用户名: 密码: 验证码:
超超临界机组非线性控制模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
深入分析超超临界机组特性,建立适用于超超临界机组控制器设计的模型,准确获取相关状态变量信号是对超超临界机组进行控制优化的前提。控制模型要精度足够,具有便于分析计算的解析形式。有些控制优化所需的状态变量信号是难以采用传统检测方式准确获取的。对于这些信号,可以通过构造其与其它可测变量之间的关系间接得到。构造的状态变量信号要易于实现,有足够精度。围绕这2个目标,以建立控制模型为主线,本文主要进行了以下工作:
     提出了基于复合建模方法的超超临界机组控制模型建立方案。采用单一建模方法会造成模型复杂度高,模型精度不够或通用性低的问题,而复合建模方法将两种基本方法结合起来,可以充分发挥各自优势并且互相弥补不足。运用复合建模方法建模时,存在模型结构不合适造成的数据信息过补偿或欠补偿问题。为了能够在精度要求范围内最大限度地利用从数据中提取的信息,简化模型结构,定义了最佳模型结构,将控制模型建立问题转化为最佳模型结构建立问题。
     建立了包含最多有效信息的直流炉机组最简控制模型结构。基于合理的简化假设建立包含最多机组有效信息的最简控制模型结构是找到最佳模型结构的关键。当采用分区集总方法建立直流炉模型时,为了有效规避相变点位置问题研究并使划分区段数合理地降至为最小值,运用理论和数据分析为包含两相区的固定边界区段选择了合适的集总参数并对减温水环节进行了简化处理。考虑了工质的吸热膨胀过程对过热器差压特性的影响,建立了过热器差压与汽水分离器压力之间的函数关系。在保证有效信息含量的前提下,得到了最简控制模型结构。在此基础上增加划分区段数,并建立了较高阶次的直流炉机组通用非线性模型结构。
     建立了具有最简结构的超超临界机组控制模型。提出了一种基于机理模型结构的开环辨识数据选择方法,并证明了火电机组的闭环可辨识性。基于此以泰州1000MW和平海1000MW超超临界机组为应用对象,确定了模型参数,并验证了模型的准确性。对具有不同结构复杂度的模型进行精度比较表明,具有最简结构的模型精度和复杂度比最高,具有最佳结构,是要建立的控制模型。从而实现了最简模型结构向最佳模型结构转化,最佳模型结构向控制模型结构转化。
     运用多源信息融合技术和机理分析方法,基于本文控制模型中重构的2个重要状态变量信号——主蒸汽流量和热量信号,构造了适用于超超临界机组的再热蒸汽流量、燃煤发热量和氧量信号,以用于机组控制优化。
Prerequisites for control optimization of ultra-supercritical unit are to analyze the characteristics of ultra-supercritical unit in depth, build the model for control and obtain accurate signals. The model for control should be simple, and possess favorable accuracy. Some state variable signals needed by control optimization cannot be obtained with traditional methods. Those signals could be gotten through constructing their relationships with other known signals. The constructed signals should be accurate and easy to realize. To achieve the goals and take modeling as paramount, the following works have been carried out in this thesis.
     A scheme based on hybrid modeling method for control model of ultra-supercritical unit is proposed. Models built with single modeling method always have high complexity, low accuracy or low commonality. However, the hybrid modeling method could take advantage of both methods. When using the hybrid modeling method, there is overcompensation or undercompensation of data information for model structure. In order to get the maximum use out of data information, and simplify the structure of control model to the fullest extent as well, the best model structure was defined and control model built problem was therefore transferred to the best structure built problem.
     The simplest model structure containing the most effective information is given which is critical for obtention of the best model structure. In order to evade determination of the transition point position in an effective way and minimize the possible number of compartment with fixed boundary when deriving a general lumped compartmental model structure that respects the conservation of energy, momentum, and mass, suitable lumped parameters are chosen for the compartment of the boiler including two-phase region. And then another lumped model structure was developed with the sub-minimal number of compartment in the same way.
     The control model of ultra-supercritical unit possessing the most simplified model structure is built. A data selection method for open-loop identification based on model structure was developed and close-loop identifiability of power unit was proved as well. Parameters of models were determined with close-loop operation data of Taizhou1000MW ultra-supercritical unit and open-loop experimental data of Pinghai1000MW ultra-supercritical unit. The models were verified by data comparison experiments. Models with different structures were compared in accuracy and the ratio of accuracy and structure complexity of each model was analyzed. Results indicate that the model with the most simplified structure has the highest ratio of accuracy and structure complexity and it can be used as control model.
     Finally, based on multi-sensors information fusion technique and mechanism analysis, reheat steam flow signal, coal calorific value signal and oxygen content of exhaust gas signal are constructed for control optimization of ultra-supercritical unit using two important state signals constructed in the control model which are main steam flow signal and boiler heat signal. The constructed signals were verified with operation data.
引文
[1]林伯强.中国能源发展报告2008[M].北京:中国财政经济出版社,2008
    [2]樊泉桂.超超临界及亚临界参数锅炉[M].北京:中国电力出版社,2007:1-5
    [3]边小君,王娜娜,曹云娟.超临界机组的发展及应用[J].浙江电力,2003,(2):21-29
    [4]焦健,赵志强.660MW超超临界机组协调控制策略[J].东北电力技术,2010,(1): 27-32
    [5]孟祥荣,李昌卫,房高超.超临界机组的水燃比控制研究与应用[J].电站系统工程,2008,24(3):35-38
    [6]沙友平,王利国,管春雨.超临界机组典型系统的控制策略[J].中国电力,2006,39(3):82-85
    [7]刘潇,曹冬林,丁劲松.外高桥1000MW超超临界机组闭环控制系统设计[J].中国电力,2006,39(3):70-73
    [8]章臣樾.锅炉动态特性及其数学模型[M].北京:水利电力出版社,1987:3-4
    [9]魏丽东,肖洪,王锦桥.超临界火电机组及其仿真技术研究进展[J].电力设备,2006,7(1):48-50
    [10]吕崇德,范永胜,蔡瑞忠.我国电站仿真技术进展与建模理论研究[J].中国工程科学,1999,1(1):99-103
    [11]吕崇德,任挺进,姜学智,程芳真.大型火电机组系统仿真与建模[M].北京:清华大学出版社,2002:31-45
    [12]郑建学,陈听宽,陈学俊,杨东.单相受热管动力学模型[J].力学进展,1997,27(4):538-547
    [13]M. Enns. Comparison of dynamic models of a superheater [J]. Transactions of the ASME,1962,84(4):375-382
    [14]Ray R. Bowman H.F. A nonlinear dynamic model of a once-through subcritical steam generator[J]. Transactions of the ASME,1976, (9).
    [15]Yutaka Suzuki, Pyong Sik Pak, Yoshihisa Uchida. Simulation of a supercritical once-through boiler[J]. Simulation,1979, (9).
    [16]Adams J, Clark D R, Louis J R, et al. Mathematical model of once-through boiler dynamics[J]. IEEE Transactions on Power Systems,1965,84(2):146-156.
    [17]Smith L P. Modular modeling system (MMS):a code for the dynamic simulation of fossil and nuclear power plants [M]. Washington D.C.:Electric Power Research Institute,1983.
    [18]S. W. W. Shor. Modular modeling system (MMS) [R]. EPRI CS/NP——3016, 1987.
    [19]Dolezal R. Simulation of large state variation in steam power plants[M]. Berlin: Springer-Verlag,1987:83-94
    [20]李运泽,杨献勇.超临界直流锅炉长期动态特性的建模与仿真[J].热能与动力工程,2003,18(1):23-26
    [21]于荣生,徐二树,马进,王勇.超临界压力直流锅炉的数学模型及其仿真[J].中国电力,1996,29(7):22-25
    [22]徐二树,李恕康,孙志英,宋之平.大容量超临界直流锅炉国内过程全工况实时仿真数学模型及动态特性[J].电力设备,2003,23(4):2500-2505
    [23]王伟,任挺进,高琪瑞,刘笑驰.直流锅炉蒸发区域的数学模型及其仿真[J].清华大学学报(自然科学版),2001,41(10):105-108
    [24]范永胜.两类实用的单相受热管集总参数动态修正模型[D].北京:清华大学,1999
    [25]王广军.蒸汽发生系统通用动力学模型[D].南京:东南大学,1995
    [26]刘远鹏.超临界压力锅炉汽水系统分布参数动态数学模型[D].重庆:重庆大学,2005
    [27]范永胜,徐治皋,陈来九.超临界直流锅炉蒸汽发生器的建模与仿真研究(一)[J].中国电机工程学报,1998,18(4):246-253
    [28]范永胜,徐治皋,陈来九.超临界直流锅炉蒸汽发生器的建模与仿真研究(二)[J].中国电机工程学报,1998,18(5):350-356
    [29]Alobaid F, Strohle J, Epple B, Kim H G. Dynamic simulation of a supercritical once-through heat recovery steam generator during load changes and start-up procedures[J]. Applied Energy,2009,86(7):1274-1282
    [30]Narendra K S, Parthasarathy K. Identification and control of dynamical systems using neural networks[J]. IEEE Trans. on Neural Networks,1990,1(5):4-27
    [31]Kosmatopoulos E B, Polycarpou M M. High-order neural network structures for identification of dynamical systems[J]. IEEE Trans. on Neural Networks,1995, 6(2):422-431
    [32]Willis M J et al. Artificial neural networks in process estimation and control[J]. Automatica,1992,28(6):1181-1187
    [33]Funahashi K I. On the approximate realization of continuous mappings by neural networks[J]. Neural Networks,1989,2(3):183-192
    [34]王广军,何祖威,陈红.基于神经网络和过程机理特性的锅炉蒸发系统仿真[J].中国电机工程学报,2001,21(11):65-68
    [35]侯逸文,沈炯,李益国.基于小波神经网络的火电单元机组负荷系统建模仿真研究[J].中国电机工程学报,2003,23(10):220-224
    [36]Astrom K J, Eklund K. A simplified non-linear model of a drum boiler-turbine unit[J]. International Journal of Control,1972,16(1):145-169
    [37]Bell R D, Astrom K J. A low order nonlinear dynamic model for drum boiler-turbine-alternator units[R]. Sweden:Lund Institute of Technology,1979
    [38]Bell R D, Astrom K J. Dynamic models for boiler-turbine-alternator units:data logs and parameter estimation for a 160 MW unit[R]. Sweden:Lund Institute of Technology,1987
    [39]Astrom K J, Bell R D. Drum. boiler dynamics[J]. Automatica,2000,36(3): 363-378
    [40]Tan W, Fang F, Tian L, et al. Linear control of a boiler-turbine unit:analysis and design[J]. ISA Transactions,2008,47(2):189-197
    [41]Wen T, Horacio J M, Tong W C, Ji Z L. Analysis and control of a nonlinear boiler-turbine unit[J]. Journal of Process Control,2005,15(8):883-891
    [42]Wen T, Ji ZL, Fang F, Qiao C Y. Tuning of PID controllers for boiler-turbine units[J]. ISA Transactions,2004,43(4):571-583
    [43]Raul G R. Overall intelligent hybrid control system for a fossil-fuel power unit[D]. Pennsylvania:The Pennsylvania State University,2000
    [44]林金星,沈炯,李益国.基于免疫优化的机炉协调系统模糊增益调度H∞鲁棒控制[J].中国电机工程学报,2008,28(17):92-97
    [45]张铁军,吕剑虹,华志刚.机炉协调系统的模糊增益调度预测控制[J].中国电机工程学报,2005,25(4):158-165
    [46]De Mello.F.P., Fellow. Boiler models for system dynamic performance studies [J]. IEEE Transactions on Power Systems,1991,6(1):66-73
    [47]De Mello.F. P., Fellow. Dynamic models for fossil fueled system units in power system studies[J]. IEEE Transactions on Power Systems,1991,6(2):78-83
    [48]田亮.单元机组非线性动态模型的研究[D].北京:华北电力大学,2005
    [49]田亮,曾德良,刘鑫屏.500MW机组简化的非线性动态模型[J].动力工程,2004,24(4):522-525
    [50]曾德良,赵征,等.500MW机组锅炉模型及实验分析[J].中国电机工程学报,2003,23(5):149-152
    [51]曾德良,刘吉臻.汽包锅炉的动态模型结构与负荷/压力增量预测模型[J].中国电机工程学报,2000,20(12):75-79
    [52]曾德良.基于速率优化的智能协调控制系统的研究和应用[D].河北保定:华北电力大学,2000
    [53]Shinohara W, Koditschek D. A simplified model for a supercritical power plant[R]. Michigan:University of Michigan,1995
    [54]Toshio Inoue, Haruhito Taniguchi, Yasuyuki Ikeguchi. A model of fossil fueled plant with once-through boiler for power system frequency simulation[J]. IEEE Transactions on Power Systems,2000,15(4):1322-1328
    [55]王恭良,沈炯,李益国,潘蕾.适用于控制的600MW超临界机组的简化模型[J].江苏电机工程,2008,27(4):1-7
    [56]严敬.工程流体力学[M].重庆:重庆大学出版社,2007:80-94
    [57]刘志远,吕剑虹,陈来九.新型BPF神经网络及在热工过程建模中的应用[J].中国电机工程学报,2002,22(11):118-122
    [58]方崇智,萧德云.过程辨识[M].北京:清华大学出版社,1988:71-126
    [59汪定伟,王俊伟,王洪峰,等.智能优化方法[M].北京:高等教育出版社,2007:136-138
    [60]杨晓华,沈珍瑶.智能算法及其在资源环境系统建模中的应用[M].北京:北京师范大学出版社,2005:88-102
    [61]李晓光.混合建模方法研究及其在化工过程中的应用[D].北京:北京化工大学,2008
    [62]李向阳,朱学峰,刘焕彬.工业过程混合建模方法研究及应用[J].计算机工程与应用,2001,37(6):17-19
    [63]罗娜,李南,钱锋.支持向量机与机理模型相结合的混合建模方法及其在聚酯生产过程的应用[J].聚酯工业,2007,20(2):17-19
    [64]Johansen T A. Identification of non-linear systems using empirical data and prior knowledge-an optimization approach[J]. Automatica,1996,32(3):337-356
    [65]Thompson M L, Kramer M A. Modeling chemical processes using prior knowledge and neural networks[J]. AICHE,1994,40(8):1328-1340
    [66]Joerding W H, Meador J L. Encoding a priori information in feed forward networks[J]. Neural Networks,1991,4(6):847-856
    [67]Xiong Q, Jutan A. Grey box modeling and control of chemical processes[J]. Chemical Engineering Science,2002,57(6):1027-1039
    [68]李卫新,杨永军,刘渊.超临界火电机组厂级监控信息系统的开发和应用[J].热力发电,2007,36(3):65-68
    [69]吴智群,赵玉良,吴涛,等.发电厂厂级监控信息系统统一实时数据平台的应用研究[J].热力发电,2011,40(8):1-4
    [70]樊泉桂.1000MW超超临界锅炉中间点温度和汽温控制[J].动力工程,2007,27(3):332-335
    [71]Viswanathan R, Coleman K, Rao U. Materials for ultra-supercritical coal-fired power plant boilers[J]. International Journal of Pressure Vessels and Piping, 2006,83(11-12):778-783
    [72]尹峰,朱北恒,李泉.超(超)临界机组协调控制特性与控制策略[J].中国电力,2008,41(3):66-69
    [73]杨景祺,戈黎红,凌荣生.超临界参数机组控制系统的特点及其控制策略[J].中国动力工程学报,2005,25(2):221-225
    [74]金黔军.1000MW超超临界机组热控设计特点[J].中国电力,2006,39(3):78-81
    [75]夏明.超临界机组汽温控制系统设计[J].中国电力,2006,39(3):74-77
    [76]张秋生,岳建华,赵军,何志永.超临界机组的给水自动控制策略[J].华北电力技术,2007,(9):26-29
    [77]刘锋,郭娟.超超临界机组中速磨煤机性能分析及其运行优化[J].电力建设,2011,32(7):79-83
    [78]田丹.中速磨直吹式制粉系统的建模及运行优化策略[硕士学位论文].保定:华北电力大学,2009
    [79]樊泉桂.锅炉原理[M].北京:中国电力出版社,2004
    [80]刘吉臻.协调控制与给水全程控制[M].北京:中国电力出版社,1993
    [81]于希宁,刘红军.自动控制原理[M].北京:中国电力出版社,2001:20-24
    [82]Leva A, Maffezzoni C, Benelli G. Validation of drum boiler models through complete dynamic tests[J]. Control Engineering Practice,1999,7(1):11-26
    [83]王培红,贾俊颖,程懋华.水和水蒸汽热力性质IAPWS-IF97公式的通用计算模型[J].动力工程,2001,21(6):1564-1567
    [84]张小桃,倪维斗,李政.基于现场数据的汽包压力动态建模研究与仿真[J].动力工程,2004,24(3):370-374
    [85]张小桃,倪维斗,李政,等.基于现场数据与神经网络的热工对象动态建模[J].热能动力工程,2005,20(1):34-39.
    [86]倪维斗,徐向东.李政.热动力系统建模与控制的若干问题[M].北京:科学出版社.1996
    [87]张小桃,倪维斗,李政.基于现场数据的中速磨煤机动态建模研究[J].热能动力工程,2004,19(6):614-616,633
    [88]杨婷婷.基于数据的电站节能优化控制研究[D].北京:华北电力大学,2010
    [89]周怀春,娄新生,尹鹤龄,等.采用辐射能信号的电站锅炉燃料调节对象建模及控制仿真研究[J].中国电机工程学报.1997,16(4):226-229
    [90]Chaibakhsh A, Ghaffari A, Moosavian S A A. Materials for ultra-supercritical coal-fired power plant boilers[J]. International Journal of Pressure Vessels and Piping.2006,83(11-12):778-783
    [91]刘长良.大型火电单元机组动态模型研究及应用[D].河北保定:华北电力大学,2002
    [92]赵继俊.优化技术与MATLAB优化工具箱[M].北京:机械工业出版社.2011:173-180
    [93]王诗宓.多变量控制系统的分析和设计[M].北京:中国电力出版社,1996:79-85
    [94]陈彦桥.单元机组模糊多模型协调控制系统研究[D].河北保定:华北电力大学,2004
    [95]Slotine J E, Li W.应用非线性控制[M].北京:机械工业出版社,2010
    [96]刘鑫屏.热力发电过程建模与状态参数检测研究[D].北京:华北电力大学,2010
    [97]张渡,楚岩.应用弗留格尔公式分析速度级汽压代替主汽流量测量问题[J].河南电力,2009,(3):28-29
    [98]赵晶晴,林中达.电厂主蒸汽流量测量与计算方法分析比较[J].燃气轮机技术,2007,20(4):39-42
    [99]周建新,王雷,吴海姬,等.基于支持向量回归的大容量机组主蒸汽流量建模[J].热能动力工程,2008,23(2):122-126
    [100]孙群丽,朱安华,尹斐斐.基于汽水系统吸热的热量信号研究[J].发电设备,2009,23(3):157-159
    [101]李希武.直接能量平衡法(DEB)控制系统分析[J].中国电力,2000,(6):65-69
    [102]朱红路,刘吉臻,常太华,田亮.用LMS算法构造电站燃料增益信号及热量信号[J].热能动力工程,2010,25(5):552-556
    [103]韩忠旭,周传心,李丹,等.燃煤发热量软测量技术及其在超临界机组控制系统中的应用[J].中国电机工程学报,2008,28(35):90-95
    [104]于达仁,范轶,徐志强.基于分布信息融合的直流锅炉燃料量信号重构[J].中国电机工程学报,2004,24(2):191-195
    [105]金以慧.过程控制[M].北京:清华大学出版社.1993:171-174
    [106]李勇,曹丽华,杨善让.凝汽式汽轮机相对内效率在线监测的一种近似计算方法[J].中国电机工程学报,2002,22(2):64-67
    [107]盛德仁,李蔚,陈坚红,等.汽轮机组热耗率分析及实时计算[J].热力发电,2003,32(5):16-18
    [108]张春发,崔映红,杨文滨,等.汽轮机组临界状态判别定理及改进型Flugel公式[J].中国科学(E辑),2003,33(3):264-272
    [109]程懋华,王培红,高亹,等.汽轮发电机组回热系统通用热平衡方程及其结构模型研究[J].中国电机工程学报,2002,22(4):66-71
    [110]闫顺林,张春发,李永华,等.火电机组热力系统汽水分布通用矩阵方程[J].中国电机工程学报,2000,20(8):69-78
    [111]王耀南,李树涛.多传感器信息融合及其应用综述[J].控制与决策,2001,16(5):518-522
    [112]于达仁,范轶,徐志强,等.炉膛辐射能信号和热量信号的信息融合方法[J].中国电机工程学报,2003,23(4):158-171
    [113]张冀,王兵树,邸剑,等.传感器多故障诊断的信息融合方法研究[J].中国电机工程学报,2007,27(16):104-108
    [114]程启明,郭瑞青,杜许峰,郑勇.火电厂烟气含氧量测量的现状与发展[J].电站系统工程,2008,24(6):1-4
    [115]常太华,苏杰,田亮,任鑫.数据融合在氧量测量中的应用[J].电力科学与工程,2003,(4):44-49
    [116]赵征,曾德良,田亮,等.基于数据融合的氧量软测量研究[J].中国电机工程学报,2005,25(7):7-12

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700