层的形成及分离是研究植物器官脱落的核心内容,如果套用于脱落树皮的发生,则新周皮就相当于离区,新周皮最外层的几层木栓层就是离层。因此对脱落树皮形成过程的研究就是对树皮中离区形成过程的研究,也是对周皮形成过程的研究。
     为丰富和完善脱落树皮形成理论,揭示周皮内木栓层和木栓形成层的形成过程和机理,改善脱落树皮性状,促进其开发利用,有必要对脱落树皮形成过程及机理进行深入研究。
     本研究基于木材学中树皮脱落和周皮形成的基础理论,以脱落树皮形成过程中离区细胞微观和超微结构变化为主轴,分别针对脱落树皮形成过程的各个阶段:利用光学和电子显微镜,研究离区细胞微观和超微观结构特征,以掌握其发展变化细节;采用TUNEL法和DNA Ladder法研究离区细胞PCD发生,以确定其死亡本质;通过对离区细胞壁水解酶分布及活性变化动态的分析,明确其松弛和脱落机理;通过对离区活性氧水平和抗氧化酶活性变化动态的分析,探究其细胞变化机理。结果表明:
     (1)新鲜树皮由内向外依次由维管形成层、次生韧皮部和周皮组成,其中次生韧皮部由筛管、伴胞、含晶细胞、韧皮纤维、韧皮射线和韧皮薄壁细胞按一定规律排列组成;新鲜树皮的热水抽提物、1%NaOH抽提物、苯醇抽提物含量分别为11.89%、18.89%、1.85%,新鲜树皮的纤维素、半纤维素、木质素含量分别为45.90%、27.00%、11.49%;从FTIR光谱图判断,新鲜树皮含晶细胞中的大量晶体是一水草酸钙。
     (2)脱落树皮形成过程是动态的变化过程,根据离区细胞结构特征和发生顺序,将脱落树皮形成过程划分为细胞脱分化前、细胞脱分化期、木栓形成层形成期、木栓层形成期、径向伸展层形成期、离层细胞分离期六个阶段。各阶段离区细胞的主要特征是:○1细胞脱分化前,薄壁细胞具中央大液泡,细胞质少且边缘化,细胞核小,离区细胞处于不活跃的相对静止状态;○2细胞脱分化期,细胞质迅速增加,液泡化程度降低,细胞核变大并移向细胞中央,核仁清晰,核孔密集,离区细胞发生脱分化,逐渐恢复分裂能力;○3木栓形成层形成期,离区细胞的细胞质丰富,细胞核大而明显,核仁清晰,薄壁细胞进行无丝分裂,形成木栓形成层,同时可观察到细胞壁的形成过程;○4木栓层形成期,木栓形成层进行有丝分裂,向外分生木栓层,向内分生栓内层,木栓层细胞逐渐成熟并出现PCD特征;角隅细胞逐渐消融,并具有明显的PCD特征;○5径向伸展层形成期,木栓形成层细胞发生径向伸展,成为径向伸展层,其径向壁呈现先破裂解体再重构的现象,木栓层细胞普遍具有明显PCD特征,并形成开口朝向落皮层的U形加厚;○6离层细胞分离期,离层细胞开始分离脱落;径向伸展层内壁的层状加厚和不定形沉积物不断累积;第二径向伸展层形成,其细胞壁具有均匀的层状栓质化加厚;木栓层细胞的U形加厚明显增强,并具有明显的层状结构。
     (3)通过对离区细胞结构特征的研究发现:○1离区内的木栓形成层细胞是由脱分化后的薄壁组织细胞分裂而来;○2细胞脱分化期,发生脱分化的离区细胞内未见淀粉粒增多,与离体培养和愈伤组织形成的研究结果不同;○3在木栓形成层形成期,观察到无丝分裂时的初生壁形成方式;○4径向伸展层形成期,木栓形成层细胞径向壁发生先破裂解体再重构的现象,为细胞壁松弛理论的化学键断裂说提供了直观证据;○5未见细胞壁栓质化、离区细胞死亡、脱落树皮发生之间直接联系;○6树皮脱落与花、叶、果实脱落在离区平面、细胞结构和离层位置存在区别。
     (4)透射电镜下细胞超微结构特征表明,离区细胞形成和离层细胞分离中细胞死亡属于主动的程序化死亡,而不是被动的细胞坏死。对离区形成过程中TUNEL检测和DNA梯度检测结果表明:离区细胞在木栓层形成期就已经具备了明显的程序化死亡特征,随着离区细胞的发展,程序化死亡程度不断深化。TUNEL检测和DNA梯度检测的结论均与离区细胞程序化死亡的超微结构特征相吻合,为离区细胞死亡的PCD本质提供了充足的证据。
     (5)纤维素酶主要定位于初生壁上,在细胞脱分化和径向伸展层形成期,为细胞壁纤维素水解发挥了重要作用,但对离层细胞分离作用不大;果胶酶主要分布于细胞壁的胞间层和细胞角隅,在细胞脱分化、径向伸展层形成和离层细胞分离期,为细胞壁胞间层物质的降解发挥了重要作用。果胶酶在离层细胞分离期对胞间层物质的降解作用是导致离层细胞分离的根本原因。
     (6)通过对脱落树皮形成过程中细胞微观和超微观结构特征、活性氧水平变化动态的研究,并结合现有成果理论综合分析,结果表明活性氧对脱落树皮的发生具有重要作用:○1·OH可通过松弛细胞壁,促使离区细胞体积或长度增长,并在离层细胞分离期深化木栓层细胞程序化死亡的强度和速度;○2O_2-直接参与离区细胞程序化死亡的诱导,也可转化为H_2O_2以改变活性氧比例,从而调控离区细胞的分裂和分化;○3H_2O_2在脱落树皮形成过程中促进细胞脱分化的发生,在木栓层形成期和径向伸展层形成期参与细胞壁的生成和植物细胞衰老的启动,在离层细胞分离期诱导乙烯产生以加速离层细胞的分离。
     (7)通过对脱落树皮形成过程中细胞微观和超微观结构特征、活性氧水平变化动态、抗氧化酶活性变化动态的研究,并结合现有成果理论综合分析,结果表明各抗氧化酶对脱落树皮的发生具有重要作用:○1POD促进离区细胞脱分化,参与木栓层形成期和径向伸展层形成期的细胞壁构建,在离层细胞分离期加速呼吸氧化进程,促进离区细胞衰老;○2PAL参与了细胞壁物质的形成以及细胞内多酚类物质的积累;○3SOD通过催化细胞内O_2-为H_2O_2调节活性氧比例,以调控离区细胞分裂和分化;○4CAT通过催化H_2O_2为分子氧和水,调节活性氧的比例,从而参与离区细胞分裂增殖或分化生长的调控。
     (8)根据本研究结果,提出巨尾桉脱落树皮形成理论:巨尾桉新鲜树皮内每年形成一次离区(即新周皮),新周皮成熟后,木栓层细胞程序化死亡,同时最外层及其附近木栓层细胞的胞间层在果胶酶作用下发生降解,使得木栓层细胞从周皮分离,导致落皮层与树干失去连接,在风吹雨淋日晒等外力作用下,落皮层破裂并从树干脱落,成为脱落树皮。细胞壁水解酶、活性氧和抗氧化酶是离区形成和离层分离的重要调控因素。
     (9)脱落树皮由周皮和部分次生韧皮组织组成,这部分次生韧皮组织含有筛管、伴胞、韧皮纤维、韧皮射线和韧皮薄壁细胞;随树龄增加,脱落树皮外表面更加平整,内表面出现旋切纹理,厚度逐年增加,幅面面积迅速扩大;随树龄增加,纤维素、半纤维素和木质素含量逐渐提高,热水抽提物、1%NaOH抽提物、苯醇抽提物和灰分含量逐渐降低;脱落树皮的FTIR光谱图中主要含有纤维素、半纤维素、木质素和一水草酸钙的特征吸收峰。
The traditional abscission bark forming theory holds that:“due to the formation of newperiderm in the bark, the rhytidome that located outside of new periderm die because waterand nutrient supplying was cut off, finally, the rhytidome peeled off from the trunk with theinfluence of wind and rain”. From the theory, we could see that the new periderm wasimportant for the rhytidome to abscission. The forming of abscission zone and abscissionlayer was the core in studying plant tissue abscission. As for the forming of abscission bark,the periderm was just as abscission zone, and the few cork layers that located outermost ofnew periderm was just as abscission layer. Therefore, studying the forming process andmechanism of abscission bark was to study the abscission zone or periderm forming process.
     For enriche and complete the theoretical on abscission bark forming, reveal the formingprocess and mechanism of cork and cork cambium in periderm, improve performance forincrease utilization of abscission bark, the forming process and mechanism of abscission barkshould be studied.
     This study based on the basic theory of bark abscission and periderm formation in woodscience, guided by microstructure and ultrastructure changes of abscission zone. Each stage ofabscission bark forming was studied as follows: The microstructure and ultrastructure wasstudied for grasp the changing process of abscission zone cells; The PCD was studied forconfirm the nature of abscission zone cells death; Distribution and activity change of cell wallhydrolases was studied for understand cell wall loosen and separation mechanism ofabscission zone cells; The dynamic change of ROS level and antioxidant enzyme activity wasstudied for finding the change mechanism of abscission zone cells. The results showed that:
     (1) The living bark was consist of vascular cambium, secondary phloem and periderm,the sieve tube, companion cells, crystal-containing cells, phloem fibers, phloem rays, andphloem parenchymas arrayed in second phloem with some rule; The extractive content ofhot-water,1%NaOH and alcohol benzene in living bark was11.89%、18.89%、1.85%respectively, and the content of cellulose, hemicelluloses, lignin in living bark was45.90%,27.00%,11.49%respectively; It could be judged from FTIR spectra that the crystal incrystal-containing cells was calcium oxalate monohydrate.
     (2) The abscission zone forming process was dynamic. The forming process ofabscission bark was divided into six stages based on abscission zone cell structure andsequence, including before cell dedifferentiation stage, cell dedifferentiation stage, corkcambium forming stage, cork forming stage, radial expanding layer forming stage andabscission layer cells separating stage. The main cell features at each stage as follows:○1The parenchymal cells of abscission zone were not activity grounds for their big vacuole, little andmarginalized cytoplasm and small nucleus before cell dedifferentiating stage.○2Theparenchymal cells were dedifferentiating for regain fission ability at cell dedifferentiatingstage, with the feature of cytoplasm increase rapidly, small vacuole, big and centered nucleuswith obviously nucleoli and dense nuclear pore.○3The parenchymal cells were dividing inamitosis to forming cork cambium at cork cambium forming stage, with the feature ofabundant cytoplasm, big and obviously nucleoli. The forming process of new cell wall wasinvested at the same time.○4The cork cambium dividing cork cells outward and phelloderminward in motosis at cork forming stage. The PCD feature appeared in cork cells when theymature, at the same time, the corner cells were disappearing with obviously PCD feature atcork forming stage.○5There were several features at radial expanding layer forming stage,such as, the cork cambium expanding in radial direction and becoming radial expanded layer,its radial cell wall broken and recombined during expanding; The cork cells appearedobviously PCD features; The U shape thicken in cork cells that opening toward rhytidomewas forming.○6There were several features at abscission layer cells separating stage, suchas, the abscission layer cells began to separate from periderm; The cells of radial expandedlayer were filled by amorphous substance and cell wall was thickened by suberinlamella; Thesecond radial expanded layer was formed with suberificated cell wall; The U shape thickenwas strengthened with obviously laminated structure.
     (3) After the abscission zone cells feature was studied, the follows are discovered.○1The cork cambium in the abscission zone came from dedifferentiated parenchyma cells;○2There was no starch grains accumulation at cell dedifferentiating stage, which different fromtissue culture;○3The primary cell wall forming process was investigated at cork cambiumforming stage;○4There was a phenomenon of radial cell wall broken and restructure atradial expanding layer forming stage, which provided visual evidence for chemical bondfracture theory when cell wall loosening;○5There was no direct relationship among cellsuberization, cell death and bark abscission;○6There were obviously difference betweenbark abscission and other organ (flower, leaf, fruit) abscission in direction, structure andabscission layer location of abscission zone.
     (4) The ultrastructure features detected by TEM showed the death of abscission zonecells was active and programmed, but not passive. The results of TUNEL and DNA ladder testshowed that abscission zone cells had obviously PCD feature at cork forming stage, andcontinuously deepen with development of abscission zone cells. The results of TUNEL andDNA ladder test are accorded to PCD features that observed through ultrastructure. theseprovided enough evidence for abscission zone cells PCD.
     The ultrastructural feature showed that the abscission zone cells dying was a PCDprocess, this conclusion was further proved by DNA ladder and TUNEL test. The suberizationprocess only induced the PCD, however, the real reason of abscission zone cells abscissionwas cell wall degradation by pectinase.
     (5) Cellulase mainly located in primary wall. It was important for hydrolyzing celluloseof abscission zone cell wall at cell dedifferentiation stage and radial expanding layer formingstage, but unimportant for abscission layer cells separation. Pectinase mainly located inmiddle lamella and corners among the cells. It was important for hydrolyze middle lamella atcell dedifferentiation stage, radial expanding layer forming stage and abscission layer cellsseparating stage. Middle lamella was hydrolyzed by pectinase which was the primary cause ofabscission layer cells separation.
     (6) Through analysis the microstructure, ultrastructure, reactive oxygen species(ROS)level dynamic, and combined with modern theory, the results showed that the role of ROS inabscission bark formingwas important because of the following reasons:○1·OH couldincrease cells’ volume by loosen cell wall,, and accelerate the deep and speed of cork cellsdeath.○2O_2-could induce abscission zone cells death directly and convert O_2-to H_2O_2,for regulate abscission zone cells division and differentiation.○3H_2O_2promoted cellsdedifferentiation during abscission bark forming process, participates cell wall formation andinitiate PCD at cork forming stage and radial extending layer forming stage, which promotedethylene produce for accelerating abscission zone cells abscission at abscission layerseparating stage.
     (7) Through analysis the microstructure, ultrastructure, reactive oxygen species level andantioxidase activity dynamic, combined with modern theory, the results showed that the roleof antioxidant enzymes in abscission bark forming was important because of the followingreasons:○1POD could promote abscission zone cells dedifferentiate at cell dedifferentiationstage, and participate cell wall formation at cork forming stage and radial expanding layerforming stage, and promote respiration for accelerating abscission zone cells senescence atabscission layer separating stage.○2PAL participated cell wall formation of abscission zoneand polyphenol accumulation.○3SOD could regulate abscission cells division anddifferentiation by convert O_2-to H_2O_2.○4CAT could regulate ROS ratio by convert H_2O_2to O_2and H_2O, for participating abscission cells division and differentiation.
     (8) Based on the results in this thesis, the abscission bark forming theory of Eucalyptusgrandis×E. urophylla was porposed as followed. A new abscission zone (periderm) wasformed in Eucalyptus grandis×E. urophylla bark every year, after abscission zone growned,the PCD happened in cork cells, at the same time, the outer layer of cork cells was degraded by pectinase, lead to the cork cells separated from periderm, therefore, rhytidome lost touchwith stem, under the role of wind, rain and sun, rhytidome ruptured and fall off frm stem,become abscission bark. Cell wall hydrolases, ROS and antioxidant enzyme all play animportant role in abscission zone forming and abscission layer separating.
     (9) The abscission bark was consist of periderm and part of secondary phloem,there weresieve tube, companion cells, phloem fibers, phloem rays, and phloem parenchymas in the partof second phloem; The outside face smoother and the inside face appeared grain with age, thethickness and arrear also increased with age; The content of cellulose, hemicelluloses, ligninincreased with age, and the extractive content of hot-water,1%NaOH and alcohol benzenedecreased with age; The main characteristic absorption peaks were about cellulose,hemicelluloses, lignin and calcium oxalate monohydrate in FTIR spectra of abscission bark.
引文
[1]胡正海.植物解剖学[M].北京:高等教育出版社,2010:106-112.
    [2]潘国清.植物茎构造剖析[J].现代农业科技,2009,(11):108-109.
    [3] Addicott,Fredrick T.Absscission[M].USA:University of california press,1982:72-77.
    [4]赵猛,魏朔南,胡正海.漆树韧皮部的结构与发育[J].林业科学,2012,25(09):36-41.
    [5]崔克明.植物发育生物学[M].北京:北京大学出版社,2007:216-227.
    [6]李伊乐.针叶树种韧皮部结构和胼胝质分布变化的研究[D].南京:南京林业大学,2012.
    [7] Leal S, Sousa VB, Pereira H. Within and between-tree variation in the biometry of wood rays andfibres in cork oak (Quercus suber L.)[J].Wood Science and Technology,2006,40(7):585–97.
    [8] álvarez R,Alonso P,Cortizo M,et al.Genetic transformation of selected mature cork oak (Quercussuber L.) trees [J].Plant Cell Reports,2004,23(4):218–23.
    [9] Loureiro J,Pinto G,Lopes T,et al.Assessment of ploidy stability of the somatic embryogenesis processin Quercus suber L. using flow cytometry[J].Planta,2005,221(6):815–22.
    [10] Neves C,Hand P,Amancio S. Patterns of B-type cyclin gene expression during adventitious rootingof micropropagated cork oak [J].Plant Cell Tissue Organ Culture,2006,86(3):367–74.
    [11]罗伟祥,张文辉,黄一钊,等.中国栓皮栎[M].北京:中国林业出版社,2009:1-3.
    [12]刘艳贞.栓皮栎软木构造及主要化学成分的分析[D].杨凌:西北农林科技大学,2008.
    [13]郑志锋.软木资源及其利用[J].云南林业,2005,26(3):23-24.
    [14]曾新德.葡萄牙软木工业的现状及发展趋势[J].林产化工通讯,1995,29(5):25-27.
    [15]刘艳贞,雷亚芳,周伟.欧洲栓皮栎软木构造与物理性质研究进展[J].西北林学院学报2007,22(6):144-147.
    [16]谢耀坚.全国桉树人工林增至260万公顷[N].中国绿色时报,2009.09.15(A02).
    [17]刘喜明,陈瑞英,卢景龙,等.巨尾桉人工林脱落树皮结构分析[J].福建农林大学学报,2011,40(6):602-605.
    [18] Lulai EC,Suttle JC.The involvement of ethylene in wound-induced suberization of potatotuber(solanum tuberosum L.):a critical assessment [J].Postharvest Biology and Technology,2004,34(1):105-112.
    [19] Sabba RP,Lulai EC.Histological analysis of the maturaion of native and wound periderm inpotato(Solanum tuberosum L.) tuber [J].Annals of Botany,2002,90(1):1-10.
    [20] Sabba RP,Lulai EC.Immunocytological comparison native and wound periderm maturation in potatotuber [J].American Journal of Potato Research,2004,81(2):119-124.
    [21] Sen A,Quilhob T,Pereirac H.The cellular structure of cork from Quercus cerris var. cerris bark in amaterials perspective [J].Industrial Crops and Products,2011,34(1):929–936.
    [22] Graca J,Pereira H.The periderm debelopment in Quercus subber [J].IAWA Journal,2004,25(3):325-335.
    [23] Verdauger D,Molinas M.Developmental anatomy and apical organization of the primary root of corkoak(Quercus suber L.)[J].International Journal of Plant Sciences,1999,160(3):471-481.
    [24] Caritat A,Molinas M,Gutierrez E.Annual cork-ring width variability of Quercus suber L. in relationto temperature and precipitation (Extremadura, southwestern Spain)[J].Forest Ecology and Management,1996,86(1):113-120.
    [25]张智涛.大果水晶梨褐色突变体木栓层形成及其相关酶研究[D].秦皇岛:河北科技师范学院,2011.
    [26]邓斯聪,杨为海,朱效传.龙眼果皮发育解剖学观察[J].果树学报,2008,25(2):193-197.
    [27]聂继云,重雅凤,马智勇,等.金冠苹果果锈的发生原因及防治[J].北方果树,2001,(3):3-4.
    [28] Hou HW,Mwange KN,Wang YQ,et al.Changes of soluble protein, peroxidase activity anddistribution during regeneration after girding in Eucommia ulmoides [J].Acta Botanica Sinica,2004,46(2):216-223.
    [29] Mwange KN’K,Wang XW,Cui KM.Mechanism of dormancy in the buds and cambium of Eucommiaulmoides [J].Acta Botanica Sinica,2003,45(6):698-704.
    [30] Stobbe H,Schmitt U,Echstein D,et al.Development stages and fine structure of sruface callus formedafter debarking of living lime trees(tilla sp.)[J].Annals of Botany,2002,89(6):773-782.
    [31] Pereira H.Cork:Biology Production and Uses[M].2007.
    [32]李正理,崔克明,余春生,等.杜仲剥皮再生的解剖学研究[J].植物学报,1981,23(1):6-11.
    [33]李正理,崔克明,鲁鹏哲.构树剥皮再生的研究[J].植物学报,1988,30(3):286-241.
    [34]李正理,崔克明,袁正道.杜仲除去树冠对剥皮再生的影响[J].植物学报,1983,25(3):208-211.
    [35]李正理,崔克明,袁正道,等.杜仲剥皮后植皮再生的研究[J].中国科学,1983,(1):34-40.
    [36]李正理,崔克明,罗正荣.杜仲再生树皮的组织坏死[J].植物学报,1984,26(4):456-458.
    [37]李正理,崔克明.几种外源激素对杜仲剥皮再生的影响[J].植物学报,1985,27(1):1-6.
    [38]李正理,崔克明,余春生,等.杜仲茎部剥皮后塑料薄膜包裹的效应[J].中国科学,1981,(12):1591-1594.
    [39] Lulai EC,Freeman TP.The impaotant of phellogen cells and their structure characteristics insuscetibility and resistance to excoriation in immature and mature potato tuber (Solanum tuberosum L.)periderm[J].Annals of Botany,2001,88(4):555-561.
    [40] Lulai EC.The roles of phellem(skin) tensile-related fractures and phellogen shear-related fractures insusceptibility to tuber-skinning injury and skin-set development[J].American Journal of Potato Research,2002,79(4):241-248.
    [41] Lev-Yadum S,Aloni R.Wound-induced periderm tubers in the bark of Melia azedarach, Ficussycomorus and Platanus acerifolia[J].IAWA Bull,1991,12:62-67.
    [42]梁红,蔡业统.肉桂环状剥皮与新皮的再生[J].植物资源与环境,1997,6(3):1-7.
    [43]顾海清,王国良.厚朴剥皮再生研究[J].浙江林业科技,1997,17(5):64-69.
    [44]张治礼,郝秉中.巴西橡胶树剥皮再生及乳管发生的研究[J].热带作物学报,2000,21(2):12-18.
    [45]谭志雄,廖建良.龙眼剥皮再生的解剖学研究[J].广西植物,1991,11(4):312-315.
    [46]彭良志,胥洱.脐橙剥皮再生的解剖学研究[J].园艺学报,1993,20(1):93-94.
    [47]宋太伟,周光龙.杜仲树皮生长理论及剥皮再生技术[J].湖北民族学院学报(自然科学版),1997,15(3):20-23.
    [48]赵国凡,曹阳.黄柏剥皮再生的解剖学研究[J].植物学报,1984,26(3):320-323.
    [49]乔书瑞,叶萌.树木剥皮再生研究综述[J].四川林业科技,2005,26(1):49-52.
    [50] Arzee T,Chitz N,Waisel Y.The origin and development of the phellogen in Robinia pseudacaciaL.[J].New Phytologist,1968:67(1),87-93.
    [51] Arzee T,Waisel Y,Liphschitz N.Periderm development and phellogen activity in the shoots of Acaciaraddiana Savi [J].New phytologist,1970,69(2):395-398.
    [52] Liphschitz N,Waisel Y.Phellogen initiation in the stems of Eucalyptus camalduensis Dehnh[J].Austrilian journal of Botany,1970,18(2):185-189.
    [53]赵杰军,陈晓鸣,王自力,等.白蜡虫七种寄主植物枝条树皮比较解剖研究[J].广西植物,2012,32(1):40-45.
    [54]秦世立,马冬梅.树皮形态与解剖构造的研究[J].辽宁林业科技,2002,(4):11-13.
    [55] Pereira H.The cellular structure of cork from Quercus suber L.[J].IAWA Buletin,1987,8(3):213-217.
    [56]李伊乐,潘彪,伊东隆夫.针叶材不具输导功能韧皮部向落皮层的结构转变[A].中国林学会木材科学分会第十三次学术研讨会论文集[C].2012:5-9.
    [57]张振珏,陈忠仁,张永田.黄檀属两种树木形成层的活动周期和次生韧皮部的季节变化[J].植物学报,1994,36(4):300-304.
    [58]郭东升,罗建举.厚荚相思树皮构造初探[J].广西农业生物科学,2007,2:159-164.
    [59]卢敏,胡正海,田兰馨.杜仲茎韧皮部超微结构的初步研究[J].浙江林学院学报,1990,7(4):316-321.
    [60]韩丽娟,胡玉熹.水松的次生韧皮部解剖及其系统位置的讨论[J].植物分类学报,1997,35(6):527-532.
    [61]范六民,李焜章,陈耀堂,等.15种松属植物茎次生韧皮部的解剖学研究[J].应用基础与工程科学学报,1994,2(2):267-274.
    [62]贺晓,刘果厚.柏科四种植物次生韧皮部的比较解剖[J].内蒙古大学学报,1999,30(5):623-626.
    [63] Cristiane M,Pagliosaa,Karina N,et al.Characterization of the bark from residues from mate treeharvesting(Ilex paraguariensis St. Hil.)[J].Industrial Crops and Products,2010,32(3):428-433.
    [64] Thérèse MC,Goulet A,Arul J.Physiological basis of UV-C induced resistance to Botrytis cinerea intomato fruit: IV. Biochemical modification of structural barriers[J].Postharvest Biology and Technology,2008,47(1):41-53.
    [65] Ranathunge K,Schreiber L,Franke R.Suberin research in the genomics era-New interest for an oldpolymer[J].Plant Science,2011,180(3):399-413.
    [66] Pollard M,Beisson F,Li YH,et al.Building lipid barriers: biosynthesis of cutin and suberin[J].Trendsin Plant Science,2008,13(5):236-246.
    [67] Schonherr J,Ziegler H.Water permeability of Betula periderm[J].Planta,1980,147(4):345-354.
    [68] Wattendorff TC.The formation of cork cell in the periderm of Acacia senegal Willd. and theirultrastructure druing suberin deposition[J].Z. Pflanzenphysiol.1974,72(2):110-134.
    [69] Pinay P,Fortes MA.Characterization of cells in cork [J].Journal of Physics,1996,29(9):2507–2514.
    [70] Mano J.The viscoelastic properties of cork [J].Journal of materials science,2002,37(2):257-263.
    [71] Gibson LJ.Biomechanics of cellular solids[J].Journal of Biomechanics,2005,38(3):377-399.
    [72] Pereira H.The thermochemical degradation of cork [J].Wood Science and Technology,1992,26(4):259–269.
    [73] Gibson LJ,Ashby MF.Cellular solids:structure and properties [C].Cambridge:Cambridge UniversityPress,1997,453–467.
    [74] Hirokin N,Wilfred A.Bark structure of hardwoods grown on southern pine sites[M].Rochester:Syracuse University press,1980.
    [75]李国成,余晓霞.香椿树皮的化学成分分析[J].中国医院药学杂志,2006,26(8):949-952.
    [76]王静蓉等.连香树树皮的化学成分的研究[J].植物学报,1999,41(2):209-212.
    [77]廖华卫,刘恩桂.杨梅树皮的化学成分研究[J].中南药学,2006,4(3):196-199.
    [78] Pereira H.Chemical composition and variability of cork from Quercus suber L.[J].Wood Science andTechnology,1988,22(3):211-218.
    [79] Bernards MA,Lewis NG.The Macromolecular Aromatic Domain in Suberized [J].Phytochemistry,1998,47(6):915-933.
    [80] Elvira C.Chemical characterization of reproduction cork from spanish Quercus Suber[J]. Journal ofwood chemistry and technology,1998,18(4):447-469.
    [81]张丽丛,雷亚芳,常宇婷.栓皮栎软木主要化学成分的分析[J].西北林学院学报,2009,24(4):163-165.
    [82] Franke R,Briesen I,Wojciechowski T,et al.Apoplastic polyesters in Arabidopsis surface tissues-Atypicalsuberin and a particular cutin[J].Phytochemistry,2005,66(22):2643-2658.
    [83] Pereira H,Meier D,Faix O.Isolation and characterization of a guaiacyl lignin from saponified corkof Quercus suber L.[J].Holzforschung,1996,50(5):393-400.
    [84] Parameswaran N,Liese W,Giinzerodt H.Characterization of wetcork in Quercus Suber L.[J].Holzforschung.1981,35(4):195-199.
    [85]魏新莉,向仕龙,周蔚红.3种栓皮化学成分对其性能的影响[J].木材工业,2007,21(6):17-18.
    [86] Lulai EC,Corsini DL.Differential deposition of suberin phenolic and aliphatic domains and their rolesin resistance to infection during potato tuber (Solanum tuberosum L.) wound-healing [J].Physiological andMolecular Plant Pathology,1998,53(4):209-222.
    [87] Cordeiro N,Aurenty P.Surface Properties of Suberin [J].Journal of Colloid and Iinterface Science,1997,187(2):498–508.
    [88] Peter J.Holloway.The suberin composition of the cork layers of some Ribes species [J].Phytochem,1972,9(2):171-179.
    [89] Holloway PJ.Suberins of malus pumila stem and root corks [J].Phytochemistry,1982,21(10):2517-2522.
    [90] Holloway PJ.Some variations in the composition of suberin from the cork layers of Higher Plants[J].Holzforschung,1983,22(2):495-502.
    [91] Cordeiro N.Cork suberin as a new source of chemicals:1.Isolation and chemicalcharacterization of itscomposition [J].International Journal of Biological Macromolecules,1998,22(2):71-80.
    [92] Cordeiro N.Cork suberin as a new source of chemicals:2.crystallinity, thermal and rheologicalproperties[J].Bioresource Technology,1998,63(2):153-158.
    [93] Zimmermann W,Nimz H,Seemüller E.H and13C NMR spectroscopic study of extracts from corksof Quercus suber [J].Holzforschung,1985,39(1):45-49.
    [94] Rocha SM,Goodfellow BJ,Delgadillo L,et al. Enzymatic isolation and structural characterizationof polymeric suberin of cork from Quercus Suber L.[J]. International Journal of BiologicalMacromolecules,2001,28(2):107-119.
    [95]崔艳霞,郑志方.白桦树皮化学组成的研究[J].东北林业大学学报,1994,22(4):53~60.
    [96] Itoh T and Kang KD.The Occurrence of the Calcium Oxalate Crystals in the Cell Walls of theSecondary Phloem of Taxodiaceae[J].Holzforschung,1993,47(6):465-472.
    [97]郝建华.大关杨树皮的形成与季节变化的关系[J].西北植物学报,1993,13(4):290-293.
    [98] Waisel Y,Liphschitz N,Arzee T.Phellogen activity in Robinia pseudacacia L.[J].New Phytologist,1967,66(3):331-335.
    [99] Evert RF.The cambium and seasonal development in Robinia pseudoacacia[J].American Journal ofBotany,1967,54(2):147-153.
    [100] Aloni R,Perteson CA.Role of auxin in removal of dormancy callose and resumption of phloemactivity in branches of Vitis vinifera[J].Canadian Journal of Botany,1991,69(8):1825-1832.
    [101] Aloni R,Pererson CA.Naturally occurring periderm tubes around secondary phloem fibres in thebark of Vitis vinifera L.[J].IAWA Bull,1991,12:57-61.
    [102]罗光裕,王秀华,杨东升,等.桦木树皮结构的研究[J].东北林业大学学报,1994,22(3):23-31.
    [103]刘庆华,李正理.植物生长物质对茄茎剥离后新皮再生的影响[J].植物学报,1990,32(12):969-972.
    [104]徐欣,李正理.吲哚乙酸和苄基腺嘌呤对菊芋再生新皮组织分化的影响[J].植物学报,1991,33(1):78-81.
    [105] Wigginton MJ.Effects of temperature, oxygen tension and relative humidity on the wound-healingprocess in the potato tuber [J].Potato Research,1974,17(2):200-214.
    [106]卡特EG.植物解剖学[M].第2版.李正理译.北京:科学出版社,1986,230-246.
    [107] Warren WJ,Warren WPM.The position of regenerating cambia:a new hypothesis [J].Newphytolgoist,1961,60(1):63-73.
    [108] Sheldark AR,Northcote DH.The production of auxin by tobacco internode tissues [J].NewPhytologist,1968,67(1):1-13.
    [109]王戈荣.喜树愈伤组织形成过程的细胞学研究[D].哈尔滨:东北林业大学,2006.
    [110]许萍,张丕方.关于植物细胞脱分化的研究概况[J].植物学通报,1996,13(1):20-24.
    [111]崔克明.植物细胞程序死亡的机理及其与发育的关系[J].植物学通报,2000,17(2):97-107.
    [112]席恩华,赵广杰,张建辉.木材木质部细胞分化成熟过程及其可视化的研究进展[J].林业机械与木工设备,2101,38(2):13-15.
    [113]李双龙,徐有明,戴应金,等.木质部细胞分化的研究简述[J].四川林业科技,2010,31(1):104-106.
    [114]崔克明,王雅清.木质部细胞分化和脱分化的机理[J].西北植物学报,2000,20(6):907-921.
    [115]王雅清.杜仲次生木质部细胞分化和脱分化超微结构和生物化学研究[D].北京:北京大学,2000.
    [116]殷亚方.毛白杨形成层活动及其木材形成的组织和细胞生物学研究[D].北京:中国林业科学研究院,2002.
    [117]尤瑞麟.小麦珠心细胞衰退过程的超微结构研究[J].植物学报,1985,27(4):345-353.
    [118] Ryerson DE,Heath MC.Cleavage of nuclear DNA into oligonucleosomal fragments during cell deathinduced by fungal infection or by abiotic treatments[J].Plant Cell,1996,8(3):393-402.
    [119] Katsuhara M.Apoptosis-like cell death inbarleyroots under salt stress[J].Plant and Cell Physiology,1997,38(9):1091-1093.
    [120]赵允,孙英丽,蒋争凡,等.细胞色素C诱导胡萝卜细胞核的体外凋亡[J].科学通报,1999,44(11):1181-1185.
    [121]孙英丽,赵允,刘春香,等.细胞色素C能诱导植物细胞编程性死亡[J].植物学报,1999,41(4):379-383.
    [122]宁顺斌,宋运淳,王玲,等.药物诱导的玉米根尖细胞凋亡[J].植物学报,2000,42(7):693-696.
    [123]洪丽亚,黄儒珠,代容春.植物细胞程序化死亡的基本特征及其检测方法[J].福建林业科技,2003,30(1):7-10.
    [124]周军,颜长辉,陈浩明,等.用TUNEL法检测植物原生质体的凋亡[J].植物学通报,2000,17(1):87-89.
    [125] Wang H,Juan L,Richard MB,et al.Apoptosis:a functional paradigm for programmed plant celldeath induced by a host-se-lective phytotoxin and invoked during development[J].Plant Cell,1996,8(3):375-391.
    [126] Groover A,Dewitt V,Heidel DA,et al.Programmed cell death of plant tracheary elementsdifferentiatingin vitro[J].Protoplasm,1997,19(6):197-211.
    [127] Gavrieli Y,Sherman Y,Ben-Sasson SA.Identification of programmed cell deathin situ viaspecificlabeling of nuclear DNA fragmentation[J].Cell Biology,1992,11(9):493-501.
    [128]姜晓芳,朱海珍,周军,等.彗星电泳法在植物原生质体凋亡检测中的应用[J].植物学报,1998,40(10):928-932.
    [129] Ostling O,Johanson KJ.Microelectrophoretic study of radiation induced DNA damages inindividualmammaliancells[J].Biochem Biophs Res Commun,1984,12(3):291-298.
    [130]宁顺斌,王玲.植物细胞凋亡的ELISA检测[J].Development and reproductive biology,2000,9(2):61-68.
    [131]张亚历,姜泊,周殿元.分子生物学常用实验方法[M].北京:人民军医出版社,1996:177-179.
    [132]葛志强,元英进,李景川,等.一种研究和鉴别悬浮培养红豆杉细胞凋亡与坏死的新方法[J].植物生理学报,2001,27(3):231-234.
    [133]王翔,陈晓博,李爱丽,等.植物器官脱落分子生物学研究进展[J].作物学报,2009,35(3):381-387.
    [134] Bleecker AB, Patterson SE. Last exit: Senescence, abscission, and meristem arrest inArabidopsis[J].Plant Cell,1997,9(7):1169–1179.
    [135]韩静,王幼群.植物器官脱落的机制及其研究进展[J].植物学通报,1999,16(4):405-410
    [136]张立军,梁宗锁.植物生理学[M].北京:科学出版社,2007:357.
    [137] Ghodbane I,Nouri L.Kinetic and equilibrium study for the sorption of cadmium(II) ions fromaqueous phase by eucalyptus bark[J].Journal of Hazardous Materials,2008,152(1):148–158.
    [138] Ghodbane I, Hamdaoui O. Removal of mercury(II) from aqueous media using eucalyptusbark:Kinetic and equilibrium studies[J].Journal of Hazardous Materials,2008,160(2):301–309.
    [139] Sarin V, Pant K.K. Removal of chromium from industrial waste by using eucalyptusbark[J].Bioresource Technology,2006,97(1):15–20.
    [140] Moraisl L.C,Freitas O.M.Reactive dayes removal from waste waters by adsorption on Eucalyptusbark: variables that define the process[J].Water Research,1999,33(4):979-988.
    [141] Sravon A,Izabela S,Peter B,et al,.Developmental pathways of somatic embryogenesis[J].PlantCell, Tissue and Organ Culture,2002,69(3):233-249.
    [142] Thakur AK,Sharma S,Srivasta DK,et al.Plant regeneration and genetic transformation studies inPetiole tissue of Himaiayan Poplar(Populus ciliata Wall.)[J].Current Science,2005,89(4):664-668.
    [143]黄剑.水曲柳不定芽发生体系与发育机理的研究[D].哈尔滨:东北林业大学,2010.
    [144]齐明芳,李天来,许涛,等.园艺作物器官脱落相关酶的研究进展[J].北方园艺,2007,(6):62-65.
    [145] Bonghi CN,Rascio A,Ramina A,et al.Cellulase and polygalacturonase involvement in theabscission of leaf and fruit explants of peach[J].Plant Molecular Biology,1992,20(5):839-848.
    [146] Burns JK,Lewandowski DJ,Nairn CJ,et al.Endo-1,4-beta-glucanase gene expression and cell wallhydrolase activities during abscission in Valencia orange[J].Physiologia plantarum,1998,102(2):217-225.
    [147] Clements JC,Atkins CA.Characterization of a non-abscission mutant in Lupinus angustifoliusL.:Physiological aspects[J].Annals of Botany,2001,88(4):629-635.
    [148] Tucker ML,Baird SL,Sexton R.Bean leaf abscission:tissue-specific accumulation of a cellulasemRNA[J].Planta,1991,186(1):52-57.
    [149] Sexton R, Durbin ML, Lewis LN, et al. Use of cellulase antibodies to study leafabscission[J].Nature,1980,283:873-874.
    [150] Thompson DS,Osborne DJ.A role for the stele in intertissue signa-ling in the initiation of abscissionin bean leaves(Phaseolus vulgaris L.)[J].Plant Physiology,1994,105(1):341-347.
    [151] RidleyBL,O`Neill MA,Mohnen D.Pectins:structuer,biosynthesis,and oligogalactuornide relatedsignaling[J].Phytochemsitry,2001,57(6):929-967.
    [152] Atkinson RG,Sehroder R,HallettI C,et al.Overexpression of Polygalaeturonase in transgenic appletrees leads to a range of novel phenotypes involving chnages in cell adhesion[J].Palnt Physiology,2002,129(1):122-133.
    [153] Taylor J,Tueker GA,Lasslett Y,et al.Polygalacturonases experssion during leaf abscission ofnomral and transgenic tomato plants[J].Planta,1990,183(1):133-138.
    [154] Presseyc R.Polygalacturonase in tree Pollen[J].phytochemistry,1991,30(6):1753-1755.
    [155] Li AM,Wang YR,WU H.Cytochemical Localization of Pectinase:the Cytochemical Evidence forResin Ducts Formed by Schizogeny in Pnius massoniana Received[J].Acta Botanica Sincia,2004,46(4):443-450.
    [156]张嵩,张光伦,曾秀丽.纤维素酶和多聚半乳糖醛酸酶与果实成熟[J].果树学报,2005,22(5):532-536.
    [157]史莉.同果实软化有关的酶类研究进展[J].河北林业科技,2005(5):37-38.
    [158]李正国.果实成熟的基因调控[J].生物工程进展,2000,20(3):30-34.
    [159] Tucker GA, Robertson NG, Grierson D.Purification and changes in activities of tomatopectinesterase isoenzymes [J].Journal of the Science of Food Agriculture,1982,33(4):396-400.
    [160]陈明霞,郭君丽,李明军,等.怀山药脱分化过程中的生理生化变化的研究[J].河南师范大学学报,2003,31(1):85-87.
    [161]赵洁,程井辰,熊进,等.石刁柏愈伤组织根和芽分化过程中[J].武汉植物学研究,2997,15(l):49-53.
    [162]颜淑云.紫穗槐幼苗对干旱胁迫的生理生化响应[D].兰州:兰州大学,2010.
    [163]和红云.低温胁迫对甜瓜幼苗生长及生理生化的影响[D].石河子:石河子大学,2008.
    [164]盛德策,李凤兰,刘忠华.植物体细胞胚发生的细胞生物学研究进展[D].西北植物学报,2008,28(1):0204-0215.
    [165]王俊刚,陈国仓,张承烈.水分胁迫对2种生态型芦苇的可溶性蛋白含量、SOD、POD、CAT活性的影响[J].西北植物学报,2002,22(3):561-565.
    [166]陈德兰,张霞,江宝福.粒肩天牛为害对杨树蛋白质含量的影响[J]。生物灾害科学,2012,35(1):85-89.
    [167] Sengupta C,Raghavan V.Somatic embryogenesis in carrot cell suspension.Ⅰ.Pattern protein andnucleic acid synthesis[J].Journal of Experimental Botany,1980,31(1):247-258.
    [168]邓馨,胡文玉.草莓离体叶片脱分化与再分化过程中的生理生化变化[J].植物生理学通讯,2000,36(3):209-211.
    [169]尤海波.文心兰原球茎生长和分化过程中酶活性和可溶性蛋白的变化[J].中国林副特产,2012,(3):23-25.
    [170]蒋波.芥菜离体培养芽再生过程中的生理生化变化研究[D].重庆:西南大学,2010.
    [171] Hortensteiner S,Feller U.Nitrogen metabolism and remobilization during senescence[J].Journal ofExperimental Botany,2002,53(370):927-937.
    [172] Roberts IN,Murray PF,Passeron S,et al.The activity of the20S proteasome is maintained indetached wheat leaves during senescence in darkness[J].Plant Physiology and Biochemistry,2002,40(2):161-166.
    [173] Schopfer P.Hydrogen peroxide-mediated cell-wall stiffening in vitro in maize coleoptiles[J].Planta,1996,199(1):43–49.
    [174] Fry SC.Oxidation scission of plant cell wall polysaccharides by ascorbate-induced hydroxylradicals[J].Biochemical Journal,1998,332(2):507-515.
    [175] Neill SJ,Desikan R,Clarke A,et al.Hydrogen peroxide and nitric oxide as signaling molecules inplants[J].Journal of Experimental Botany,2002,53(372):1237-1247.
    [176]杨淑慎,高俊凤.活性氧、自由基与植物的衰老[J].西北植物学报,2001,21(2):215-220.
    [177]胡彦,何虎翼,何龙飞.活性氧与植物细胞程序化死亡[J].文山师范高等专科学校学报,2005,18(2):125-128.
    [178]林植芳,刘楠.活性氧调控植物生长发育的研究进展[J].植物学报,2012,47(1):74-86.
    [179] Kukavica B,Mojovi M,Vucinic Z,et al.Generation of hydroxyl radical in isolated pea root cellwall and the role of cell wall-bound peroxidase, Mn-SOD and phenolics in their production[J].Plant andCell Physiology,2009,50(2):304-317.
    [180] Gapper C,Dolan L.Control of plant development by reactive oxygen species[J].Plant Physiology2006,141(2):341-345.
    [181] Mitter R,Feng X,Cohen M.Post-transcriptional suppression of cytosolic ascorbate perosidaseexpression during pathogen-induces programmed cell daath in tobacco[J].Plant Cell,1998,10(3):461-473.
    [182]李忌,郑荣良.活性氧诱导细胞凋亡[J].细胞生物学杂志,1997,19(3):115-119.
    [183]王爱国,邵从本,罗广华,等.大豆下胚轴线粒体的衰老与膜脂的过氧化作用[J].植物生理学报,1988,14(3):269.
    [184] Zhao WM,Zhang J,Lu YJ,et al.The vasorelaxant effect of H2S as a novel endogenous gaseous KATPchannel opener[J].EMBO Journal,2001,20,6008-6016.
    [185]李志军,焦培培,周正立,等.胡杨横走侧根及不定芽发生的形态解剖学研究[J].北京林业大学学报.2011,33(5):42-48.
    [186] Zhang H,Ye YK,Wang SH,et al.Hydrogen sulfide counteracts chlorophyll loss in sweetpotatoseedling leaves and alleviates oxidative damage against osmotic stress[J].Plant Growth Regulation,2009,58(3),243-250.
    [187] Peng M,Kuc J.Peroxidase-generated hydrogen peroxide as a source of antifungal activity in vitroand on tobacco leaf disks[J].Phytopathology,1992,82:696-699.
    [188] Martinez C,Baccou JC,Bresson E,et al.Salicylic Acid Mediated by the Oxidative Burst Is a KeyMolecule in Local and Systemic Responses of Cotton Challenged by an Avirulent Race of Xanthomonascampestris pvmalvacearum[J].Plant Physiology,2000,122(3):757-766.
    [189] Lewis N,Yamamoto E.Lignin: occurrence, biogenesis and biodegradation[J].Plant Physiology andPlant Molecular Biology,1990,41:455-496.
    [190] Casal JJ,Mella RA,Ballari CL,et al.Phytochrome-mediated effects on extracellular peroxidaseactivity,lignin content and bending resistance in etioloted Vicia faba epicotyles[J].Physiologia Plantarum,1994,92(4):555-562.
    [191] Lagrimini LM.Wound-induced deposition of polyphenols in transgenic plants overexpressingperoxidase[J].Plant Physiology,1991,96(2):577-583.
    [192] Karpinska B,Karesson M,Schinkel H,et al.A novel superoxide dismutase with a high isoelectricpoint in higher plants:expression, regulation and protein localization[J].Plant Physiology,2001,126(4):1668-1677.
    [193] Huystee RBV.Some molecular aspects of plant peroxidase biosynthetic studies[J].Plant Physiology,1987,38:205-219.
    [194] Quiroga M,Guerrero C,Botella MA,et al.A tomato peroxidase involved in the synthesis of ligninand suberin[J].Plant Physiology,2000,122(4):1119-1127.
    [195] Christensen JH,Bauw G,Welinder KG,et al.Purification and characterization of peroxidasescorrelated with lignification in poplar xylem[J].Plant Physiology,1998,118(1):125-135.
    [196] Graham MY,Graham TL.Rapid accumulation of anionic peroxidases and phenolic polymers insoybean cotyledon tissues following treatment with Phytophthora megasperma f.sp.Glycinea wallglucan[J].P lant Physiology,1991,97(4):1445-1455.
    [197] Sato Y,Sugiyama M,Gorecki RJ,et al.Interrelationship between lignin deposition and the activitiesof peroxidase isoenzymes in differentiaing tracheary elements of Zinnia[J].Planta,1989,189(4):584589.
    [198] Imbert y A,Goldberg R,Catesson AM.Isolation and characterization of Populus isoperoxidasesinvolved in the last step of lignin formation[J].Planta,1985,164(2):221-226.
    [199] Intapruk C,Yamamoto K,Sekine M,et al.Regulatory sequences involved in the peroxidase geneexpression in Arabidopsis thaliana[J].Plant Cel l Reports,1994,13(3):123129.
    [200] Lee TT.Role of phenolic in hibitors in peroxidase mediated degradation of indole-3-aceticacid[J].Plant Physiology,1977,59(3):372-375.
    [201] Badiani M.De Biasi MG,Feici M.Soluble peroxidase from winter wheat seedling withphenoloxidase-like activity[J].Plant Physiology,1990,93(2):489-494.
    [202] Henriksen A,Smith AT,Gajihede M.The structures of the horseradish peroxidase C-Ferulic acidcomplex and the ternary complex with cyanide suggest how peroxidases oxidize small phenolicsubstrates[J].Journal of Biological Chemistry,1999,274(49):35005-35011.
    [203]朱家骏,王运煌.凤尾丝兰子房离体培养的器官发生及植株再生[J].武汉植物学研究,1991,9(3):268-274.
    [204]杨银萍.虎耳兰离体再生体系的建立及其生理生化研究[D].上海,上海交通大学,2004.
    [205]代西梅,焦演.山药零余子组织培养及培养过程中过氧化物酶活性研究[J].河南农业科学,2005,(7):69-72.
    [206]何道一,程炳篙.植物组织培养材料分化与脱分化过程中的生理生化变化[J].山东农业大学学报,1992,23(3):327-331.
    [207]余沛涛,薛应龙.植物苯丙氨酸解氨酶(PAL)在细胞分化中的作用[J].植物生理学通讯,1986,(l):37-38.
    [208] Label PH,Sotta B,Minginiae E.Endogenous levels of ABA and IAA during in vitro Rooting of wildcherry explants produced by micropropagation [J].Plant Growth Regulation,1989,8(4):325-333.
    [209] Coppens L,Gillis E.Isoenzyme Electrofocusing as a Biochemical Marker System of Embryogenesisand Organogenesis in Callus Tissues of Hordeum vulgare L.[J].Plant Phystol,1987,127(1),152-158.
    [210]汪本勤.植物SOD的研究进展[J].河北农业科学,2008,12(3):6-9.
    [211]崔凯荣,任红旭,邢更妹,等.枸杞组织培养中抗氧化酶活性与体细胞胚发生相关性的研究[J].兰州大学学报:自然科学版,1998,34(3):93-99.
    [212]陈博.不同光质下喜树愈伤组织诱导分化及生理生化的基础研究[D].杭州:杭州师范大学,2012.
    [213] Zhang H,Jiao H,Jiang CX,et al.Hydrogen sulfide protects soybean seedlings againstdrought-induced oxidative stress[J].Acta Physiologiae Plantarum,2010,32(5),849-857.
    [214] Sugie A, Naydenov N, Mizuno N,et al. Overexpression of wheat alternative oxidase gene Waox1aalters respiration capacity and response to reactive oxygen species under low temperature in transgenicArabidopsis[J].Genes and Genetic System,2006,81(5):349-354.
    [215] Rhee SG, Bae YS, Lee SR,et al.Hydrogen peroxide:a key messenger that modulates proteinphosphorylation through cysteine oxidation[J].Sci.STKE,2000,53(1):1-6.
    [216] Tay AS,Hu LF,Lu M,et al.Hydrogen sulfide protects neurons against hypoxic injury via stimulationof ATP-sensitive potassium channel/protein kinase C/extracellular signal-regulated kinase/heat shockprotein90pathway[J].Neuroscience,2010,167(2),277-286.
    [217] Sillicon.巧用PS计算不规则图形面积[J].计算机应用文摘,2006(15):69.
    [218]叶宝兴,毕建杰,孙印石.植物细胞与组织研究方法[M].北京:化学工业出版社,2010:157.
    [219]邓启平,李大纲,张金萍.FTIR法研究出土木材化学结构及化学成份的变化[J].西北林学院学报,2008,23(2):149-153.
    [220]陈瑞英,胡国楠.速生杨木密实化研究[J].福建农林大学学报:自然科学版,2005,34(3):324-329.
    [221] Owen N L,Thomas D W.Infrared studies of hard and soft woods[J]. Applied Spectroscopy,1989,43(3):451-455.
    [222]胡爱华,邢世岩,巩其亮.基于FTIR的针阔叶材木质素和纤维素特性[J].东北林业大学学报,2009,37(9):79-81.
    [223]谭燕华,欧阳健明,马洁,等.红外光谱法在草酸钙结石研究中的应用[J].光谱学与光谱分析,2003,23(4):700-703.
    [224]初敬华.植物体内的硅及硅酸体[J].生物学教学,2003,28(3):5-6.
    [225]徐峰.杉木粉液化与杉木粉/SiO2杂化陶瓷材料的研究[D].合肥:合肥工业大学,2007.
    [226]王蕊.荧光—葫芦巴碱诱导烟草BrightYellow-2细胞凋亡及其分子机制研究[D].哈尔滨:东北林业大学,2010.
    [227]张婧.板栗短雄花序发育期间细胞程序化死亡研究[D].北京:北京农学院,2007.
    [228]傅利琴.蚕豆叶片库源转换过程中胞间连丝次生变化的研究[D].北京:中国农业大学,2005.
    [229]刘海英,山成龙.药用植物大黄对·OH清除作用的研究[D].光谱实验室,2008,25(4):614-617.
    [230]田敏.草毒体外培养再生机理及遗传转化的研究[D].杭州:浙江大学.2003.
    [231] Li AM,Wang Y R,Wu H.Cytoehemical Localization of Pectinase:the Cytochemieal Evidence ofResin Ducts Formed by Schizogeny in Pinus massoniana Received[J].Acta Botanica Sinica,2004,46(4):443-450.
    [232]赵运军,李来庚.植物细胞壁松弛因子[J].植物生理学报.2011,47(10):925-935.
    [233]王权帅,赵丹莹,申琳,等.脱落调节物质对植物器官脱落的调控[J].西北植物学报,2009,29(11):2352-2359.
    [234]王亚馥,王仑山,陆卫,等.枸杞组织培养中过氧化物酶和可溶性蛋白质的变化[J].实验生物学报,1989,22(1):1-4.
    [235] Chen SX,Schopfer P.Hydroxyl-radical production in physiological reactions.A novel function ofperoxidase[J].European Journal of Biochemistry,1999,260(3):726-735.
    [236] Kinal H,Park CM,Berry JO,et al.Processing and secretion of a virally encoded antifungal toxinin transgenic tobacco plants:evidence for a Kex2p pathway in plants[J].Plant Cell,1995,7:677-685.
    [237] Jabs T,Dietrich RA,Dangl JL.Initiation of run away cell death in an Arabidopsis mutant byextracellilar superoxide[J].Science,1996,273(5283):1853-1856.
    [238]阮英.番茄种子的内源激素及活性氧的变化规律与果实成熟的关系[D].北京:中国农业大学,2005.
    [239]沈文飚,叶茂炳,徐朗莱.小麦旗叶自然衰老过程中清除活性氧能力的变化[J].植物学报,1997,39(7):634-640.
    [240]吴建慧,杨玲.低温胁迫下五米幼苗叶片活性氧的产生及保护酶活性的变化[J].植物研究,2004,24(4):486-499.
    [241]齐曼,尤努斯.盐胁迫对大米沙刺膜脂过氧化和保持本科活性的变化[J].植物研究,2005,22(4):503-507.
    [242]朱新华,梁军,李春玲.不同浓度Na2SO3处理对天竺葵活性氧化谢及保护酶活性的影响[J].安徽农业科学,2006,34(17):4236-4245.
    [243] Tabuchi T,Okada1T,Takashima1Y,et al.Transcriptional response of glycinebetaine-related genesto salt stress and light in leaf beet[J].Plant Biotechnology,2006,23(3):317–320.
    [244] Rontein D,Rhodes D,Hanson AD.Evidence from engineering that decarboxylation of free serine isthe major source of ethanolamine moieties in plants[J].Plant Cell Physiology,2003,44(11):1185–1191.
    [245]房建军,网国宁,韩一凡.银杏细胞培养中影响黄酮积累量的几个因素[J].林业科学研究,2006,19(l):51-53.
    [246] Yeo AR,Flowers SA,Rao G.Silicon reduces sodiumu up-take in rice (Oryza sativa L.) in salineconditions and this is accounted for by a reduction in the transpirational bypass flow[J].Plant CellEnvironment,1999,22(5):559-565.
    [247]崔凯荣,任红旭,邢更妹等.构祀组织培养过程中抗氧化酶活性与体细胞胚发生相关性的研究[J].兰州大学学报,1998,34(3):93-99.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700