用户名: 密码: 验证码:
风力发电机组组合式叶片结构设计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
风力发电机组叶片是将风能转换成机械能的核心部件,其设计理论和制造技术是风力发电机组研发的关键。随着机组单机容量的不断增加,叶片越来越长,使得制造和长途运输的难度和成本也不断增大,制约了风力发电机组的大型化发展。为此,采用组合式叶片,分段制造,分段运输,现场组装的方案可以有效的解决制造和运输的难题。在国家科技支撑“5.0MW双馈式变速恒频近海风电机组整机设计、集成及示范”(2009BAA22B02)项目的资助下,围绕组合式叶片气动设计和结构设计的方法、理论及其关键技术的研究,主要开展了如下工作:
     (1)研究了叶片气动设计的基本理论和方法。基于动量叶素理论,建立了叶片的数学模型,利用改进的自适应遗传算法优化设计了5MW风力发电机组叶片,计算了叶片展向各截面的弦长和扭角数据,并分析了叶片的气动性能。结果表明,采用自适应遗传算法能够得到较理想的气动参数。
     (2)在整个寿命周期中,叶片时刻都受到包括气动力、重力、惯性力、运行控制产生的附加力等多种力的耦合作用。论文基于风特性的分析,给出了极端风速下的湍流风模型,根据IEC61400标准,利用GH Bladed软件计算了叶片多种极限运行工况,给出了叶片极限载荷的选取原则,确定了5MW叶片的极限载荷。
     (3)主梁是叶片的主要承载部件,是叶片结构设计的重点和难点。研究了传统叶片主梁的结构类型,采用了单梁帽双腹板的主梁结构形式。基于材料力学理论,建立了以重量和惯性矩为设计目标的数学模型,采用多目标遗传算法进行了优化计算,并通过算例验证了方法的合理性和可行性。
     (4)根据复合材料层合板理论和梁理论,以强度和刚度为约束条件,研究了大型叶片结构铺层设计的理论方法,并在叶片的蒙皮、梁帽、以及腹板等部位采用了碳纤维/玻璃钢混合铺层,利用有限元法对叶片各部位的强度进行了校核计算,结果表明碳纤维/玻璃钢混合铺层能明显提高叶片的强度,并对叶片振动特性和稳定性进行了分析。
     (5)根据叶片的结构特点载荷分布特征,确定了组合叶片的分段位置。按照可拆卸、易安装的原则,设计了组合式叶片的梁帽、腹板、蒙皮等各部位连接接头的结构形式和尺寸。根据材料力学理论计算了各连接部位螺栓的直径,确定了连接头的铺层方案,并对连接部位的铺层厚度和对接头结构进行了有限元分析,校验了各部件的强度,结果表明,满足设计强度求,铺层设计方法可行。
     (6)通过组合叶片和整体叶片的对比分析,总结叶片分段位置处复合材料多钉连接的承载分配规律,叶片梁帽、腹板、蒙皮等关键部位的应力、应变、位移、振动特性、稳定性等变化规律,分析了极限载荷在连接头截面位置的应力特征,以及结构变化对叶片整体性能的影响。
Wind turbine blades are the core component of converting wind energy into mechanical energy, its design theory and manufacturing technique is the key to the wind turbines. With the increasing capacity of Wind turbines, blades are getting longer and longer, increasing the difficulty of manufacture and long-distance transportation and cost, restricted the large-scale development of wind turbines. Therefore, adopt combined blade, manufacture in sections, segmented transport, site assembly, can well solve the problem of manufacturing and transport. Funded by the national science and technology support project "5.0MW doubly-fed variable speed constant frequency offshore wind turbine design, integration and demonstration"(2009BAA22B02),around the aerodynamic design and structure design method, theory and the key technology research of large combined blade,mainly for the following works:
     (1) Research on the basic theory and method of blade aerodynamic design. Established the mathematical model of blade based on the theory of momentum blade element. Optimized5MW wind turbine blade using the improved adaptive genetic algorithm calculated the chord length and torsional Angle of blade each section analysis of the aerodynamic performance of blades. The results show that it can get ideal pneumatic parameters using adaptive genetic algorithm.
     (2) In the whole life cycle, blade suffered variety of force coupling effect, including aerodynamic force, gravity, inertia force and additional force of operational control. Paper presented the wind turbulence model in the case of extreme wind speed based on analyzing the characteristic of wind,calculate various extreme operating conditions of blade used GH Bladed software, presented the selecting principle of limit load, determine the limit load of5MW blade.
     (3) Main beam are the the main load-bearing components of the blade, are the key and difficult points of blade structure design. Research on the traditional main beam structure types of blade, adopted the structure of main beam with single beam cap and double web. Established a mathematical model with the design objective of weight and bending strength according to mechanics of materials,optimization use the multi-objective genetic algorithm (GA), and validated he rationality and feasibility of the method by an example.
     (4) According to the composite laminated plate theory and beam theory, the strength and stiffness as constraints, large blade structure overlay design theory is studied. In order to improve the blade stiffness and reduce weight, in the blade skin, spar cap and web, carbon fiber/glass fiber reinforced plastic hybrid overlay are used, and the finite element method is applied to check the strength of the various parts. The results show that the carbon fiber/glass fiber reinforced plastic hybrid overlay can significantly improve the strength of the blade, and this method has obvious application value in engineering. Blade vibration characteristics and stability analysis is studied.
     (5) According to blade load distribution characteristics and structural features, the combined of blades staging location were determined. In accordance with the principles removable and easy to install, the structure size of the modular blade spar cap, webs, skin and other connector parts were designed. Based on the theory of mechanics of materials, diameter of bolt and overlay program in the connecting parts were determined. Overlay thickness and structure of conector were analysed with finite element theory to check parts strength. The results showed that design strength of demand is satisfied, overlay design method is feasible.
     (6) Through a combination of modular blade and one-piece blade, the distribution of composite multiple bolted and the stress variation, strain, displacement, vibration characteristics, stability of blade spar caps, webs, skin and other key parts were summed up. A detailed analysis of the limit load in the connector section and structural changing effection on the overall performance of the blade were studied.
引文
[1]王承煦,张源.风力发电[M].北京:中国电力出版社,2002.
    [2]廖明夫,R.Gasch, J.Twele.风力发电技术[M].西安:西北工业大学出版社,2009.
    [3]李俊峰等.中国风电发展报告[M].北京:中国环境科学出版社,2012.
    [4]郭太英,黎发贵.从国外风电发展探讨我国风电发展思路[J].水电勘测设计,2006,58(2):20-24.
    [5]J. L. Tangler, D. M. Somers. NREL Airfoil Families for HAWTs [J], National Renewable Energy Laboratory, Colorado, USA,1995.
    [6]Tangler J L, Somers D M. NREL airfoil families for HAWTs[C]//Proc. Windpower.1995,95:117-123.
    [7]黄继雄.风力机专用新翼型及其气动特性研究:[D].汕头大学,2001
    [8]唐进.提高风力机翼型气动性能的研究:[D].清华大学,2004
    [9]Al-Zubaidy S N, Bridge J, Johnson A. A Preliminary Study for Designing Wind Turbine Blades Using Caribbean Technology. American Institute of Aeronautics and Astronautics,2006,:161-114.
    [10]Chattot J. Optimization of Wind Turbines Using Helicoidal Vortex Model[J]. Journal of Solar Energy Engineering,2003,125(4):418-424.
    [11]Tony Burton, David Sharpe, Nick Jenkins, Ervin Bossanyi. Wind Energy Handbook.Chichester:John Wiley&Sons, Ltd.,2001,59-65.
    [12]Prandtl L. Appendix to wind turbines with minimum energy losses. In:Betz A, editor.Goettenger News, Goettenger,1919,193-217.
    [13]E. Benini and A. Toffolo. Optimal design of horizontal-axis wind turbines using blade-element theory and evolutionary computation[J]. Journal of Solar Energy Engineering,2002,124:357-363.
    [14]Lenka Dubcova,Miloslav Feistauer.Numerical simulation of interaction between turblent flow and a vibrating airfoil[J].Computing and Visualization in Ccience, 2009,12(5):207-225.
    [15]A.J.Vitale,A.P.Rossi.Computational method for the design of wind turbine blades[J].International Journal of Hydyogen Energy,2008,33(13):3466-3470.
    [16]Idriss Ammara, Christophe Leclerc, Christian Masson. A viscous three-dimensional differential/actuator-disk method for the aerodynamic analysis of wind farms[J]. Journal of Solar Energy Engineering,2002,124(11): 345-356.
    [17]Guanpeng Xu, Lakshmi NSankar. Computational study of horizontal axis wind turbines[J]. Journal of Solar Energy Engineering,2000,122(2):35-39.
    [18]Chalothorn Thumthae,Tawit Chitsomboon.Optimal angle of attack for untwisted blade wind turbine[J].Renewable Energy,2009,34(5):1279-1284.
    [19]P.J. Moriarty, A. C. Hansen. AeroDyn Theory Manual[R].National Renewable Energy Laboratory,2005.
    [20]G.B.Eke, J.I Onyewudiala. Optimization of Wind Turbine Blades Using Genetic Algorithm[J].Global Journal of Researches in Engineering,2010,10(7):22-26.
    [21]Long wang,Tong-guang Wang and Yuan Luo.Improved non-dominated sorting genetic algorithm(NSGA)-II in multi-objective optimization studies of wind turbine blades[J].Mathematics and Mechanics,2011,32(6):739-748.
    [22]M.Grujicic,G.Arakere,B-Pandurangan,V.Sellappan,A.Vallejo.Multidisciplinary Design Optimization for Glass-Fiber Epoxy-Matrix Composite 5 MW Horizationgal-Axis Wind-Turbine Blades[J].Materials Engineering and Performance,2010,19(8):1116-1127.
    [23]Esben Lindgaard, Erik Lund.Optimization formulations for the maximum nonlinear buckling load of composite structures [J]. Structural and Multidisciplinary Optimization,2011,43(5):631-646.
    [24]M.Jureczko,M.Pawlak,A.Mezyk. Optimisation of wind turbine blades[J]. Materials Processing Technology,2005,167(30):463-471.
    [25]Karam Y.Maalawi,Hani M.Negm.Optimal frequency design of wind turbine blades[J] Journal of wind Engineering and Industrial Aerodynamics,2002,90 (8):961-986
    [26]Schreck S J, M C R. Horizontal Axis Wind Turbine Blade Aerodynamics in Experiments and Modeling. Energy Conversion,2007,22(1):61-70.
    [27]J. Tangler and J.D. Kocurek. Wind turbine post-stall airfoil performance characteristics guidelines for blade-element momentum methods. Technical Report
    [28]沈观林,胡更开.复合材料力学[M].北京:清华大学出版社,2006.
    [29]陈烈民,杨宝宁.复合材料力学分析[M].北京:中国科学技术出版社,2008
    [30]张承宗.复合材料板壳力学解析理论[M].北京:国防工业出版社,2009.
    [31]石定杜.复合材料标准手册[M].北京:中国标准出版社,2008.
    [32]赵美英,陶梅贞.复合材料结构力学与结构设计[M].西安:西北工业大学出版社,2007
    [33]杨乃宾,倪先平.直升机复合材料结构设计[M].北京:国防工业出版社,2008
    [34]美国通用电气公司.多段式风力涡轮机叶片和用于组装该叶片的方法[P].中国专利:200810188672,2009-06-24.
    [35]维斯塔斯风力系统有限公司.组合式叶片[P].中国专利:200980120257.8,2011-05-04.
    [36]白井艳.水平轴风力机专用翼型族试验分析及优化设计[D].北京:中国科学院研究生院,2009.
    [37]李宏利.水平轴风力机专用翼型族的设计及其气动性能研究[D].北京:中国科学院研究生院,2009
    [38]白井艳,杨科,李宏利,徐建中。水平轴风力机专用翼型族设计[J].工程热物理学报,2010,31(4):589-592.
    [39]张石强.风力机专用翼型及叶片关键设计理论研究[D].重庆:重庆大学,2010.
    [40]谢圆奇.不同翼型风电机组风轮叶片的气动设计与模拟实验[D].北京:华北电力大学,2009.
    [41]叶枝全,黄继雄.风力机新系列翼型气动性能研究[J].太阳能学报,2002,23(2):211-216.
    [42]李德源,叶枝全.风力机旋转叶片的多体动力学数值分析[J].太阳能学报,2005,26(4):473-481.
    [43]包能胜,叶枝全.水平轴失速型风力机主动非线性控制[J].太阳能学报,2004,25(4):519-524.
    [44]陈严,欧阳高飞.变转速风力机的动态模型与随机载荷下的动态分析[J].太阳能学报,2004,25(6):723-727.
    [45]刘雄,陈严.水平轴风力机气动性能计算模型[J].太阳能学报,2005,26(6):792-800.
    [46]刘雄,陈严,叶枝全.风力机桨叶总体优化设计的复合形法[J].太阳能学报2001,22(2):157-161.
    [47]刘雄,陈严,叶枝全.水平轴风力机风轮叶片优化设计模型研究[J].汕头大学学报:自然科学版,2006,21(1):4449.
    [48]吴子牛.空气动力学[M].北京:清华大学出版社,2007
    [49]贺德馨.风工程与工业空气动力学[M].北京:国防工业出版社,2006
    [50]Tony Burtyon著,武鑫译.风能技术[M].北京:科学技术出版社,2007
    [51]肖劲松(丹)Martin O.L Hansen.风力机空气动力学[M].北京:中国电力出版社.
    [52]包耳,邵晓荣,刘德庸.风力机叶片设计的新方法[J].机械设计,2005,22(2):24-26
    [53]周振凯.水平轴风力机叶片优化设计[D].重庆大学2011
    [54]成诚.大型水平轴风力机叶片设计与气动特性研究[D].江苏科技大学2012
    [55]王欣.水平轴风力机气动性能与结构动力特性分析[D].兰州理工大学2012
    [56]赵丹平.风力发电机组叶片模型气动载荷研究[D].内蒙古农业大学2009
    [57]徐宝清.水平轴风力发电机组风轮叶片优化设计研究[D].内蒙古农业大学2010
    [58]黄华.风力机风轮叶片设计计算方法研究[D].西华大学2008
    [59]韩中合,吴铁军.基于遗传算法的风力机叶片优化设计[J].动力工程,2008,28(6):955-958.
    [60]刘雄,陈严,叶枝全.遗传算法在风力机风轮叶片优化设计中的应用[J].太阳能学报.2006,7(2):180-185.
    [61]孙珊霞.风力发电叶片结构及铺放性能研究[D].武汉:武汉理工大学硕士学位论文,2005.
    [62]李军向.大型风力机叶片气动性能计算与结构设计研究[D].武汉:武汉理工大学,2008.
    [63]李成良,王继辉,薛忠民.大型风机叶片材料的应用和发展[J].玻璃钢/复合材料,2008,4:49-52.
    [64]牛春匀(美Michael C.Y.Niu).实用飞机复合材料结构设计与制造[M].北京:航空工业出版社,2010.
    [65]马志勇.大型风电叶片结构设计方法研究[D].华北电力大学(北京)2011
    [66]陈荣盛.风力机结构动力学特性研究[D].西华大学2009
    [67]任腊春.风力机风轮叶片结构设计与分析[D].西华大学2008
    [68]费金凡.复合材料风力叶片结构的有限元分析[D].武汉理工大学2009
    [69]朱蕾.复合材料风力发电机叶片结构优化设计.哈尔滨工业大学硕士学位论文,2007
    [70]唐文艳,顾元宪,赵国忠.复合材料层合板铺层顺序优化遗传算法[J].大连理工大学学报,2004,44(2):186-189.
    [71]穆朋刚,赵美英,陈鹏飞,万小朋.基于蚁群算法的复合材料层合板的铺层顺序优化[J].玻璃钢/复合材料,2007(6):14-17.
    [72]符文贞,吴建军,赵玉静.复合材料铺层曲面铺设仿真技术[J].玻璃钢/复合材料,2010(5):24-28.
    [73]余芬,康永涛.基于CATIA复合材料铺层设计[J].中国民航大学学报,2010,28(4):35-37.
    [74]邓冬梅.复合材料铺层排样技术研究与开发[D].南京:南京航空航天大学,2007.
    [75]王建业,贾普荣等.含铺层拼接层合板的等效刚度估算[J].科学技术与工程,2010.10(3):822-825.
    [76]王玲,贾普荣,王文贵,戴棣,矫桂琼.含铺层拼接层合板面内剪切强度[J].材料科学与工程学报,2010,28(,3):341-344
    [77]J.Selwin Rajadurai,T.Christopher,G.Thanigaiyarasu,B-Nageswara Rao.Finite element analysis with an improved failure criterion for composite wind turbine blades [J].Forschung im Ingenieurwesen,2008,72(4):193-207.
    [78]M.Grujicic,G.Arakere,E.Subramanian,V.Sellappan,A.Vallejo,M.Ozen.Structural-Response Analysis,Fatigue-Life Prediction,and Material Selection for 1MW Horizontal-Axis wind-Turbine Blades[J].Materials Engineering and Performance,2010,19(6):790-801.
    [79]Jayantha A.Epaarachchi,Philip D. Clausen.The development of a fatigue loading spectrum for small wind turbine blades[J] Journal of wind engineering and industrial aerodynamics,2006,94(4):207-223.
    [80]J.C.Marin,A.Barroso,F.Paris,J.Carias.Study of fatigue damage in wind tubine blades [J]. Engineering Failure Analysis,2009,16(2):656-666.
    [81]Changduk Kong,Taekhyun Kim,Dongju Han,Yoshihiko Sugiyama.Investigation of fatigue life for a medium scale composite wind turbine blade[J].Journal of Fatigue,2006,28(10):1382-1388.
    [82]J.H.Wu,F.M.Lai.Fatigue Life Analysis of Small Composite Sandwich Wind Turbine Bladees[J].Procedia Engineering,2011,14:2014-2020.
    [83]J.Selwin Rajadurai,T.Christopher,G.Thanigaiyarasu,B-Nageswara Rao.Finite element analysis with an inproved failure criterion for composite wind turbine blades[J].Forschung im Ingenieurwesen,2008,72(4):193-207.
    [84]浙江恒通机械有限公司.对接式风轮叶片[P].中国专利:200920295176.9,2010-09-29.
    [85]中船重工(重庆)海装风电设备有限公司.风力发电机的分段叶片[P].中国专利:200920150976.1,2010-03.10.
    [86]北京双帆科技有限公司.一种垂直轴风力发电机的纵向分段制作叶片的制作工艺[P].中国专利:200710176663.9,2008-03-26.
    [87]中国科学院工程热物理研究所.一种风力机分段叶片及其装配方法[P].中国专利:201110156422.4,2011-09-21.
    [88]连云港中复连众复合材料有限公司.一种分段风机叶片及其制备和装配方法[P].中国专利:201210124279.x,2012-09-12
    [89]济南轨道交通装备有限责任公司.分段组装式风机叶片[P].中国专利:201020642338.4,2011-06-15.
    [90]国电联合动力技术有点公司.一种分段式风机叶片[P].中国专利:201220038154.6,2012-12-12.
    [91]中国科学院工程热物理研究所.一种风力机分段叶片[P].中国专利:201120195792.4,2011-06-12
    [92]东方电气集团东方汽轮机有限公司.风电分段叶片[P].中国专利:20111044267.6,2012-06-27.
    [93]Robert E Wilson, Peter B S Lissaman, Stel NWalker. Aero2 dynamic performance of wind turbines [M].Department of Mechanical Engineering, Oregon State University,1976
    [94]唐进.提高风力机叶型气动性能的研究[D].北京:清华大学,2004.
    [95]张仲柱.水平轴风力机叶片气动性能计算模型研究[D].北京:中国科学院研究生院,2007.
    [96]J.C. Dai, Y.P. Hu, D.S. Liu, X. Long.Aerodynamic loads calculation and analysis for large scale wind turbine basedon combining BEM modified theory with dynamic stall model[J]. Renewable Energy,2011, (36):1095-1104.
    [97]黄继雄.风力机专用新翼型及其气动特性研究:[硕士学位论文].汕头大学,2001.
    [98]王小平,曹立明.遗传算法-理论、应用与软件实现[M].西安:西安交通大学出版社,2002.
    [99]玄光男, 程润伟.遗传算法与工程优化[M].北京:清华大学出版社,2004.
    [100]Holland J H.Adaptation in Nature and Artifial Systems.MIT Press 1975
    [101]De Jonk K A.An Analysis of the Bchavior of Class of Genetic Adaptive Systems.PHD Gissertation, University of Michigan,1975,76-9381.
    [102]Goldberg D E. Genetic Algorithms in Search, Optimization and Mechine Learning, Addison-Wesley,1989
    [103]周明,孙树栋.遗传算法原理及应用[M],国防工业出版社,北京,1999
    [104]龚纯,王正林.精通matlab最优化计算[M],电子工业出版社,北京2009
    [105]雷英杰,张善文等.matlab遗传算法工具箱及其应用[M]西安电子科技大学出版社,西安,2005
    [106]Tian De,Chen Guanghua Li Qi. Aerodynamic optimization of variable pitch wind turbine blade based on adaptive genetic algorithm [J]. Applied Mechanics and Materials,2012,1:298-292
    [107]马丁·汉森.风力机空气动力学[M].北京市:中国电力出版社,2009
    [108]Chalothorn Thumthae, Tawit Chitsomboon. Optimal angle of attack for untwisted blade wind turbine[J]. Renewable Energy,2009 (34):1279-1294.
    [109]李成友,周光明.34m复合材料风力发电机组叶片屈曲有限元分析[J].风机技术,2008(5):4045
    [110]Chen Guanghua,De Tian,Ying Deng. Aerodynamic and structural design of composite wind turbine blades[J]. Applied Mechanics and Materials,2013,268:1294-1298.
    [111]M. Grujicic, G. Arakere, B. Pandurangan, V. Sellappan, A. Vallejo, and M. Ozen. Multidisciplinary Design Optimization for Glass-Fiber Epoxy-Matrix Composite 5 MW Horizontal-Axis Wind-Turbine Blades[J]. Journal of Materials Engineering and Performance,2010,19:1116-1127
    [112]IEC61400-1, Wind turbine generator system-Part Ⅰ:safety requirements[S].2005
    [113]陈建桥.复合材料力学概论[M].北京:科学出版社,2011
    [114]Amanda Jacob.The popularity of carbon fiber[J].REINFORCED Plastics, 2006 (62):22-24
    [115]Alireza Maheri, Siamak Noroozi, John Vinney. Application of combined analytical/FEA coupled aero-structure simulation in design of wind turbine adaptive blades[J]. Renewable Energy,2007 (32):2011-2018.
    [116]Fangfang Song, Yihua Ni, Zhiqiang Tan. Optimization Design, Modeling and Dynamic Analysis forComposite Wind Turbine Blade[J]. Procedia Engineering,2011 (16):369-375.
    [117]王凌著.智能优化算法及其应用[M].北京:清华大学出版社,2001
    [118]李丽荣.求解Pareto Front多目标遗传算法的研究[D].湘潭:湘潭大学,2003
    [119]孙靖.用于区间参数多目标优化问题的遗传算法[D].徐州:中国矿业大学,2012
    [120]肖晓伟,肖迪等.多目标问题的研究概述[J].计算机应用研究,2011,28(3):805-809.
    [121]雷英杰.MATLAB遗传算法工具箱及其应用[M].西安:西安电子科技大学出版社,2005.
    [122]玄光男,程润伟.遗传算法与工程优化[M].北京:清华大学出版社,2004.
    [123]Abido M. A Niched Pareto Genetic Algorithm for Multiobjective Environmental/Economic Dispatch [J]. Electrical Power&energy Systems, 2003, (25):97-105.
    [124]Srinivas N,Deb K.Multi-objective optimization using non-dominated sorting in genetic algorithms.Evolutionary Computation,1994,2(3),221-248.
    [125]Zitzel E,Thiele L.Multi-objective evolutionary algorithms:A comparative case study and the strength Pareto approach.IEEE Transactions on Evolutionary Computation,1999,3(4),257-271.
    [126]Zitzel E,Thiele L,Laumanns M.SPEA2:Improving the strength Pareto evolutionary algorithms.In:Giannakoglou K,Tsahalis DT,Periaus J,Papailou KD,Fogaty T,eds.Evolutionary Methods for Design,Optimization and Control with Applications to Industrial Problems. Berlin:Springer-Verlag, 2002,95-100.
    [127]K Deb,S Agrawal,A Pratap,T Meyarivan.A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization:NSGA-II.In Proc.Conf. Parallel Problem Solving from Nature VI.2000.849-858.
    [128]Chen Guanghua,Tian De,Deng Ying. Main beam optimization of wind turbine blade base on multi-objective genetic algorithm[J]. Advanced Materials Research,2013,655-657:496-501.
    [129]廖猜猜.极限载荷条件下的风力机叶片铺层优化设计研究[D].北京:中国科学院工程热物理研究所,2012.
    [130]C.C. Liao, X.L. Zhao, J.Z. Xua. Blade layers optimization of wind turbines using FAST and improved PSO Algorithm[J]. Renewable Energy,2011 (32): 1-7.
    [131]Mandell J. F., Samborsky D. D. DOE/MSU Composite Material Fatigue Database:Test Methods, Materials, and Analysis [R],1997.
    [132]陈建桥,复合材料力学概论[M].北京市:科学出版社,2006.
    [133]王丹勇,温卫东.复合材料单向层合板损伤失效试验研究[J].复合材料学报,2007,21(5):143-148.
    [134]G.Bir,P.Migliore.Preliminary Structural Design of Composite Blades for Two and Three-Blade Rotors[R]. Colorado:National Renewable Energy Laboratory.2004
    [135]M. Jureczko, M. Pawlak, A. Mezyk. Optimisation of wind turbine blades[J] Journal of Materials Processing Technology,2005,167:463-471
    [136]Fangfang Song, Yihua Ni, Zhiqiang Tan. Optimization Design, Modeling and Dynamic Analysis forComposite Wind Turbine Blade[J]. Procedia Engineering,2011 (16):369-375.
    [137]张少实,庄茁,复合材料与粘弹性力学[M].北京市:机械工业出版社,2005:188
    [138].王助成.有限单元法[M].北京:清华大学出版社,2005.
    [139]Jianhong Wang, DatongQin, Teik C.Lim. Dynamic analysis of horizontal axis wind turbine by thin-walled beam theory[J] Journal of Sound and Vibration,2010, (329):3565-3586.
    [140]Karam Y. Maalawi, Hani M. Negm. Optimal frequency design of wind turbine blades[J] Journal of Wind Engineering,2002 (90):961-986
    [141]Jung-Hun Park, Hyun-Yong Park, Seok-Yong Jeong, Sang-Il Lee, Young-Ho Shin, Jong-Po Park. Linear vibration analysis of rotating wind-turbine blade[J]. Current Applied Physics,2010 (10):S332-S334.
    [142]张慧珍.1.5MW水平轴风力机叶片结构性能分析[D].成都:西华大学,2011.
    [143]L.C.T. Overgaard, E.Lund, O.T. Thomsen. Structural collapse of a wind turbine blade. Part A:Static test and equivalent single layered models[J]. Composites,2010 (41):257-270
    [144]L.C.T. Overgaard a, E. Lund, P.P. Camanho. A methodology for the structural analysis of composite wind turbine blades under geometric and material induced instabilities[J]. Computers and Structures,2010 (88):1092-1109.
    [145]张春丽.复合材料风力机叶片结构设计[D].上海:同济大学,2007
    [146]于文砚.连接的技术方法研究[D].北京:北京建筑工程学院,2012
    [147]中国航空研究院.复合材料连接手册[M].北京:航空工业出版社,1994.
    [148]曹增强.新机研制中的复合材料结构装配关键技术[J].航空制造技术,2009(15):40-42.
    [149]林鹏程.复合材料螺栓单钉连接性能实验研究[D].哈尔滨:哈尔滨工程大学,2012.
    [150]Zhaoxin H. Study on the behavior of bearing high-strength bolt connection[J]. Industrial Construction,1992,9:24-27.
    [151]XIA W, ZHENG X, YANG X. FEM simulation of blind bolt connection based on ANSYS [J]. Machinery Design & Manufacture,2009,7:018.
    [152]谢鸣九.复合材料连接手册.北京:航空工业出版社,1994
    [153]迟秀.典型机械连接结构有限元模拟与实验研究[D].南京:南京理工大学,2012
    [154]常仕均,肖红,候兆珂等.飞机复合材料结构装配连接技术[J].航空制造技术,2010(6):96-99.
    [155]朱红红.复合材料螺栓连接接头失效分析与强度预测[D].郑州:郑州大学,2012.
    [156]Buket Okutan,Zu'leyha Aslan,Ramazan Karakuzu. A study of the effects of various geometric parameters on the failure strength of pin-loaded woven-glass-fiber reinforced epoxy laminate[J]. Composites Science and Technology,2001,16:1491-1497.
    [157]Copings T A,The strength of bolted joints in multi-directional CFRP laminates[J]. Composites,1977,8:4354
    [158]Collings T A, On the bearing strengths of CFRP laminates[R]. Technical Report 82033,1982:1-23
    [159]王志强.复合材料层压板螺栓连接性能分析[D].哈尔滨:哈尔滨工程大学,2010
    [160]航空航天工业部科技研究院编.复合材料设计手册.北京:航空工业出版社,1990.
    [161]王花娟,杨杰,刘新东,刘小建.复合材料机械连接强度影响因素的研究[J].材料导报.2007(21)11:438-440
    [162]赵美英,陶梅贞.复合材料力学与结构设计[M].西安:西安工业大学出版社,2007.12.
    [163]谢鸣九.复合材料连接手册[M].北京:航空工业出版社,1994.
    [164]Xueyong Zhao,,Peter MaiXer, Jingyan Wu. A new multibody modelling methodology for wind turbine structures using a cardanic joint beam element[J]. Renewable Energy,2007 (32):532-546.
    [165]陈真.风力发电机组高强度螺栓连接技术研究[D].重庆:重庆大学,2011
    [166]杨旭,章怡宁,许希武.复合材料层板多钉机械连接[J]飞行设计,1999,9(3):11-19
    [167]常园园.面内载荷下复合材料整体加筋板破坏过程分析[D].南京:南京航空航天大学,2010
    [168]中国航空研究院.复合材料结构设计手册[M].北京:航空工业出版社2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700