用户名: 密码: 验证码:
持续低温对沈阳地区水稻的影响及品种搭配决策研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对当前气候变化的特点和水稻生产中对品种搭配决策服务的迫切需求,本研究在前人研究基础上构建了一个能反映当前气候变化和水稻冷害发生特点的低温冷害指标一持续低温指数(Consecutive cold day index, CCDI),系统研究了东北地区该指标的时空变化规律;以水稻品系9023、9035和9036为沈阳地区中熟、中晚熟和晚熟水稻的代表品种,评价了水稻生长发育关键期持续低温对沈阳地区不同熟期水稻生理生态及产量的影响;制定了沈阳地区不同熟期品种水稻的搭配策略。主要研究结果如下:
     1.近45a,东北地区CCDI总体上呈降低趋势(p<0.01),且表现出明显的空间和季节差异性。春、夏、秋、冬季CCDI一致性降低是东北地区CCDI变化的主要特征。其中冬季CCDI降低幅度最大,夏季最小。年平均温度与各季节CCDI表现为负相关关系(p<0.01),温度升高的季节间差异大于CCDI降低的季节间差异,不同季节内CCDI降低对温度升高的敏感性不同,其敏感性依次为冬季>秋季>春季>夏季。进入21世纪以来,随着年平均温度的持续升高和年CCDI的持续降低,夏季平均温度与CCDI反而呈现出下降、夏季CCDI表现为升高的趋势。东北地区粮食产量的波动与CCDI显著相关,且纬度越低,CCDI增加造成粮食减产幅度越大。
     2.水稻产量对持续低温的响应因品种的熟期类型、遭遇低温时所处的关键期及低温强度而不同。分蘖期遭遇持续低温可使各品种(熟期)水稻的产量增加,增产幅度随品种的熟期类型不同而不同,增产幅度从大到小依次为9023>9035>9036。拔节期比正常低3℃持续5d的低温可使9023、9035和9036水稻增产,增产幅度由大到小依次为9023>9035>9036,但低温强度达到5℃时,则会造成9035和9036减产,且9036减产幅度更大。开花期遭遇持续低温导致三个品种(熟期)水稻减产,减产幅度随低温强度增强而增大,三个品系减产幅度从大到小依次为9036>9035>9023。
     3.分蘖期遭遇持续低温,虽可暂时使9023水稻分蘖受到抑制,但最终的成穗数增加是产量增加的主要原因;拔节期遭遇持续低温可增加9023水稻的分蘖数,迟发分蘖最终也可成熟形成产量是9023水稻拔节期遭遇持续低温后最终产量增加的主要原因;开花期的迟发分蘖植株与先发分蘖且已进入生殖生长阶段的植株养分竞争加剧,稻穗普遍偏小是开花期遭遇持续低温后9023水稻产量下降的主要原因。分蘖期和拔节期遭遇持续低温可显著降低9035水稻的空瘪率,虽一级枝梗和二级枝梗数有所下降,但二者的综合影响却可使产量增加;而开花期遭遇持续低温,颖花不孕引起的空率上升,加之一级、二级枝梗数的下降是导致其减产的主要因素。在各关键期遭遇持续低温,均可导致晚熟的9036水稻最终成穗数下降、二级枝梗颖花数上升,拔节期和开花期遭遇持续低温还可导致其不孕率上升,最终空率增加。分蘖期遭遇持续低温后各因素的综合作用使9036水稻产量略有上升;拔节期遭遇持续低温后其产量可能增加也可能下降,取决于低温强度;而开花期遭遇持续低温则导致产量大幅度下降。
     4.持续低温对水稻光合过程的影响存在品种间及关键期间的差异。遭遇低温后可导致水稻的最大光合速率下降,下降的幅度由大到小依次为9036>9035>9023。遭遇低温后9023的表观量子效率增加,9035和9036水稻在生育期的早期遭遇低温会导致表观量子效率增加,后期则下降。在各个关键期,遭遇低温皆可导致9035和9036的表观初始羧化效率下降,而9023的初始羧化效率则在分蘖期下降,开花期增加。低温可使9023的光能利用率有所提高,而9035和9036则表现为下降趋势。遭遇持续低温后,光合系统Ⅱ羧化能力的不足是高光强下水稻光合速率降低的主要原因,持续低温对水稻光合系统Ⅰ的影响较小。低温对水稻光合能力的影响还主要体现在气孔导度的变化上,遭遇持续低温后9023水稻的气孔导度升高,而9036水稻的气孔导度则显著降低。综合各种因素,持续低温对9023水稻光合能力的影响不大,甚至适度的低温反而能使其光合能力提高,而持续低温则可导致9035和9036光合能力下降,且降幅随低温强度的增强而加大。随着品种熟期的延长,遭遇持续低温后水稻光合的恢复能力变弱,晚熟品种光合能力的下降且很难恢复可能是造成遭遇持续低温后9036水稻分蘖大量死亡,最终成穗数显著下降的主要原因。
     5.沈阳地区未来在水稻分蘖期、拔节期、开花期发生持续低温的概率呈下降趋势,但仍存在着明显的年际、年代际波动,2013-2018年、2026年、2028-2029年、2032年CCDI仍处于高指数时期。预测未来中熟品种的产量呈下降趋势,中晚熟和晚熟品种产量呈上升趋势,随品种熟期的延长,产量的年际波动增大。在85%保证率下,确定了1951-2050年每5a为一个时间段的不同熟期水稻品种搭配比例。在接下来的10a中,沈阳地区将遭遇极端低温的频发期,中熟品种的栽种比例应适当增大,栽种的面积比例保持在57%至69%之间。中晚熟品种的栽种比例在2011-2030年间应逐步增大。2011-2025年,晚熟品种的栽种比例应控制在8%-16%之间,在2031-2050年间,其栽种比例应适当增大,从2031-2035时间段的11%增大到2046-2050年的51%。按照搭配决策布局不同熟期品种,水稻的产量会增加,2011-2015年间产量比现在增加0.96%,2026-2030年间增加1.36%,2041-2050年间单位面积产量可比2006-2010年的平均单位面积产量增加9.41%。
Based on characteristics of climate change and pressing need to variety arrangement in rice planting, a new index quantizing the effect of low temperature to rice damage, consecutive cold day index(CCDI) was constructed in this research, its tempo-spatial patterns were studied in Northeast China. The Effects of consecutive cold day on physiecology and yield of rice with different mature periods, marked middle, middle-late, late maturity varieties with9023,9035and9036, respectively, were evaluated and the decision-making of variety arrangement were tradeoffed with proper proportions in Shenyang region. The results are as follows:
     1. In Northeast China, a substantial decrease in CCDI was found (p<0.01), the main variation of CCDI was that there were obvious fall in four seasons in recent45a with the largest drop in winter and smallest in summer. Negative relationships was found between annual mean temperature and seasonal CCDI (p<0.01). Sensitivities of CCDI to temperature were different in four seasons for difference in rise of mean temperature being larger than that in drop of CCDI in spring, summer, autumn and winter, descended order by winter>autumn>spring>summer. However, a slight drop in summer temperature and small rise in summer CCDI were found after2000with annual mean temperarue increased and annual CCDI decreased at the same time. The crop yield fluctuated with CCDI obviously with larger drop in crop yield in lower latitude region.
     2. The dependences of rice yield on consecutive cold day varied with maturity period type, key stage and low temperature intensity. Experienced consecutive cold day (CCD) at tillering stage, the rice yields of three maturity period varieties showed rising tendency and increasing magnitude changed with maturity period type with largest in9023, smallest in9036. The rice yields increased in9023,9035and9036in low temperature condition that it was3℃lower than normal temperature in jointing stage, descended order by9023>9035>9036. However, when temperature was5℃lower than normal temperature, drop yields was found in9035and9036. The yield of three maturity period rice showed dropping after experienced CCD in blooming stage with larger drop in lower temperature and decreasing order by9036>9035>9023.
     3. Experienced CCD in tillering stage, the tiller process was inhibited temporarily, however the ultimate stems and ripe panicles increased, it is the main reason that9023yield rosed. For in jointing stage, the increasing tillers after encountering low temperature can ripe at harvest stage, so the ultimate stems and ripe panicles increased and the yield showed the same tendency as did in tillering stage. But for meeting with CCD in blooming stage, the smaller panicles resulted in lower9023yield for the reason that the nutrient competition intensified between the new tillers being increased after blooming stage and the old tillers being at reproduction stage. The rates of empty and shriveled grain decreased obviously when9035variety rice had be exposed in low temperature at tillering or jointing stages, the final yields went up although the first and secondary branches on panicles decreased. But for meeting with CCD at blooming stage, another disadvantageous factor to yield, the rising empty grain induced by larger unpregnant spikelet caused9035yield decreasing. The final stems and panicles dropped and the spikelets on secondary branch went up if9036variety rice experienced low temperature at tillering, jointing or blooming stage, moreover, the empty grain proportion rosed when it encountered CCD at jointing or blooming stage. Considering all factors, when9036variety rice encountered low temperature at different key stages, the yield showed rising tendency at tillering stage, rising tendency in3℃and dropping tendency in5℃lower than normal temperature at jointing stage, dramatically decreasing tendency at blooming stage.
     4. The dependences of photosynthesis process on CCD varied with rice varieties and key stages. The maximum photosynthesis rate decreased by descended order9036>9035>9023when three maturity period rices experienced low temperature.9023apparent photosynthesis quantum efficiencies increased after being exposed to low temperature at all key stages, whereas those of9035and9036increased at early stages and decreased at late stages.9035and9036apparent photosynthesis carboxylation efficiencies decreased after being exposed to low temperature at all key stages, however, that of9023decreased at tillering stage and decreased at blooming stage. After consecutive clod day. light use efficiencies rosed in9023, dropped in9035and9036; rising stomatal conductance was found in9023, however decreasing pattern showed in9036. Low temperature had little effects on photosynthesis system Ⅰ, however it can prohibited severely carboxylation ability of photosynthesis system Ⅱ, which induced photosynthesis rate declined dramatically at high light intensity. Generally speaking, CCD had little effect on9023photosynthesis process, even moderate low temperature could enhance its photosynthesis ability, and however it could reduce photosynthesis ability of9035and9036characterized by larger dropping photosynthesis ability in lower temperature. The more rice maturity period longer, was the more uneasily to be recovered in dropping photosynthesis ability, which might be the main reason that the9036tillers of late maturity period variety wilted in large quantity and its yield decreased dramatically after it experienced low temperature at key stages.
     5. The probabilities of CCDI at tillering, jointing and blooming stages will decrease in Shenyang region in the future characterized by inter-and decadal-annual variations markedly, with high CCDI in2013-2018,2026,2028-2029,2032. Predicted middle maturity period variety rice yield will drop, whereas middle-late and late mature rice will have increasing yields in the next about40years. Mixing ratio of three varieties of rice with different mature stage expressed on the85%total yield guarantee rate in this study every five years during1951to2050. In the next10years, CCD will occurred frequently, so the cultivated area proportion of middle maturity period variety rice should increase to57%-69%. The proportion of middle-late maturity period variety rice should enlarge during2011-2030gradually. The appropriate proportion of late maturity period variety rice should be between8%and16%during2011-2025, and increase from11%in2031-2035to51%in the stage of2046-2050. Based on above different maturity period variety rice arrangement, the rice yield would increase, with0.96%in2011-2015,1.36%in2026-2030and9.41%in2041-2050higher than average yield in2006-2010.
引文
1. 鲍文东,赵克静.2003.2002年黑龙江垦区东部夏季低温冷害分析.现代化农业, (3):1-22.
    2. 蔡昆争,骆世明.1999.不同生育期遮光对水稻生长发育和产量形成的影响.应用生态学报,10(2):193-196.
    3. 陈高忠.1991.山区冷浸烂糊田水稻垄畦改良的增产效果和操作技术.土壤肥料, (2):29-30.
    4. 陈善娜,李松,王文.1989.水稻耐寒性苗期生理生化指标测定.西南农业学报,2(4):20-22.
    5. 陈温福,徐正进,张龙步.2005.北方粳型超级稻育种的理论与方法.沈阳农业大学学,36(1):3-8.
    6. 陈温福,徐正进,张龙步,等.2007.北方粳型稻超高产育种理论与实践.中国农业科学,40(5):869-874.
    7. 陈友订,万邦惠,张旭.2006.华南双季超级稻产量构成模式探讨.作物学,31(3):323-329.
    8. 邓应德,肖层林.2004.水稻生长后期耐冷性研究综述.作物研究, (5):343-345.
    9. 戴陆园,叶昌荣.1998.中日合作稻耐冷性研究十五年进展概述.作物品种资源, (4):40-42.
    10.戴陆园,叶昌荣,徐福荣,等.1999.云南稻种昆明小白谷耐冷性指标性状的遗传分析.中国水稻科学,13(2):73-76.
    11.杜莜玲,王保生,袁正国.2005.河蟹生态养殖效益对气候变化的响应及预测研究.气象科学,25(3):299-305.
    12.方修琦,王媛.2005.气候变暖的适应行为与黑龙江省夏季低温冷害的变化.地理研究,24(5):673-680.
    13.高阳华,陈志军,李永华.2006.基于GIS的重庆市冬小麦生育进程精细化空间分布.中国农业气象,27(3):215-218.
    14.高煜珠,王忠.1982.关于光呼吸与光合作用关系的研究,II环境因素对光合作用的影响及其与光呼吸的关系.植物生理学报,8(4):373-382.
    15.葛全胜,王绍武,方修琦.2010.气候变化研究中若干不确定性的认识.地理研究,29(2):189-190.
    16.耿立清,张凤鸣,许显滨.2004.低温冷害对黑龙江水稻生产的影响及防御对策.中国稻米,(5):33.
    17.古书琴.1998.辽宁地区作物低温冷害的遥感监测和气象预报.沈阳农业大学学报,29(1):16-20.
    18.韩龙植,高熙宗,朴钟泽.2002.水稻耐冷性遗传及基因定位研究概况与展望.中国水稻科学,16(2):193-198.
    19.何若韫.1995.植物低温逆境生理.北京:中国农业出版社.
    20.姜丽霞,阎平,王萍.2006.黑龙江省影响水稻安全生产的气象要素.自然灾害学报,15(3):46-51.
    21.蒋彭炎,洪晓富.1999.土壤生态条件与水稻秧苗抗寒能力的关系研究.作物学报,25(2):199-207.
    22.李孟旭.2001.双季晚稻冷浸田免耕抛秧高产栽培技术.杂交水稻,(5):46-47.
    23.李景蕻,李刚华,杨从党,等.2010.增加土壤温度对高海拔生态区水稻分蘖成穗及产量形成的影响.中国水稻科学,24(1):36-42.
    24.李永华,高阳华,张建平.2008.气候波动对重庆水稻产量的影响及对策.中国农业气象,29(1):75-78.
    25.李长军,刘焕彬.2004.山东省气候变化及其对冬小麦生产潜力的影响.气象,30(8):49-53.
    26.李文亮,张冬有,张丽娟.2008.黑龙江省低温冷害发生规律及预测研究.灾害学,24(4):30-35.
    27.李霞,戴传超,程睿,等.2006.不同生育期水稻耐冷性的鉴定及耐冷性差异的生理机制.作物学报,32(1):76-83.
    28.李志,郑粉莉,刘文兆.2011.黄土高原极端温度事件的时空变化.自然灾害学报,20(6):6-12.
    29.廉丽姝.2005.山东省气候变化及农业自然灾害对粮食产量的影响.气象科技,33(1):73-76.
    30.林而达,吴绍洪,戴晓苏,等.2007.气候变化影响的最新认知.气候变化研究进展,3(3):125-131.
    31.刘民.2009.水稻低温冷害分析及研究进展.黑龙江农业科学,(4):154-157.
    32.刘允芬,于贵瑞,李家永,等.2001.红壤丘陵地区双季稻光合特性初步研究.资源科学.23(6):49-53.
    33.刘之熙,刘云开,詹庆才.2008.水稻孕穗期耐冷基因的CAPs标记辅助选择.湖南农业大学学报,34(2):127-131.
    34.马树庆,王琪,王春乙,等.2008.东北地区玉米低温冷害气候和经济损失风险分区.地理研究,27(5):1169-1177.
    35.马树庆,王琪.2010.2009年吉林省农业气象灾害及其对粮食生产的影响.吉林农业科学,35(1):49-52.
    36.马树庆,王琪,王春乙,等.2011.东北地区水稻冷害气候风险度和经济脆弱度及其分区研究.地理研究,30(5):931-938.
    37.莫亚丽,邹应斌.2007.免耕栽培对水稻生理特性及产量的影响.作物研究,21(5):583-587.
    38.那家凤.1998.基于均生函数水稻扬花低温冷害程度的EOF预测模型.中国农业气象,19(4):50-52.
    39.潘铁夫.1985.日本作物冷害研究近况.气象,53-55.
    40.秦大河,陈振林,罗勇.2007.气候变化科学的最新认识.气候变化研究进展,3(2):63-73.
    41.沈允钢,许大全.1992.植物生理与分子生物学,Ⅷ光合机构对环境的响应与适应.北京:科学出版社.225-235.
    42.孙玉亭,王书裕,杨永岐.1983.东北地区作物冷害的研究.气象学报,41(3):313-321.
    43.孙永霞,马平,尚新利.2004.2003年气象因素对信阳水稻产量的影响分析.信阳农业高等专科学校学报,14(4):12-14.
    44.盛绍学.1998.基于GIS的安徽省重大农业气象灾害测评系统.南京气象学院学报,21(4):703-708.
    45.施大伟,张成军,陈国祥.2006.低温对高产杂交稻抽穗期剑叶光合色素含量和抗氧化酶活性的影响,生态与农村环境学报,22(2):40-44.
    46.屠乃美,官春云.1999.光周期对水稻库源关系的影响.作物学报,25(5):596-601.
    47.王石立,王馥棠.1993.气候变化对黄淮海地区小麦产量可能影响的模拟实验.气象学报,52(2):209-216.
    48.王连喜,秦其明,张晓煜.2003.水稻低温冷害遥感监测技术与方法进展.气象,29(10):3-7.
    49.王立志.1999.日本北海道利用人工气候室进行水稻障碍型冷害的研究现状及方法.黑龙江农业科学,(6):47-49.
    50.王怀义,张思竹,熊建华.1988.水稻花药长度与耐寒性的关系.西南农业学报,1(2):65-68.
    51.王敬方,吴国雄.1997.持续性东北冷夏的变化规律及相关特征.大气科学,21(5):523-532.
    52.王绍武,马树庆,陈莉,等.2009.低温冷害.北京:气象出版社,23-40.
    53.王艳华,任传友,韩亚东,等.2011.东北地区活动积温和极端持续低温的时空分布特征及其对粮食产量的影响.农业环境科学学报,30(9):1742-1748.
    54.王艳华,任传友,刘刚,等.2013,东北地区不同季节持续低温指数时空变化特征及其对区域温暖化的响应.资源科学,已接收.
    55.王以柔,刘鸿先,李平,等.1986.在光照和黑暗条件下低温水稻幼苗光合器官膜脂过氧化作用的影响.植物生理与分子生物学学报,12(3):244-251.
    56.王主玉,申双和.2010,水稻低温冷害研究进展.安徽农业科学,38(22):11971-11973.
    57.吴洪颜,黄毓华,田心如.2002.基于GIS的徐州地区冬小麦气候分析.气象科学,22(3):362-366.
    58.武万里.2008.气候变暖背景下宁夏水稻低温冷害的变化特征分析.宁夏农林科技,(1):54-56.
    59.魏喜陆,闫立春,陈庆彬.2000.关于水稻冷害指标调整问题的商酌.栽培技术, (2):9-10.
    60.文玉能.2008.低产冷浸田水稻施锌肥的效果分析.农技服务,(7):40.
    61.徐福荣,戴陆园,叶昌荣.2000.水稻耐冷性研究的概况与展望.作物杂志, (1):4-5.
    62.向万胜,古汉虎.1997.低湖区潜育性稻田施用钾肥的效应及对土壤氧化还原性状的影响.土壤肥料, (2):32-34.
    63.薛桂莉,唐文俊,刘治权.2004.低温冷害对农作物的危害及防御措施.农业与技术,24(1):85-86.
    64.杨从党,朱德峰,周玉萍,等.2003.不同生态区温度差和水稻产量因子关系的研究.云南农业科学.(41)增:41-45.
    65.杨晓光,刘志娟,陈阜.2010.全球气候变暖对中国种植制度可能影响Ⅰ.气候变暖对中国种植制度北界和粮食产量可能影响的分析.中国农业科学,43(2):329-336.
    66.杨文坎,李湘阁.2004.气候变化对越南北方水稻生产的影响.南京气象学院学报,27(1):55-64.
    67.余卫东,赵国强,陈怀亮.2007.气候变化对河南省主要农作物生育器的影响.中国农业气象,28(1):9-12.
    68.姚佩珍.1995.近四十年东北夏季低温冷害的气候特征.灾害学,10(1):51-56.
    69.刈屋国男.1994.冷害与稻作技术.全国农业改良普及协会,108-123.
    70.叶昌荣,戴陆园,王建军.2000.低温冷害影响水稻结实率的要因分析.西南农业大学学报,22(4):307-309
    71.游俊梅,阮仁超,陈惠查,等.2000.稻种资源耐冷性鉴定与评价指标分析.贵州农业科学,28(3):34-36.
    72.赵俊芳,杨晓光,刘志娟.2009.气候变暖对东北三省春玉米严重低温冷害及种植布局的影响.生态学报,29(12):6544-6551.
    73.赵秀兰.2012.近50年中国东北地区气候变化对农业的影响.东北农业大学学报,41(9):144-149.
    74.赵正武,李仕贵,黄文章.2006.水稻不同低温敏感期的耐冷性研究进展及前景.西南农业学报,19(2):330-335.
    75.赵志白,陈高,钟益夫.1992.冷烂田水稻垄畦栽培试验简报.浙江农业科学,(6):266-269.
    76.朱以维.2002.大理市冷浸田水稻覆膜增温高产栽培试验成功.大理科技,(1):32
    77.詹庆才,曾曙珍,熊伏星,等.2003.水稻苗期耐冷性QTLs的分子定位.湖南农业大学学报,29 (1):7-11.
    78.张海清,肖国超,邹应斌,等.2005.抗寒种衣剂对水稻秧苗抗寒性的影响.湖南农业大学学报,31(6):597-601.
    79.张育.1995.近40年来我国粮食产量变化特征初步分析.中国农业气象,16(3):1-4.
    80.张盛超,保安辉.2006.冷烂锈水田分厢开沟对水稻增产作用初探.耕作与栽培, (1):40.
    81.张莉萍,黄少锋,王丽萍.2004.2002年黑龙江省东部水稻冷害解析.黑龙江农业科学, (1):39-41.
    82.张小全,徐德应.2001.温度对杉木中龄林针叶光合生理生态的影响.林业科学,38(3):27-33.
    83.张旭.1991.水稻生态育种.北京:农业出版社:295-304.
    84.章秀福,王丹英,屈衍艳,等.2003.垄畦栽培水稻的产量,品质效应及其生理生态基础.中国水稻科学,17(4):343-348.
    85.邹应斌,戴魁根.2008.湖南发展双季稻生产的优势.作物研究,22(4):209-213.
    86.周新桥,称达刚,李丽君,等.2008.华南双季超级稻始穗期低温胁迫及耐冷性评价.湖南农业大学学报,34(4):388-392.
    87. Battaglia M., Beadle C., Loughhead S.1996. Photosynthetic temperature responses of Eucalyptus globulus and Eucalyptus nitens. Tree physiology,16:81-89.
    88. Bjorkman, O.,1981.Responses to different quantum flux densities. In:O. L. Lange et al(ed.), Physiological plant ecology I. Encyclopedia of plant physiology, Vol.12 A, Springer-verlag, Berlin.
    89. Chen C Q, Qian C R, Deng A X, Zhang W J.2012. Progressive and active adaptations of cropping system to climate change in Northeast China. European Journal of Agronomy,38:94-103.
    90. Cyr D R, Bewley J D and Dumbroff E B.1990.Seasonal dynamics of carbohydrates and nitrogenous compounds in the roots of perennial weeds. Plant Cell Environ,13:359-365.
    91. Eckersten H.1985. Comparison of two energy forest growth models based on photosynthesis and nitrogen productivity. Agricultural and Forestry Meteorology,34:301-314.
    92. Farquhuar G, D., von Caemmerer S, Berry J.1980. A biochemical model of photosynthesis CO2 assimilation in leaves of C3 species. Planta,149:78-90.
    93. Haldimann P.1996.Effects of changes in growth temperature on photosynthesis and carotenoid composition in Zea mays leaves. Physiol. Plant,97:554-562.
    94. Hayden D B and Baker N R.1990.Damage to photosynthetic membranes in chillings sensitive plants: maize, a case study. CRC Rev. Biotechnol,9:321-341.
    95. Huang M and Guo Z.2005.Responses of antioxidative system to chilling stress in two rice cultivars differing in sensitivity. Biol. Plant,49:81-84.
    96. Jennings P, Saltveit M E.1994.Temperature and chemical shocks induce chilling tolerance of germinating Cucumis sativus (cv. Poinselt 76) seeds. Physiol. Plant,91:703-707.
    97. Joly R J, Hahn D T.1991. Net CO2 assimilation of cacao seedlings following dark chilling. Tree Physiol, 9:415-424.
    98. King A I, Joyce D C and Reid M S.1988.Role of carbohydrates in diurnal chilling sensitivity of tomato seedlings. Plant Physiol,86:764-768.
    99. Koner, C. H., Diemer, M.1984.CO2 exchange in the alpine sedge Carex curvula as influenced by canopy structure, light and temperature. Oecologia,53:98.
    100. Kudoh H, Sonoike K.2002.Irreversible damage to photosystem I by chilling in the light:cause of the degradation of chlorophyll after returning to normal growth temperature. Planta,215:541-548.
    101. Larcher, W.1980.Physiology plant ecology(second edition), Springer-Verlag, Berlin-Heidelberg.
    102. Lee S H, Singh A P, Chung G C et al.2002.Chilling root temperature causes rapid ultrastructural changes in cortical cells of cucumber (Cucumis sativus L.) root tips. J. exp. Bot.,53:2225-2237.
    103. Lobell D B, Asner G P.2003.Climate and management contributions to recent trends in U.S. agricultural yields. Science,299(14):1032-1033.
    104. Lobell D, Burke M, Tebaldi C, Mastrandrea M, Falcon W, Naylor P.2008.Prioritizing climate change adaptation needs for food security in 2030. Science,319(5863):607-610.
    105. Liu RJ, Du JQ.1998.Mechanism of increasing yield in rice with moderate or non-tillage system[J].Southwest China Journal of Agricultueal Sciences,11(2):45-51.
    106. Meehl G.A., Tebaldi C.2004.More intense, more frequent, and longer lasting heat waves in the 21st century. Science,305:994-997.
    107. Mostafa E M and Hassan A M A.2006.Effect of chilling on growth and nitrogen assimilation in Azolla caroliniana. Biologia Plantarum,50(4):641-646.
    108.Olesen J E, Trnka M, Kersebaum K C.2011. Impacts and adaptation of European European crop production systems to climate change. European Journal of Agronomy,34:96-112.
    109. Opdam P, Luque S and Jones K B.2009. Changing landscapes to accommodation for climate change impacts:a call for landscape ecology. Landscape Ecology,24:715-721.
    110. Peat W, E.1970. Relationships between photosynthesis and light intensity in the tomato. Annuals of Botany,34:319-328.
    111. Pittock A B, nix H A.1986. The effect of change climate on Australian biomics production—A preliminary study. Climatic Change,8(3):243-255.
    112. Read J., Busby J. R.1990. Comparative response to temperature of the major canopy species of Tasmanian cool temperature rainforest and their ecological significance. Ⅱ. Net photosynthesis and climate analysis. Aust. J. Bot.38:185-205.
    113. Reich P B et al.1990.Vertical variation in canopy stucture and CO2 exchange of oak-maple forests: influence of ozone, nitrogen, and other factors on simulated canopy carbon gain. Tree physiology,7: 329-345.
    114. Reilly J, Tubieud F,2003.Mccarl B. U.S. agriculture and climate change:new results. Climatic Change, 57(1):43-49.
    115. Hadiarto T, Tran L P.2010. Progress studies of drought-responsive genes in rice. Plant Cell Rep, DOI 10.1007/s00299-010-0956-z.
    116. Slayter, R. O., Ferrar, P. J.1977. Altitudinal variation in the photosynthetic characteristics of snow gum, Eucalyptus pauciflora Sieb. Ex Spreng. Ⅱ. Effects of growth temperature under controlled conditions, Aust. J. Plant Physiol.4:289.
    117. Tao F L, Zhang Z.2010.Adaptation of maize production to climate change in North China Plain: Quantify the relative contributions of adaptation options. European Journal of Agronomy,33:103-116.
    118. Toda K, Takahashi R, Iwashina T, Hajika M.2011.Difference in chilling-induced flavonoid profiles, antioxidant activity and chilling tolerance between soybean near-isogenic lines for the pubescence color gene. J Plant Res,124:173-182.
    119. Thornley J H M(王天铎译).1983. Mathematical models in plant physiology:A quantitative approach to problems in plant and crop physiology. Beijing:Academic Press.107-129.
    120. Vavrus S., Walsh J.E., Chapman W.L., Portis D.2006.The behavior of extreme cold air outbreaks under greenhouse warming. Int. J. Climatol.,26:1133-1147.
    121. Vollenweider R, A.1970. Models for calculating integral photosynthesis and some implications regarding structural of the community metabolism of aquatic systems. In:Setlik I. eds. Prediction and Measurement of Photosynthesis Productivity. Pudoc Wageningen.455-472.
    122. Zheng H F, Chen L D, Han X Z.2011.Response and adaptation of soybean systems to climate warming in Northeast China:insights gained from long-term field trials. Crop & Pasture Science,62:876-882.
    123.西山岩男.1982.水稻小孢子初期冷温诱导的雄性不育.第23报:穗上不同位置花药长度和花粉数的冷温感受性差异[J].日本作物学纪事,51(4):462-469.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700