用户名: 密码: 验证码:
地形生态位和扩散过程对暖温带森林群落构建重要性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
森林约覆盖地球陆地的31%,拥有世界陆地物种的三分之二以上,在维持全球生物多样性方面具有重要作用。森林生物多样性是人类衣食住行原材料的重要来源。在全球范围内保护森林生物多样性对人类生存具有重大意义。要使森林生物多样性得到合理有效的保护就需要人们从理论上来研究森林群落构建也即生物多样性维持的有关机制,了解影响群落构建的生态过程和因子,厘清众多因子对群落构建效应的贡献程度。暖温带森林在我国是受人类干扰最早和最为严重的森林类型之一。多年来该区域恢复起来的天然次生林在我国保护森林生物多样性,发挥生态系统功能等方面起着越来越重要的作用,是我国环境恢复和碳排放的重要增值点。研究东灵山地区天然次生林的生物多样性与群落构建机制,不仅有利于了解该地区生物多样性形成的原因,为未来暖温带森林生物多样性保护提供依据,也为解释暖温带森林物种共存与生物多样性维持提供理论支持。
     本研究以东灵山地区的暖温带森林为研究对象,通过建立20hm2的暖温带落叶阔叶林动态监测样地,定位每棵树木个体的位置及物种信息,结合地形因素从局域尺度上探讨了暖温带森林群落物种组成与结构,地形因子对群落构建的影响及贡献,扩散过程对群落多样性的影响,以期较为全面和系统地了解暖温带森林群落构建中随机过程与确定性过程的影响及相对贡献。
     (1)以20hm2样地内胸径≥1cm的所有木本植物为对象,分析了暖温带森林群落的组成和结构。结果表明,样地内木本植物有58种,隶属于18科33属。独立个体的总数为52,136,包括独立个体分枝的总数为103,284,全部为落叶树种。群落的区系类型以北温带成分居多,同时混有一些亚热带热带成分,属典型的温带森林类型。群落优势种明显,个体数最多的前5个种的个体数占到总个体数的61%,前20个种占到92%,而其余38个种只占8%。群落成层现象明显,垂直结构由主林层(19个种)、次林层(18个种)和灌木层(21个种)组成。样地所有木本植物个体总径级分布呈倒“J”型,群落更新良好。主林层树种的径级结构近似于双峰或正态分布,而次林层和灌木层树种则表现出倒“J”型或“L”型。几个主要树种的空间分布表现出不同的分布格局,随着径级增大,聚集程度降低。空间分布格局显示主要优势种自身个体在其径级大小的空间分布上互补,不同径级的个体占据了样地内不同的空间位置。
     (2)以20hm2样地内的两个优势种群为研究对象,对比分析了样地内两优势种群辽东栎(Quercus wutaishanica)与胡桃楸(Juglans mandshurica)的同物种不同生长阶段,不同物种相同生长阶段群体的地形生境差异性。结果表明,样地内辽东栎种群主要分布在地形坡度大、南坡、西坡、凸出及高海拔的位置上,成年树比幼树更偏好凹地形;胡桃楸种群集中分布在坡度大、北坡、东坡、凹陷及低海拔的地形上,成年树相比幼树偏好分布在南坡、东坡及凹陷的位置。Mann-Whitney U检验显示,辽东栎和胡桃楸各自幼树与成年树的地形因子之间都没有显著差异(P>0.05),种群内两群体的地形分布范围基本一致;两物种成年树群体在海拔因子的选择上差异显著(P<0.05),幼树群体除了海拔外,南北坡向上也表现了明显的差异(P<0.05)。同种群不同生长阶段地形因子的选择显示了物种地形生境的限制及保守性,不同种群同生长阶段地形因子的选择显示了物种间空间分布格局及多样性的维持。这对于理解暖温带森林的物种共存及生物多样性维持具有重要的意义。
     (3)以20hm2暖温带天然次生林为研究对象,基于20-ha样地DEM地图,提取海拔、坡度、坡向、凹凸度等地形因子,用GLM模型探讨了地形因子对群落物种丰富度与地上生物量的影响。结果表明,群落地上生物量与物种丰富度分别受不同地形因子的影响,群落地上生物量受Ea,El2,El3,Co3四个非线性因子的显著影响(p<0.05),而物种丰富度则受Sl,El,El2,El3四个非线性因子的显著作用(p<0.05),两者受海拔相关因子的影响最大,分别解释了两者3.99%和11.09%的变异。地形因子修正了物种丰富度-地上生物量之间的单峰曲线关系,使其朝着单调与直线化趋势变化。以后在探讨森林群落物种丰富度-生产力关系时,地形因子的修正作用应该受到重视。
     (4)利用20hm2温带次生林森林样地植被数据检测了局域尺度上森林发育过程中群落扩散过程与生态位过程的变化,研究了它们在发育过程中的发生特点,区分了2类过程在群落多样性构建中的相对贡献。结果显示,局域尺度扩散过程与生态位过程因群落发育过程不同而有显著差异,其中生态位过程的变化强于扩散过程。扩散过程受森林发育过程的影响表现为前期稳定,后期下降。群落发育过程中扩散过程伴随了冠层稳定的骨架结构及分离的垂直结构,提高了群落物种垂直分布的均匀性,促进了物种共存。局域尺度扩散过程与生态位过程的交互效应是群落构建的主要动力,扩散过程作用要强于环境过滤过程。以上结果暗示除了空间因子等的被动调节外,中性过程与生态位过程对构建群落的相对贡献也受群落发育阶段的影响,群落自身具有主动调节构建的作用。
     以上研究结果对于认识自然条件下暖温带森林的群落构建机制具有重要意义,不仅在局域尺度上明确,量化及区分了地形和扩散过程对暖温带森林群落构建的重要性,而且也是全球不同类型森林群落构建机制的有益补充,这对于指导暖温带森林资源和多样性保护及利用,地区环境改善等都具有重要的实践价值。
The forest covers about31%of the Earth land, has more than two-thirds of the world's terrestrial species, and plays an important role in maintaining global biodiversity. Forest biodiversity is an important source of raw materials of the basic necessities of human beings. The conservation of forest biodiversity on a global scale is of great significance for the survival of mankind. In order to be reasonable and effective protection of forest biodiversity, we need to study forest community assembly theory, understand ecological processes and impact factors and clarify their relative contribution on the community assembly. The warm temperate forests are one of the earliest and most serious forest types by human disturbance in China. The natural secondary forests recovered in the region over many years play an increasingly important role in the forest biodiversity conservations and ecosystem function services. They also are the important value-added points of environmental restoration and carbon emissions. The biodiversity and community assembly mechanism researches of the natural secondary forest in Dongling Mountain, are not only conducive to understand the biodiversity formation reasons in the region, and to provide a basis for the warm temperate forest biodiversity protection in the future, but also provide theoretical supports to explain the warm temperate forest species coexistence and biodiversity maintenance.
     In this dissertation the warm temperate forests were studied in Dongling Mountain. The warm temperate forest species composition and structure, the impacts and contributions of topographic factors on community assembly, and the impacts of dispersal process on community diversity were explored through the establishment of a20hm2dynamic monitoring temperate deciduous broadleaf forest plots, positioning the locations and species information of each individuals, and combined with the terrain factors at local scale for a more comprehensive and systematic understanding of the impacts and the relative contributions of stochastic processes and deterministic process in the warm temperate forest communities assembly process.
     (1) All free-standing woody plants at least1cm in diameter at breast height (DBH,1.3m above ground) as the research object, were mapped, tagged, and identified to species, and their geographic coordinates were recorded in the20-ha Dongling Mountain warm temperate deciduous broad-leaved forest dynamic monitoring plot. We address results on floristic characteristics, community composition, and vertical, size-class, and spatial structure of the Donglingshan forest plot (DLS). These datasets will serve as baseline information accessible to a wide range of future stud-ies. We tagged a total of52,136genotype individuals (103,284individuals including branches of genotype individuals), belonging to58species,33genera and18families. All of these tree species were deciduous. Floristic characteristics of the community suggested a temperate plant flora, including some subtropical and tropical species. There were very obvious dominant species in the plot. Five species comprised61%of all individuals, and20species comprised92%of all individuals, while the other38species comprised only8%of all individuals. Vertical structure was composed of an overstory layer (19species), midstory layer (18species), and a shrub layer (21species). The DBH size-class structure of all species in the plot generally fitted a "reverse J" distribu-tion, thereby indicating good regeneration across the community. The size-class structure of the main species in the overstory layer showed a bimodal or nearly normal distribution, while the most abundant species in the midstory and shrub layers showed "reverse J" or even "L" distributions. Spatial distribution patterns of the dominant species varied with size-class and scale and shifted from closer aggregation to looser aggregation from small to adult or old trees. The size-class spatial distribution patterns of the dominant species showed the different diameter levels of their own individuals occupied different spatial positions in the plot.
     (2) A comparative analysis of the terrain habitats differences between the two dominant populations:Quercus wutaishanica and Juglans mandshurica was made according to the same species at different growth stages and the same growth stages of different species in the20hm2warm temperate deciduous broad-leaved forest dynamic monitoring plot in Dongling Mountain. The results showed that, Quercus wutaishanica population mainly distributed at the lager-slope, southern-aspect, western-aspect, more convex and high-altitude locations, and compared with the saplings,the adult trees preferred the concave terrain; Juglans mandshurica population distributed in the steep-slope, northern-aspect, eastern-aspect, more concave and low-altitude terrains, and compared with the saplings, the adult trees preferred at the southern-aspect, eastern-aspect and more concave positions in the plot. The Terrain factors of the sapling groups were not significantly different from the adult groups in each species (P>0.05), namely, their topographical features had the same ranges of variation. The altitude factors of two adult groups were significantly different (P<0.05), however, besides the altitude, the north-south aspects of the sapling groups also showed a significant difference (P<0.05). The topographical selection of the same population at the different growth stages showed the limitations and conservatisms of the species topographic habitats, and the topographical selection of the different populations at the same growth stages showed the spatial distribution patterns and the biodiversity maintenances among species. It is of great significance to understand species coexistence and biodiversity maintenance in the warm temperate forest.
     (3) We studied topographic factors such as elevation, slope, aspect, convex effected on community richness and aboveground biomass with the GLM model to clarify the amendment effects of topographical factors on species richness-productivity relationship in the20-ha Donglingshan forest dynamic plot in a warm temperate deciduous broad-leaved secondary forest. The result showed that the terrain factors influencing aboveground biomass are different from those which affected species richness. Aboveground biomass was significantly influenced by four factors:Ea, El2, El3and Co3(p<0.05). Species richness was also influenced by four factors including Sl, El, El2and El3(p<0.05). The altitude-related factors were the biggest influence factors, respectively explaining3.99%and11.09%of the variation of aboveground biomass and species richness. The terrain factor amended the unimodal relationship between species richness and aboveground biomass, and the relationship was adjusted to the monotonous, straight line trend. In exploring the forest species richness and productivity relations in the future, amendments role of topographic factors should be taken seriously.
     (4) The impacts of species dispersal and environmental filtering changes on tree richness during the community development scale were tested in the20-ha Dongling Mountain warm temperate deciduous broad-leaved forest dynamic monitoring plot. The relative contributions of species dispersal and environmental filtering to the community diversity were partitioned by using GLM approach. The results showed that, the species dispersal and environmental filtering in community development processes significantly changed, and environmental filtering had the stronger effects than species dispersal on community assembly. Species dispersal index stabilized in the early and declined in late stage of forest development process. The constant species dispersal index was accompanied by stability of the canopy profile structure in early stage, and the divergence of the vertical structure with the community development, which increased the heterogeneity of species vertical distribution and facilitated forest species coexistence. We also found the interactions of species dispersal and environmental filtering were the main driving forces for species diversities, and the species dispersal process was stronger than the environment filtering process to community assembly. This study suggested that in addition to the space factors changing, the relative contributions of neutral and niche processes to the community assembly were different during the community developmental stages.
     The above findings are important for the understanding of the warm temperate forest community assembly under the natural conditions. These findings not only quantify and distinguish the relative importances of the terrain and the diffusion process of the warm temperate forest community assembly on a local scale, but also are the useful complements to community assembly mechanisms of the global different type's forest. These conclusions are conductive to better guide the conservation and utilization of warm temperate forest resources and biodiversity, the improvement of the regional environment.
引文
[1]Hutchinson G E. Homage to Santa Rosalia or why are there so many kinds of animals? The American naturalist,1959,93(870):145-159.
    [2]Zimmermann C R, Fukami T, Drake J A. An experimentally-derived map of community assembly space. In:Bar-Yam Y, Minai A, eds. Unifying Themes in Complex Systems II:Proceedings of the 2nd International Conference on Complex Systems. New York:Westview Press,2003,1-9.
    [3]Diamond J M. Assembly of species communities. In:Cody M L, Diamond J M, eds. Ecology and evolution of communities, Massachusetts:Belknap Press,1975. pp:342-444.
    [4]Keddy P A. Assembly and response rules:two goals for predictive community ecology. Journal of Vegetation Science,1992,3(2):157-164.
    [5]HilleRisLambers J, Adler P B, Harpole W S, et al. Rethinking community assembly through the lens of coexistence theory. Annual Review of Ecology, Evolution, and Systematics,2012,43:227-248.
    [6]牛克昌,刘怿宁,沈泽昊,等.群落构建的中性理论和生态位理论.生物多样性,2009,17(6):579-593.
    [7]G6tzenberger L, de Bello F, Brathen K A, et al. Ecological assembly rules in plant communities-approaches, patterns and prospects. Biological reviews,2011,87(1):111-127.
    [8]Lavorel S, Gamier E. Predicting changes in community composition and ecosystem functioning from plant traits:revisiting the Holy Grail. Functional Ecology,2002,16(5):545-556.
    [9]MacArthur R, Levins R. The limiting similarity, convergence, and divergence of coexisting species. The American naturalist,1967,101(921):377-385.
    [10]Ackerly D, Schwilk D, Webb C. Niche evolution and adaptive radiation:testing the order of trait divergence. Ecology,2006,87(7):50-61.
    [11]Grime J P. Trait convergence and trait divergence in herbaceous plant communities:mechanisms and consequences. Journal of Vegetation Science,2006,17(2):255-260.
    [12]Wilson J B, Gitay H. Community structure and assembly rules in a dune slack:variance in richness, guild proportionality, biomass constancy and dominance/diversity relations. Plant Ecology,1995, 116(2):93-106.
    [13]Webb C O, Ackerly D D, McPeek M A, et al. Phylogenies and community ecology. Annual review of Ecology and Systematics,2002,475-505.
    [14]Prinzing A. The niche of higher plants:evidence for phylogenetic conservatism. Proceedings of the Royal Society of London. Series B:Biological Sciences,2001,268(1483):2383-2389.
    [15]Kraft N J B, Cornwell W K, Webb C O, et al. Trait evolution, community assembly, and the phylogenetic structure of ecological communities. American naturalist,2007,170(2):271-283.
    [16]Chazdon R L, Careaga S, Webb C, et al. Community and phylogenetic structure of reproductive traits of woody species in wet tropical forests. Ecological Monographs,2003,73(3):331-348.
    [17]Swenson N G, Enquist B J, Thompson J, et al. The influence of spatial and size scale on phylogenetic relatedness in tropical forest communities. Ecology,2007,88(7):1770-1780.
    [18]Darwin C. On the origins of species by means of natural selection. London:Murray,1859.
    [19]Tilman D. Niche tradeoffs, neutrality, and community structure:a stochastic theory of resource competition, invasion, and community assembly. Proceedings of the National Academy of Sciences,2004,101(30):10854-10861.
    [20]Chave J. Neutral theory and community ecology. Ecology Letters,2004,7(3):241-253.
    [21]Volkov I, Banavar J R, Hubbell S P, et al. Neutral theory and relative species abundance in ecology. arXiv preprint q-bio/0504018,2005,
    [22]Simberloff D. Species turnover and equilibrium island biogeography. Science,1976,194(4265): 572-578.
    [23]Strong Jr D R. Natural variability and the manifold mechanisms of ecological communities. The American naturalist,1983,122(5):636-660.
    [24]Leibold M A, McPeek M A. Coexistence of the niche and neutral perspectives in community ecology. Ecology,2006,87(6):1399-1410.
    [25]Mutshinda C M, O'Hara R B. Integrating the niche and neutral perspectives on community structure and dynamics. Oecologia,2011,166(1):241-251.
    [26]Magurran A E. Measuring biological diversity. UK:Wiley-Blackwell,2004.
    [27]Hubbell S P. The Unified Neutral Theory of Biodiversity and Biogeography. Princeton:Princeton University Press,2001.
    [28]Southwood T R E. Ecological methods:with particular reference to the study of insect populations. London:Chapman and Hall,1978,
    [29]Tokeshi M. Species Abundance Patterns and Community Structure. Advances in ecological research,1993,24:111-186.
    [30]Green J L, Plotkin J B. A statistical theory for sampling species abundances. Ecology Letters,2007, 10(11):1037-1045.
    [31]Motomura I. On the statistical treatment of communities. Zoological Magazine,1932,44:379-383.
    [32]Fisher R A, Corbet A S, Williams C B. The relation between the number of species and the number of individuals in a random sample of an animal population. Journal of Animal Ecology, 1943,12(1):42-58.
    [33]Preston F. The commonness, and rarity, of species. Ecology,1948,29(3):254-283.
    [34]Pileou E C. Biological diversity. New York:John Wiley & Sons,1975.
    [35]MacArthur R H. On the relative abundance of bird species. Proceedings of the National Academy of Sciences,1957,43(3):293.
    [36]Frontier S. Diversity and structure in aquatic ecosystems. Oceanography and Marine Biology:An Annual Review,1985,23:253-312.
    [37]张金屯.群落中物种多度格局的研究综述.农村生态环境,1997,13(4):48-54.
    [38]Tokeshi M. Niche apportionment or random assortment:species abundance patterns revisited. Journal of Animal Ecology,1990,59(3):1129-1146.
    [39]Caswell H. Community structure:a neutral model analysis. Ecological Monographs,1976, 46(3):327-354.
    [40]马克明.物种多度格局研究进展.植物生态学报,2003,27(3):412-426.
    [41]程佳佳,米湘成,马克平,等.亚热带常绿阔叶林群落物种多度分布格局对取样尺度的响应.生物多样性,2011,19(2):168-177.
    [42]Diaz S, Cabido M, Casanoves F. Plant functional traits and environmental filters at a regional scale. Journal of Vegetation Science,2009,9(1):113-122.
    [43]Kraft N J B, Valencia R, Ackerly D D. Functional traits and niche-based tree community assembly in an Amazonian forest. Science,2008,322(5901):580-582.
    [44]Gotelli N J. Null model analysis of species co-occurrence patterns. Ecology,2000,81(9): 2606-2621.
    [45]Engen S.Stochastic abundance models. London:Chapman and Hall,1978.
    [46]Gotelli N J, Graves G R. Null models in ecology. Washington:Smithsonian Institution Press,1996.
    [47]Brown J H, Stevens G C, Kaufman D M. The geographic range:size, shape, boundaries, and internal structure. Annual review of Ecology and Systematics,1996,27:597-623.
    [48]Bock C E. Distribution-abundance relationships of some Arizona landbirds:a matter of scale? Ecology,1987,68(1):124-129.
    [49]Bell G. Neutral macroecology. Science,2001,293(5539):2413-2418.
    [50]Oliver C D. Forest development in North America following major disturbances. Forest Ecology and Management,1980,3:153-168.
    [51]Kanowski J, Catterall C, Wardell-Johnson G, et al. Development of forest structure on cleared rainforest land in eastern Australia under different styles of reforestation. Forest Ecology and Management,2003,183(1):265-280.
    [52]Huston M. A general hypothesis of species diversity. The American naturalist,1979, 113(1):81-101.
    [53]Whittaker R H. A study of summer foliage insect communities in the Great Smoky Mountains. Ecological Monographs,1952,22(1):2-44.
    [54]Diaz L. Influences of forest type and forest structure on bird communities in oak and pine woodlands in Spain. Forest Ecology and Management,2006,223(1):54-65.
    [55]MacArthur R H, MacArthur J W. On bird species diversity. Ecology,1961,42(3):594-598.
    [56]Koop H, Hilgen P. Forest dynamics and regeneration mosaic shifts in unexploited beech (Fagus sylvatica) stands at Fontainebleau (France). Forest Ecology and Management,1987,20(1): 135-150.
    [57]Guariguata M R, Ostertag R. Neotropical secondary forest succession:changes in structural and functional characteristics. Forest Ecology and Management,2001,148(1):185-206.
    [58]Zhao H, Peng S, Chen Z, et al. Abscisic acid in soil facilitates community succession in three forests in China. Journal of chemical ecology,2011,37(7):785-793.
    [59]Hutchings M J. The structure of plant populations. Plant Ecology, Second Edition,2009,325-358.
    [60]刘庆洪.小兴安岭红松种群天然更新的特点.林业科学,1987,23(3):266-275.
    [61]Palik B J, Pregitzer K S. The age and height structure of red maple(Acer rubrum) populations in northern Michigan bigtooth aspen(Populus grandidentata) forests. Canadian Journal of Forest Research,1992,22(10):1449-1462.
    [62]Oliver C, B Larson. Forest stand dynamics. Biological Research Management,1990, 12(11):1110-1115.
    [63]Gittins R. Canonnical analysis, a review with applications in ecology. Berlin:Sprinter Verlag, 1985.
    [64]彭少麟.南亚热带森林群落动态学.北京:科学出版社,1996.
    [65]丁岩钦.昆虫种群数学生态学原理与应用.北京:科学出版社,1980.
    [66]Wratten S D, Ery G L A生态学野外及实验室实验手册,吴千红.北京:科学出版社,1986.
    [67]Pielou E C数学生态学,卢泽愚.北京:科学出版社,1988.
    [68]Dale M, Blundon D. Quadrat covariance analysis and the scales of interspecific association during primary succession. Journal of Vegetation Science,1991,2(1):103-112.
    [69]Greig-Smith P.Quantitative plant ecology,3rd edn. Berkeley:university of California press,1983.
    [70]张金屯.植物种群空间分布的点格局分析.植物生态学报,1998,22(4):344-349.
    [71]Diggle P J, Diggle P J. Statistical analysis of spatial point patterns. London:Academic Press,1983.
    [72]Haase P. Spatial pattern analysis in ecology based on Ripley's K-function:Introduction and methods of edge correction. Journal of Vegetation Science,1995,6(4):575-582.
    [73]苏爱玲,徐广平,段吉闯,等.祁连山金露梅灌丛草甸群落结构及主要种群的点格局分析.西北植物学报,2010,30(6):1231-1239.
    [74]兰国玉,雷瑞德.植物种群空间分布格局研究方法概述.西北林学院学报,2003,18(2):17-21.
    [75]Chuyong G B, Kenfack D, Harms K E, et al. Habitat specificity and diversity of tree species in an African wet tropical forest. Plant Ecology,2011,212(8):1363-1374.
    [76]Lopez-Toledo L, Horn C, Endress B A. Distribution and population patterns of the threatened pa\m(Brahea aculeata) in a tropical dry forest in Sonora, Mexico. Forest Ecology and Management,2011,261(11):1901-1910.
    [77]Metz M R. Does habitat specialization by seedlings contribute to the high diversity of a lowland rain forest? Journal of Ecology,2012,
    [78]Rodrigues A S L, Andelman S J, Bakarr M I, et al. Effectiveness of the global protected area network in representing species diversity. Nature,2004,428(6983):640-643.
    [79]黄建辉.物种多样性的空间格局及其形成机制初探.生物多样性,1994,2(2):103-107.
    [80]Pianka E R. Latitudinal gradients in species diversity:a review of concepts. The American naturalist,1966,100(910):33-46.
    [81]Schemske D W, Mittelbach G G, Cornell H V, et al. Is there a latitudinal gradient in the importance of biotic interactions? Annual Review of Ecology, Evolution, and Systematics,2009,40:245-269.
    [82]Rohde K. Latitudinal gradients in species diversity:the search for the primary cause. Oikos,1992, 65(3):514-527.
    [83]Lambers J H R, Clark J S, Beckage B. Density-dependent mortality and the latitudinal gradient in species diversity. Nature,2002,417(6890):732-735.
    [84]Swenson N G, Enquist B J, Pither J, et al. The biogeography and filtering of woody plant functional diversity in North and South America. Global Ecology and Biogeography,2012, 21(8):798-808.
    [85]Condamine F L, Sperling F A H, Wahlberg N, et al. What causes latitudinal gradients in species diversity? Evolutionary processes and ecological constraints on swallowtail biodiversity. Ecology Letters,2012,15(3):267-77.
    [86]Kraft N J B, Comita L S, Chase J M, et al. Disentangling the drivers of P diversity along latitudinal and elevational gradients. Science,2011,333(6050):1755-1758.
    [87]Qian H, Ricklefs R E. Latitude, tree species diversity and the metabolic theory of ecology. Global Ecology and Biogeography,2011,20(2):362-365.
    [88]Arita H T, Rodriguez P. Geographic range, turnover rate and the scaling of species diversity. Ecography,2002,25(5):541-550.
    [89]Sarr D A, Hibbs D E, Huston M A. A hierarchical perspective of plant diversity. The quarterly review of biology,2005,80(2):187-212.
    [90]Arrhenius O. Species and area. Journal of Ecology,1921,9(1):95-99.
    [91]Arrhenius O. Statistical investigations in the constitution of plant associations. Ecology,1923,4(1): 68-73.
    [92]Connor E F, McCoy E D. The statistics and biology of the species-area relationship. The American naturalist,1979,113(6):791-833.
    [93]MacArthur R H, Wilson E O. Island Biogeography. Princeton:Princeton University Press,1967.
    [94]Pigolotti S, Cencini M. Speciation-rate dependence in species-area relationships. Journal of Theoretical Biology,2009,260(1):83-89.
    [95]Hovestadt T, Poethke H J. Dispersal and establishment:spatial patterns and species-area relationships. Diversity and Distributions,2005,11(4):333-340.
    [96]Allouche O, Kadmon R. Demographic analysis of Hubbell's neutral theory of biodiversity. Journal of Theoretical Biology,2009,258(2):274-280.
    [97]唐志尧,乔秀娟,方精云.生物群落的种-面积关系.生物多样性,2009,17(6):549-559.
    [98]Rahbek C, Graves G R. Detection of macro-ecological patterns in South American hummingbirds is affected by spatial scale. Proceedings of the Royal Society of London. Series B:Biological Sciences,2000,267(1459):2259-2265.
    [99]He F L, Hubbell S P. Species-area relationships always overestimate extinction rates from habitat loss. Nature,2011,473(7347):368-371.
    [100]Carey E V, Sala A, Keane R, et al. Are old forests underestimated as global carbon sinks? Global Change Biology,2001,7(4):339-344.
    [101]张全国,张大勇.生物多样性与生态系统功能:最新的进展与动向.生物多样性,2003,11(5):351-363.
    [102]Pacala S, Tilman D. The transition from sampling to complementarity. In:Kinzig A P, Pacala S, Tilman D, eds. Functional consequences of biodiversity:empirical progress and theoretical extensions. Princeton:Princeton University Press,2002,151-166.
    [103]Loreau M, Naeem S, Inchausti P, et al. Biodiversity and ecosystem functioning:current knowledge and future challenges. Science,2001,294(5543):804-808.
    [104]Paquette A, Messier C. The effect of biodiversity on tree productivity:from temperate to boreal forests. Global Ecology and Biogeography,2011,20(1):170-180.
    [105]Wilsey B J, McNaughton S J, Coleman J S. Will increases in atmospheric CO2 affect regrowth following grazing in C4 grasses from tropical grasslands? A test with Sporobolus kentrophyllus. Oecologia,1994,99(1):141-144.
    [106]Beedlow P A, Tingey D T, Phillips D L, et al. Rising atmospheric CO2 and carbon sequestration in forests. Frontiers in Ecology and the Environment,2004,2(6):315-322.
    [107]Feeley K J, Davies S J, Ashton P S, et al. The role of gap phase processes in the biomass dynamics of tropical forests. Proceedings of the Royal Society B:Biological Sciences,2007, 274(1627):2857-2864.
    [108]Van Mantgem P J, Stephenson N L, Byrne J C, et al. Widespread increase of tree mortality rates in the western United States. Science,2009,323(5913):521-524.
    [109]Phillips O L, Malhi Y, Higuchi N, et al. Changes in the carbon balance of tropical forests: evidence from long-term plots. Science,1998,282(5388):439-442.
    [110]Knohl A, Schulze E D, Kolle O, et al. Large carbon uptake by an unmanaged 250-year-old deciduous forest in Central Germany. Agricultural and Forest Meteorology,2003,118(3): 151-167.
    [111]Hoshizaki K, Niiyama K, Kimura K, et al. Temporal and spatial variation of forest biomass in relation to stand dynamics in a mature, lowland tropical rainforest, Malaysia. Ecological Research, 2004,19(3):357-363.
    [112]Luyssaert S, Schulze E D, Borner A, et al. Old-growth forests as global carbon sinks. Nature, 2008,455(7210):213-215.
    [113]Lewis S L, Lopez-Gonzalez G, Sonke B, et al. Increasing carbon storage in intact African tropical forests. Nature,2009,457(7232):1003-1006.
    [114]Muller-Landau H C. Carbon cycle:Sink in the African jungle. Nature,2009,457(7232):969-970.
    [115]Zhou G, Liu S, Li Z, et al. Old-growth forests can accumulate carbon in soils. Science,2006, 314(5804):1417-1417.
    [116]Kira T, Shidei T. Primary production and turnover of organic matter in different forest ecosystems of the western Pacific.日本生悲学会誌,1967,17(2):70-87.
    [117]Odum E P. Fundamental of ecology 3rd edn. Philadelphia:W.B. Saunders Company,1971.
    [118]Odum E P. The strategy of ecosystem development. Science,1969,164(3877):262-270.
    [119]Gause G. Experimental studies on the struggle for existence I. Mixed population of two species of yeast. Journal of Experimental Biology,1932,9(4):389-402.
    [120]Gause G. The struggle for existence.Baltimore:The Williams & Wilkins company,1934,163.
    [121]Hardin G. The competitive exclusion principle. Science,1960,131(3409):1292-1297.
    [122]Bengtsson J, Fagerstrom T, Rydin H. Competition and coexistence in plant communities. Trends in Ecology & Evolution,1994,9(7):246-250.
    [123]Moll J D, Brown J S. Competition and Coexistence with Multiple Life-History Stages. The American Naturalist,2008,171(6):839-843.
    [124]Bush S E, Clayton D H. The role of body size in host specificity:reciprocal transfer experiments with feather lice. Evolution,2006,60(10):2158-2167.
    [125]Harbison C W, Bush S E, Malenke J R, et al. Comparative transmission dynamics of competing parasite species. Ecology,2008,89(11):3186-3194.
    [126]Allesina S, Levine J M. A competitive network theory of species diversity. Proceedings of the National Academy of Sciences,2011,108(14):5638-5642.
    [127]Abrams P. The theory of limiting similarity. Annual review of Ecology and Systematics,1983, 14:359-376.
    [128]Meszena G, Gyllenberg M, Pasztor L, et al. Competitive exclusion and limiting similarity:a unified theory. Theoretical Population Biology,2006,69(1):68-87.
    [129]Pacala S W, Tilman D. Limiting similarity in mechanistic and spatial models of plant competition in heterogeneous environments. The American naturalist,1994,143(2):222-257.
    [130]Violle C, Nemergut D R, Pu Z, et al. Phylogenetic limiting similarity and competitive exclusion. Ecology Letters,2011,14(8):782-787.
    [131]Yang Z, Powell J R, Zhang C, et al. The effect of environmental and phylogenetic drivers on community assembly in an alpine meadow community. Ecology,2012,93(11):2321-2328.
    [132]Janzen D H. Herbivores and the number of tree species in tropical forests. The American naturalist,1970,104(940):501-528.
    [133]Connell J H. On the role of natural enemies in preventing competitive exclusion in some marine animals and in rain forest trees.In:Boer P J D, Gradwell G R,eds. Dynamics of populations,Wageningen:Centre for Agricultural Publishing and Documentation,1971,298-312.
    [134]Zhu Y, Mi X, Ren H, et al. Density dependence is prevalent in a heterogeneous subtropical forest. Oikos,2009,119(1):109-119.
    [135]Chen L, Mi X, Comita L S, et al. Community-level consequences of density dependence and habitat association in a subtropical broad-leaved forest. Ecology Letters,2010,13(6):695-704.
    [136]Comita L S, Muller-Landau H C, Aguilar S, et al. Asymmetric density dependence shapes species abundances in a tropical tree community. Science,2010,329(5989):330-332.
    [137]Bakkestuen V, Halvorsen R, Heegaard E. Disentangling complex fine-scale ecological patterns by path modelling using GLMM and GIS. Journal of Vegetation Science,2009,20(5):779-790.
    [138]Comita L S, Engelbrecht B M J. Seasonal and spatial variation in water availability drive habitat associations in a tropical forest. Ecology,2009,90(10):2755-2765.
    [139]Takyu M, Aiba S I, Kitayama K. Changes in biomass, productivity and decomposition along topographical gradients under different geological conditions in tropical lower montane forests on Mount Kinabalu, Borneo. Oecologia,2003,134(3):397-404.
    [140]Kubota Y, Murata H, Kikuzawa K. Effects of topographic heterogeneity on tree species richness and stand dynamics in a subtropical forest in Okinawa Island, southern Japan. Journal of Ecology, 2004,92(2):230-240.
    [141]Wright J S. Plant diversity in tropical forests:a review of mechanisms of species coexistence. Oecologia,2002,130(1):1-14.
    [142]Hofer G, Wagner H H, Herzog F, et al. Effects of topographic variability on the scaling of plant species richness in gradient dominated landscapes. Ecography,2008,31(1):131-139.
    [143]Lundholm J T. Plant species diversity and environmental heterogeneity:spatial scale and competing hypotheses. Journal of Vegetation Science,2009,20(3):377-391.
    [144]Keppel G, Tuiwawa M V, Naikatini A, et al. Microhabitat specialization of tropical rain-forest canopy trees in the Sovi Basin, Viti Levu, Fiji Islands. Journal of Tropical Ecology,2011,27(5): 491.
    [145]Medjibe V, Hall J S, Ashton M S, et al. Distribution of selected timber species of a central African rain forest in relation to topography and soil heterogeneity:implications for forest management. Journal of Sustainable Forestry,2011,30(5):343-359.
    [146]Scherrer D, Korner C. Topographically controlled thermal-habitat differentiation buffers alpine plant diversity against climate warming. Journal of Biogeography,2011,38(2):406-416.
    [147]Wan L, Zhang B, Kemp P, et al. Modelling the abundance of three key plant species in New Zealand hill-pasture using a decision tree approach. Ecological Modelling,2009,220(15): 1819-1825.
    [148]王小明,周本智,曹永慧,等.GIS支持下的会稽山区香榧种群生境特征.江西农业大学学报,2010,32(3):0523-0527.
    [149]Austin M P, Van Niel K P. Improving species distribution models for climate change studies: variable selection and scale. Journal of Biogeography,2011,38(1):1-8.
    [150]Pantastico-Caldas M, Venable D L. Competition in two species of desert annuals along a topographic gradient. Ecology,1993,74(8):2192-2203.
    [151]Mueller-Dombois D, Ellenberg H. Aims and methods of vegetation ecology. New York:John Wiley and Sons.1974,547.
    [152]Riddle B R. Is biogeography emerging from its identity crisis? Journal of Biogeography,2005, 32(2):185-186.
    [153]黄晓磊,乔格侠.生物地理学的新认识及其方法在多样性保护中的应用.动物分类学报,2010,35(1):158-164.
    [154]Bell G. The interpretation of biological surveys. Proceedings of the Royal Society of London. Series B:Biological Sciences,2003,270(1533):2531-2542.
    [155]Tuomisto H, Ruokolainen K, Yli-Halla M. Dispersal, environment, and floristic variation of western Amazonian forests. Science,2003,299(5604):241-244.
    [156]Chust G, Chave J, Condit R, et al. Determinants and spatial modeling of tree β-diversity in a tropical forest landscape in Panama. Journal of Vegetation Science,2006,17(1):83-92.
    [157]Shen G, Yu M, Hu X S, et al. Species-area relationships explained by the joint effects of dispersal limitation and habitat heterogeneity. Ecology,2009,90(11):3033-3041.
    [158]Gilbert B, Lechowicz M J. Neutrality, niches, and dispersal in a temperate forest understory. Proceedings of the National Academy of Sciences,2004,101(20):7651-7656.
    [159]Pickett S T A, White P S.The Ecology of Natural Disturbance and Patch Dynamics. London: Academic Press,1985.
    [160]Collins S L, Barber S C. Effects of disturbance on diversity in mixed-grass prairie. Plant Ecology, 1986,64(2):87-94.
    [161]Belsky A J. Revegetation of Artificial disturbances in grasslands of the Serengeti National Park, Tanzania:II. Five years of successional change. The Journal of Ecology,1986,74(4):937-951.
    [162]Pickett S T A. Non-equilibrium coexistence of plants. Bulletin of the Torrey Botanical Club,1980, 107(2):238-248.
    [163]Dudgeon S R, Steneck R S, Davison I R, et al. Coexistence of similar species in a space-limited intertidal zone. Ecological Monographs,1999,69(3):331-352.
    [164]Armesto J, Pickett S. Experiments on disturbance in old-field plant communities:impact on species richness and abundance. Ecology,1985,66(1):230-240.
    [165]Lusk C H. Seed size, establishment sites and species coexistence in a Chilean rain forest. Journal of Vegetation Science,1995,6(2):249-256.
    [166]Ojeda F, Pausas J G, Verdu M. Soil shapes community structure through fire. Oecologia,2010, 163(3):729-735.
    [167]Gardner T A, Barlow J, Chazdon R, et al. Prospects for tropical forest biodiversity in a human-modified world. Ecol Lett,2009,12(6):561-582.
    [168]Tilman D, Reich P B, Isbell F. Biodiversity impacts ecosystem productivity as much as resources, disturbance, or herbivory. Proceedings of the National Academy of Sciences,2012,109(26): 10394-10397.
    [169]Hannah L, Lohse D, Hutchinson C, et al. A preliminary inventory of human disturbance of world ecosystems. Ambio,1994,23(4-5):246-250.
    [170]Cannon C H, Peart D R, Leighton M. Tree species diversity in commercially logged Bornean rainforest. Science,1998,281(5381):1366-1368.
    [171]Brown K. A, Gurevitch J. Long-term impacts of logging on forest diversity in Madagascar. Proceedings of the National Academy of Sciences,2004,101(16):6045-6049.
    [172]Chazdon R L. Tropical forest recovery:legacies of human impact and natural disturbances. Perspectives in Plant Ecology, Evolution and Systematics,2003,6(1):51-71.
    [173]周鸿,赵德光,吕汇慧.神山森林文化传统的生态伦理学意义.生态学杂志,2002,21(4):60-64.
    (174]刘爱忠,裴盛基,陈三阳.云南楚雄彝族的“神树林”与生物多样性保护.应用生态学报,2000,11(4):489-492.
    [175]吴征镒中国植被编辑委员会.中国植被.北京:科学出版社,1980.
    [176]陈灵芝.东灵山地区在暖温带落叶阔叶林区域的地位.见:陈灵芝,编.暖温带森林生态系统结构与功能的研究.北京:科学出版社,1997,1-9.
    [177]刘世荣,蒋有绪,史作民,等.中国暖温带森林生物多样性研究.北京:中国科学技术出版社,1998.
    [178]孙建中,盛学斌.河北坝上地区人类活动与生态环境变化研究.环境科学进展,1999,7(4):102-111.
    [179]马克平,陈灵芝,于顺利,等.北京东灵山地区植物群落的基本类型.见:陈灵芝,编.暖温 带森林生态系统结构与功能的研究.北京:科学出版社,1997,56-75.
    [180]苏宏新,李广起.模拟蒙古栎林生态系统碳收支对非对称性升温的响应.科学通报,2012,57(17):1544-1552.
    [181]孙世洲.东灵山地区的地质,地貌和土壤.见:陈灵芝,编.暖温带森林生态系统结构与功能的研究.北京:科学出版社,1997,10-27.
    [182]马克明,傅伯杰.北京东灵山地区景观格局及破碎化评价.植物生态学报,2000,24(3):320-326.
    [183]高贤明,王巍,杜晓军,等.北京山区辽东标林的径级结构,种群起源及生态学意义.植物生态学报,2001,25(6):673-678.
    [184]Condit R.Tropical Forest Census Plots:Methods and Results from Barro Colorado Island, Panama and a Com-parison with Other Plots. Berlin:Springer,1998.
    [185]Hooper D, Chapin Iii F, Ewel J, et al. Effects of biodiversity on ecosystem functioning:a consensus of current knowledge. Ecological Monographs,2005,75(1):3-35.
    [186]Tilman D, Reich P B, Knops J M H. Biodiversity and ecosystem stability in a decade-long grassland experiment. Nature,2006,441(7093):629-632.
    [187]Gentry A H. Changes in plant community diversity and floristic composition on environmental and geographical gradients. Annals of the Missouri Botanical Garden,1988,75(1):1-34.
    [188]Lieberman D, Lieberman M, Peralta R, et al. Tropical forest structure and composition on a large-scale altitudinal gradient in Costa Rica. Journal of Ecology,1996,84(2):137-152.
    [189]彭少麟,方炜,任海,等.鼎湖山厚壳桂群落演替过程的组成和结构动态.植物生态学报,1998,22(3):245-249.
    [190]A V J, J G T. Altitudinal gradients in tropical forest composition, structure, and diversity in the Sierra de Manantlan. Journal of Ecology,1998,86(6):999-1020.
    [191]朱彪,陈安平,刘增力,等.南岭东西段植物群落物种组成及其树种多样性垂直格局的比较.生物多样性,2004,12(1):53-62.
    [192]吴晓莆,王志恒,崔海亭,等.北京山区栎林的群落结构与物种组成.生物多样性,2004,12(1):155-163.
    [193]Williamson M, Gaston K J, Lonsdale W. The species-area relationship does not have an asymptote! Journal of Biogeography,2001,28(7):827-830.
    [194]Ricklefs R E. A comprehensive framework for global patterns in biodiversity. Ecology Letters, 2004,7(1):1-15.
    [195]汤孟平,周国模,施拥军,等.天目山常绿阔叶林优势种群及其空间分布格局.植物生态学报,2006,30(5):743-752.
    [196]Condit R. Research in large, long-term tropical forest plots. Trends in Ecology and Evolution, 1995,10(1):18-22.
    [197]Hubbell S P, Foster R B, O'Brien S T, et al. Light-gap disturbances, recruitment limitation, and tree diversity in a neotropical forest. Science,1999,283(5401):554-557.
    [198]Condit R, Ashton P S, Baker P, et al. Spatial patterns in the distribution of tropical tree species. Science,2000,288(5470):1414-1418.
    [199]Condit R, Pitman N, Leigh Jr E G, et al. Beta-diversity in tropical forest trees. Science,2002, 295(5555):666-669.
    [200]Hooper E R, Legendre P, Condit R. Factors affecting community composition of forest regeneration in deforested, abandoned land in Panama. Ecology,2004,85(12):3313-3326.
    [201]Condit R, Ashton P, Bunyavejchewin S, et al. The importance of demographic niches to tree diversity. Science,2006,313(5783):98-101.
    [202]王巍,刘灿然.东灵山两个落叶阔叶林中辽东栎种群结构和动态.植物学报,1999,41(04):425-432.
    [2O3]Zu Y G, Zhao Z H, Cong P T, et al. FRACTAL ANALYSIS ON SPATIAL DISTRIBUTION PATTERNS OF POPULATION FROM QUERCUS LIAOTUNGGENSIS FOREST IN DONGLING MOUNTAIN, BEIJING CHINA. BULLETIN OF BOTANICAL RESEARCH, 2000,20(1):112-119.
    [204]赵则海,丛沛桐,祖元刚,等.辽东栎林乔木种群龄级结构动态的量化分析.植物研究,2001,21(1):157-160.
    [205]Wu X P, Zheng Y, Ma K P. Population Distribution and Dynamics of Quercus liaotungensis, Fra/inus rhynchophylla and Acer mono in Dongling Mountain, Beijing. Acta Botanica Sinica, 2002,44(2):212-223.
    [206]冯云,马克明,张育新,等.北京东灵山辽东栎(Quercus liaotungensis)林沿海拔梯度的物种多度分布.生态学报,2007,27(11):4743-4750.
    [207]张育新,马克明,祁建,等.北京东灵山海拔梯度上辽东栎种群结构和空间分布.2009,29(6):2789-2796.
    [208]侯继华,黄建辉,马克平.东灵山辽东栎林主要树种种群11年动态变化.植物生态学报,2004,28(5):609-615.
    [209]吴征镒.中国种子植物属的分布区类型.云南植物研究,1991,13(Suppl.Ⅳ):1-139.
    [210]吴征镒.Addenda et corrigenda ad typi arealorum generorum spermatophytorum sinicarum.云南植物研究,1993,15(Suppl.Ⅳ):141-178.
    [211]吴征镒Addenda et corrigenda:the areal-types of the world families of seed plants.云南植物研究,2003,25:353-358.
    [212]吴征镒,周浙昆,李德铢,等.世界种子植物科的分布区类型系统.云南植物研究,2003,25(3):245-257.
    [213]Hubbell S P, Foster R B. Commonness and rarity in a neotropical forest:implications for tropical tree conservation.In:Soule M,eds. Conservation Biology:Science of Scarcity and Diversity. Sunderland:Sinauer Associates,1986,205-231.
    [214]Fangliang H, Legendre P, LaFrankie J V. Distribution patterns of tree species in a Malaysian tropical rain forest. Journal of Vegetation Science,1997,8(1):105-114.
    [215]马克平 于顺利 高贤明.东灵山地区的植物区系分析.见:陈灵芝,编.暖温带森林生态系统结构与功能的研究.北京:科学出版社,1997,33-55.
    [216]郝占庆,李步杭,张健,等.长白山阔叶红松林样地(CBS):群落组成与结构.植物生态学报,2008,32(2):238-250.
    [217]祝燕,赵谷风,张俪文,等.古田山中亚热带常绿阔叶林动态监测样地:群落组成与结构.植物生态学报,2008,32(2):262-273.
    [218]叶万辉,曹洪麟,黄忠良,等.鼎湖山南亚热带常绿阔叶林20公顷样地群落特征研究.植物生态学报,2008,32(2):274-286.
    [219]兰国玉,胡跃华,曹敏,等.西双版纳热带森林动态监测样地:树种组成与空间分布格局.植物生态学报,2008,32(2):287-298.
    [220]Hubbell S P. Tree dispersion, abundance, and diversity in a tropical dry forest. Science,1979, 203(4387):1299-1309.
    [221]Condit R, Ashton P S, Manokaran N, et al. Dynamics of the forest communities at Pasoh and Barro Colorado:comparing two 50-ha plots. Philosophical Transactions of the Royal Society of London. Series B:Biological Sciences,1999,354(1391):1739-1748.
    [222]Peters H A. Neighbour-regulated mortality:the influence of positive and negative density dependence on tree populations in species-rich tropical forests. Ecology Letters,2003,6(8): 757-765.
    [223]江洪.东灵山植物群落生活型谱的比较研究.植物学报,1994,36(11):884-894.
    [224]江洪,黄建辉,陈灵芝,等.东灵山植物群落的排序,数量分类与环境解释.植物学报,1994,36(7):539-551.
    [225]黄忠良,蒙满林,张佑昌.鼎湖山生物圈保护区的气候.见:中国科学院鼎湖山森林生态系统定位研究站,编.热带热带森林生态系统研究.北京:气象出版社,1998,8:134-139.
    [226]Getzin S, Dean C, He F, et al. Spatial patterns and competition of tree species in a Douglas-fir chronosequence on Vancouver Island. Ecography,2006,29(5):671-682.
    [227]Billings W D. The environmental complex in relation to plant growth and distribution. Quarterly Review of Biology,1952,27(3):251-265.
    [228]Randin C F, Engler R, Normand S, et al. Climate change and plant distribution:local models predict high-elevation persistence. Global Change Biology,2009,15(6):1557-1569.
    [229]兰国玉.世界热带森林生态系统大样地定位研究进展.西北植物学报,2007,10(1):2140-2145.
    [230]刘海丰,李亮,桑卫国.东灵山暖温带落叶阔叶次生林动态监测样地:物种组成与群落结构.生物多样性,2011,19(2):232-242.
    [231]Legendre P, Mi X, Ren H, et al. Partitioning beta diversity in a subtropical broad-leaved forest of China. Ecology,2009,90(3):663-674.
    [232]Guisan A, Weiss S B, Weiss A D. GLM versus CCA spatial modeling of plant species distribution. Plant Ecology,1999,143(1):107-122.
    [233]R Development Core Team. R:A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.2011, ISBN 3-900051-07-0, URL http://www.R-project.org/.
    [234]张赞,赵亚洲,张春雨,等.北京松山油松种群结构及空间分布格局.应用与环境生物学报,2009,15(2):175-179.
    [235]张永田,黄成就,陈焕庸.中国植物志(22卷).北京:科学出版社,1998.
    [236]祁建,马克明,张育新.北京东灵山不同坡位辽东栎(Quercus liaotungensis)叶属性的比较.生态学报,2008,28(1):122-128.
    [237]匡可任,李沛琼.中国植物志(21卷).北京:科学出版社,1979.
    [238]王凯,朱教君,于立忠,等.光环境对胡桃楸幼苗生长与光合作用的影响.应用生态学报,2010,21(4):821-826.
    [239]沈泽昊,方精云.基于种群分布地形格局的两种水青冈生态位比较研究.植物生态学报,2001,25(4):392-398.
    [240]冯云,马克明,张育新.坡位对北京东灵山辽东栎林物种多度分布的影响.生态学杂志,2011,30(10):2137-2144.
    [241]Webb C O, Peart D R. Habitat associations of trees and seedlings in a Bornean rain forest. Journal of Ecology,2000,88(3):464-478.
    [242]COMITA L S, Condit R, Hubbell S P. Developmental changes in habitat associations of tropical trees. Journal of Ecology,2007,95(3):482-492.
    [243]王伟,骆争荣,周荣飞,等.百山祖常绿阔叶林木本植物的生境相关性分析.生物多样性,2011,19(2):134-142.
    [244]Connell J H. The influence of interspecific competition and other factors on the distribution of the barnacle Chthamalus stellatus. Ecology,1961,42(4):710-723.
    [245]Monson R, Smith S, Gehring J, et al. Physiological differentiation within an Encelia farinosa population along a short topographic gradient in the Sonoran Desert. Functional Ecology,1992, 6(6):751-759.
    [246]朱璧如,张大勇.基于过程的群落生态学理论框架.生物多样性,2011,19(4):389-399.
    [247]Sala O E, Chapin F S, Armesto J J, et al. Global biodiversity scenarios for the year 2100. Science, 2000,287(5459):1770-1774.
    [248]Thuiller W, Albert C H, Dubuis A, et al. Variation in habitat suitability does not always relate to variation in species'plant functional traits. Biology Letters,2010,6(1):120-123.
    [249]Long Z T, Bruno J F, Duffy J E. Biodiversity mediates productivity through different mechanisms at adjacent trophic levels. Ecology,2007,88(11):2821-2829.
    [250]Johnson K H, Vogt K. A, Clark H J, et al. Biodiversity and the productivity and stability of ecosystems. Trends in Ecology & Evolution,1996,11(9):372-377.
    [251]Gaston K J. Global patterns in biodiversity. Nature,2000,405(6783):220-227.
    [252]Naeem S, Hakansson K, Lawton J H, et al. Biodiversity and plant productivity in a model assemblage of plant species. Oikos,1996,76(2):259-264.
    [253]Abrams M D, Knapp A K, Hulbert L C. A ten-year record of aboveground biomass in a Kansas tallgrass prairie:effects of fire and topographic position. American Journal of Botany,1986, 73(10):1509-1515.
    [254]Fukami T, Morin P J. Productivity-biodiversity relationships depend on the history of community assembly. Nature,2003,424(6947):423-426.
    [255]Chase J M, Leibold M A. Spatial scale dictates the productivity-biodiversity relationship. Nature, 2002,416(6879):427-430.
    [256]Lehman C L, Tilman D. Biodiversity, stability, and productivity in competitive communities. Am Nat,2000,156(5):534-552.
    [257]Martens P, Rotmans J, Groot D. Biodiversity:luxury or necessity? Global Environmental Change, 2003,13(2):75-81.
    [258]黄建辉,白永飞,韩兴国.物种多样性与生态系统功能:影响机制及有关假说.生物多样性,2001,9(1):1-7.
    [259]Adler P B, Seabloom E W, Borer E T, et al. Productivity is a poor predictor of plant species richness. Science,2011,333(6050):1750-1753.
    [260]Gamarra J G P, Sole R V. Biomass-diversity responses and spatial dependencies in disturbed tallgrass prairies. J Theor Biol,2002,215(4):469-480.
    [261]Bunker D E, DeClerck F, Bradford J C, et al. Species loss and aboveground carbon storage in a tropical forest. Science,2005,310(5750):1029-1031.
    [262]McCullagh P, Nelder J A. Generalized linear models. London:Chapman & Hall/CRC,1989.
    [263]Wang Z, Ye W, Cao H, et al. Species-topography association in a species-rich subtropical forest of China. Basic and Applied Ecology,2009,10(7):648-655.
    [264]Venables W N.Ripley B D.Modern Applied Statistics with S(4th edn). New York:Springer,2002.
    [265]Polis G A. Why are parts of the world green? Multiple factors control productivity and the distribution of biomass. Oikos,1999,86(1):3-15.
    [266]Alves L F, Vieira S A, Scaranello M A, et al. Forest structure and live aboveground biomass variation along an elevational gradient of tropical Atlantic moist forest (Brazil). Forest Ecology and Management,2010,260(5):679-691.
    [267]彭少麟,黄忠良.生产力与生物多样性之间的相互关系研究概述.生态科学,2000,19(1):1-9.
    [268]刘兴良,史作民,杨冬生,等.山地植物群落生物多样性与生物生产力海拔梯度变化研究进展.世界林业研究,2005,18(4):27-34.
    [269]Engelbrecht B M J, Kursar T A, Tyree M T. Drought effects on seedling survival in a tropical moist forest. Trees-Structure and Function,2005,19(3):312-321.
    [270]贺金生,陈伟烈.陆地植物群落物种多样性的梯度变化特征.生态学报,1997,17(1):91-99.
    [271]王庆锁,王襄平,罗菊春,等.生态交错带与生物多样性.生物多样性,1997,5(2):126-131.
    [272]Loreau M. Biodiversity and ecosystem functioning:recent theoretical advances. Oikos,2000, 91(1):3-17.
    [273]Loreau M. Biodiversity and ecosystem functioning:a mechanistic model. Proceedings of the National Academy of Sciences,1998,95(10):5632-5636.
    [274]Venail P A, Maclean R C, Meynard C N, et al. Dispersal scales up the biodiversity-productivity relationship in an experimental source-sink metacommunity. Proceedings of the Royal Society B: Biological Sciences,2010,277(1692):2339-2345.
    [275]Bond E M, Chase J M. Biodiversity and ecosystem functioning at local and regional spatial scales. Ecology Letters,2002,5(4):467-470.
    [276]Emerson B C, Gillespie R G. Phylogenetic analysis of community assembly and structure over space and time. Trends in Ecology & Evolution,2008,23(11):619-630.
    [277]Munkemuller T, de Bello F, Meynard C, et al. From diversity indices to community assembly processes:a test with simulated data. Ecography,2012,35(5):468-480.
    [278]Chase J M. Drought mediates the importance of stochastic community assembly. Proceedings of the National Academy of Sciences,2007,104(44):17430-17434.
    [279]Dexter K G, Terborgh J W, Cunningham C W. Historical effects on beta diversity and community assembly in Amazonian trees. Proceedings of the National Academy of Sciences,2012,109(20): 7787-7792.
    [280]Chisholm R A, Lichstein J W. Linking dispersal, immigration and scale in the neutral theory of biodiversity. Ecol Lett,2009,12(12):1385-1393.
    [281]Gilbert B. Joint consequences of dispersal and niche overlap on local diversity and resource use. Journal of Ecology,2012,100(1):287-296.
    [282]Shipley B, Paine C E T, Baraloto C. Quantifying the importance of local niche-based and stochastic processes to tropical tree community assembly. Ecology,2012,93(4):760-769.
    [283]Rosindell J, Hubbell S P, He F, et al. The case for ecological neutral theory. Trends in Ecology & Evolution,2012,27(4):203-208.
    [284]Pillar V D, Duarte L S. A framework for metacommunity analysis of phylogenetic structure. Ecology Letters,2010,13(5):587-596.
    [285]Kira T. Forest ecosystems of east and southeast Asia in a global perspective. Ecological Research, 1991,6(2):185-200.
    [286]Sedjo R A. Temperate forest ecosystems in the global carbon cycle. Ambio,1992,21(4): 274-277.
    [287]Wade T G, Riitters K H, Wickham J D, et al. Distribution and causes of global forest fragmentation. Conservation Ecology,2003,7(2):7.
    [288]Qian H, Ricklefs R E. A latitudinal gradient in large-scale beta diversity for vascular plants in North America. Ecology Letters,2007,10(8):737-744.
    [289]Valencia R, Foster R B, Villa G, et al. Tree species distributions and local habitat variation in the Amazon:large forest plot in eastern Ecuador. Journal of Ecology,2004,92(2):214-229.
    [290]MacArthur R H. Patterns of species diversity. Biological reviews,2008,40(4):510-533.
    [291]Hurlbert S H. The nonconcept of species diversity:a critique and alternative parameters. Ecology, 1971,52(4):577-586.
    [292]Legendre P, Legendre L. Numerical ecology(3rd edn). Amsterdam:Elsevier,2012.
    [293]Chesson P. Mechanisms of maintenance of species diversity. Annual review of Ecology and Systematics,2000,31:343-366.
    [294]Adler P B, HilleRisLambers J, Levine J M. A niche for neutrality. Ecology Letters,2006,10(2): 95-104.
    [295]Harms K E, Condit R, Hubbell S P, et al. Habitat associations of trees and shrubs in a 50-ha neotropical forest plot. Journal of Ecology,2004,89(6):947-959.
    [296]Letcher S G, Chazdon R L, Andrade A, et al. Phylogenetic community structure during succession:evidence from three Neotropical forest sites. Perspectives in Plant Ecology, Evolution and Systematics,2012,14(2):79-87.
    [297]Kraft N J B, Ackerly D D. Functional trait and phylogenetic tests of community assembly across spatial scales in an Amazonian forest. Ecological Monographs,2010,80(3):401-422.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700