用户名: 密码: 验证码:
秸秆建材燃烧特性及生命周期研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着市场经济的持续发展和城市的不断扩大,大片森林被砍伐用于个人家装和经济建设,林木资源正面临采伐殆尽的危险,该现状为我国秸秆建材工业的发展提供广阔的前景;此外,秸秆建材以异氰酸酯为胶粘剂,固化后不产生游离甲醛,是很好的绿色环保材料,符合当前政府和民众对绿色产品的需求,成为家具和建筑行业的良好原料,因此,秸秆建材工业将成为我国农作物秸秆综合利用的主要发展方向之一。
     本文以秸秆瓦、秸秆板材作为研究对象,利用热重试验台、管式炉烟气试验台、生命周期评价方法(LCA),对秸秆建材燃烧时的失重特性、动力学参数、排放情况及其生产各阶段的环境影响进行了较为全面的研究,并将秸秆建材的燃烧特性和环境影响评价与秸秆、一般建材作对比,为秸秆建材的综合评价及秸秆建材工业的环保健康发展提供参考。
     利用热重法对水稻秸秆、秸秆瓦和秸秆板在30℃/min加热速率,两种氧气浓度下的燃烧特性进行了研究。氧气浓度对水稻秸秆、秸秆瓦和秸秆板的着火温度的影响较不明显,但会对样品残余重量有较大的影响,氧气浓度的提高有助于燃烧更完全。样品最大燃烧速率对应的温度从高到低的排序为:秸秆板>秸秆瓦>水稻秸秆,样品最大燃烧速率从高到低的排序都为:水稻秸秆>秸秆瓦>秸秆板。两种秸秆建材都比水稻秸秆更难燃烧。秸秆板的着火温度比水稻秸秆、秸秆瓦和未经阻燃处理的木材的着火温度要高,更难着火。秸秆板的着火时间超过10min,且同在20vol%氧气浓度气氛下,秸秆板的着火时间比相同条件下秸秆原料的着火时间迟约3min左右,根据火灾发生最初的5到10分钟的最佳时间判断,秸秆板具有较好的防火性能。
     利用热重法对秸秆瓦、三夹板、石棉吸声板、普通石膏板、矿棉天花板和PVC板在纯氮气和空气气氛中以10℃/min、20℃/min和30℃/min为加热速率进行热解、燃烧失重特性研究。在升温速率为20℃/min空气中燃烧时,秸秆瓦的失重曲线与PVC板最为相似。最大失重速率从大到小依次为:三夹板>秸秆瓦>PVC板>普通石膏板>矿棉天花板>石棉吸声板;最大失重速率对应温度从大到小依次为:石棉吸声板>三夹板>秸秆瓦>PVC板>矿棉天花板>普通石膏板;固体残留量从大到小依次为:石棉吸声板>普通石膏板>矿棉天花板>PVC板>秸秆瓦>三夹板。综合燃烧特性指数值从大到小依次为:三夹板>秸秆瓦>PVC板>普通石膏板>矿棉天花板>石棉吸声板。秸秆瓦的综合燃烧特性指数值与PVC板和普通石膏板处于同一数量级,而与三夹板、矿棉天花板和石棉吸声板相差较大。对三夹板、普通石膏板、PVC板和秸秆瓦来说,升温速率的增加会明显导致TG曲线有向右(高温方向)移动,最大失重速率也有所增加,并且升温速率对着火时间和综合燃烧特性指数的影响较大。当升温速率为10℃/min和20℃/min,秸秆瓦在10分钟前不会着火。
     结合失重规律,利用一级分阶段反应模型对秸秆瓦和五种一般建材的动力学参数进行了计算。在20℃/min升温速率的空气气氛下燃烧时,活化能从大到小依次为:石棉吸声板>普通石膏板>矿棉天花板>三夹板。而秸秆瓦和PVC板的三个反应过程的活化能相差较大,第二个反应过程的活化能最小。秸秆瓦的前两个反应过程的动力学参数比PVC板小,第三个反应过程的动力学参数比PVC板略大。氧气浓度的提高,使秸秆瓦的每一个反应活化能略微变小,说明氧气浓度的提高对反应的进行有一定促进作用。
     在管式炉-烟气分析实验台上对水稻秸秆和秸秆瓦在三种氧气浓度、五种温度下的气体污染物排放进行了研究。温度对秸秆和秸秆瓦的CO_2的排放浓度峰值的影响较小,CO_2的排放浓度峰值会随着燃烧气氛中的氧气浓度下降而略有上升。CO、NO_x和SO_2排放物浓度的峰值随温度的变化规律与气氛中氧气浓度、物料、排放物种类有关。只有在高温段,水稻秸秆和秸秆瓦CO的排放浓度峰值才会随氧气浓度的降低而上升,燃烧恶化。同一温度下,秸秆和秸秆瓦NO_x的排放浓度峰值随氧气浓度的下降而下降。低温段秸秆和秸秆瓦SO_2的排放浓度峰值在空气气氛下最大,而高温段秸秆和秸秆瓦SO_2的排放浓度峰值在极度缺氧气氛下最大。在同一燃烧气氛下,秸秆瓦粉末的CO_2排放浓度比水稻秸秆粉末略小,NO_x排放浓度比水稻秸秆要小,但CO和SO_2排放浓度比秸秆瓦要高。
     利用LCA手段对某年产5万m~3秸秆人造板的生产项目进行定性、定量的评价分析,得如下结论:秸秆人造板项目每生产1m~3的秸秆人造板需消耗212.58kg标煤和0.16kg油,总资源耗竭系数2.18mPR90,总能耗为6228.56MJ,总环境影响潜值为15.03PET2010,此项目整个生命周期中主要消费的能源是煤炭,对酸化的不利影响最大,对粉尘和富营养的不利影响次之,对光化学臭氧合成的影响几乎可忽略,而对全球变暖的影响是有益的。
With the development of market economy and the expansion of urban, a large number ofwood resources are used for furniture industry and economy construction, so the forest isseriously damaged. In such condition there is a good future for the development of strawbuilding material in China. Besides, straw building material is a green material and perfectlymatches the requirement of environmental protection from the government and the public.Therefore, straw building material can be the good resource for furniture and constructionindustries, and straw building material industry is one of the main forces of comprehensiveutilization of agricultural straw.
     The thermogravimetric characteristics, kinetic parameters, gases emissions andenvironmental impacts of straw tile and straw board were studied using thermogravimetricinstrument, tube reactor flue gas analyzer and life cycle assessment method in this paper. Thecombustion characteristics and the environmental impact assessment of straw buildingmaterial were compared with straw and other ordinary building material. The study resultswill provide the reference and instruction for the healthy development of straw buildingmaterial industry.
     The combustion of rice straw, straw tile and straw board in two atmospheres (80N_2/20O_2,90N_2/10O_2) at30℃/min was analyzed thermogravimetrically. The oxygen concentration hasno obvious effect on the ignition temperature, but influenced the residual mass obviously andmake more complete combustion. The subsequence of the corresponding of maximum weightloss rate is straw board>straw tile>rice straw, and the subsequence of maximum weightloss rate is rice straw>straw tile>straw board. It is more difficult to ignite two strawbuilding materials than rice straw. The ignition temperature of straw board is bigger than ricestraw, straw tile and wood, indicating the non-flammability of straw board. The ignition timeof straw board exceeds10min, and longer than that of straw by3min under the atmospherewith20vol%oxygen concentration. Therefore, the straw board has good fire-safe capability.
     The pyrolysis and combustion of straw tile, asbestos sound-absorbing panel, gypsumboard, mineral fIber ceiling, three-ply wood board and PVC board in two atmospheres(100N_2/20O_2,0N_2/10O_2) at10℃/min,20℃/min and30℃/min were analyzedthermogravimetrically. In air at20℃/min, the weight loss curve of straw tile is similar to PVCboard. The subsequence of maximum weight loss rate is three-ply wood board>straw tile>PVC board>gypsum board>mineral fIber ceiling>asbestos sound-absorbing panel. The subsequence of the corresponding of maximum weight loss rate is asbestos sound-absorbingpanel>three-ply wood board>straw tile>PVC board>mineral fIber ceiling>gypsumboard. The subsequence of residual mass is asbestos sound-absorbing panel>gypsum board>mineral fIber ceiling>PVC board>straw tile>three-ply wood board. The subsequence ofcomprehensive combustion characteristic index is asbestos three-ply wood board>straw tile>PVC board>gypsum board>mineral fIber ceiling>asbestos sound-absorbing panel. Thecomprehensive combustion characteristic indexs of straw tile, PVC board and gypsum boardare an order of magnitude. For three-ply wood board, gypsum board, straw tile and PVCboard, the increment of heating rate make their curves shifting to a higher temperature rangeand increase the maximum weight loss rate, and the effects of heating rate on ignition timeand comprehensive combustion characteristic index are bigger. At10℃/min or20℃/min,straw tile cann’t be ignited in10min, and it helps people escape.
     Based on weight loss curves, the kinetic parameters of straw tile and five buildingmaterials were calculated using first order reactions model. In air at20℃/min, thesubsequence of apparent activation energy is Asbestos sound-absorbing panel>Gypsumboard>Mineral fIber ceiling>Three-ply wood board. For straw tile and PVC board, thevalues of the apparent activation energies of three reactions vary very much, and the value oftheir second reaction is the smallest. The value of the first two reactions of straw tile issmaller than that of PVC board, but the value of the third reaction of straw tile is litter bigger.The values of the apparent activation energies of straw tile are slightly lower under theatmosphere with higher oxygen concentration, indicating the increment of oxygenconcentration can promote the reaction to a certain extent.
     The gases emissions from rice straw and straw tile combustion at five temperatures in atube reactor were analyzed by a flue gas analyzer. The effect of temperature on CO_2peakconcentration of rice straw and straw tile is small, but their CO_2peak concentration increaseswith decreasing oxygen concentration in the atmosphere. The variation of CO, SO_2and NO_xpeak concentrations with temperature is related to the atmosphere, materiel type, and gasemission type. It is only when the temperature is high that the decrease of oxygenconcentration increases CO emission and the combustion is deteriorated. At the sametemperature, the NO_xpeak concentration decreases with decreasing oxygen concentration. Atlower temperature, SO_2peak concentration is highest at air, while at higher temperatures SO_2peak concentration is highest under terrible oxygen deprivation atmosphere. Under the same atmosphere, straw tile has lower CO_2and NO_xconcentrations but higher CO and SO_2concentrations than rice straw.
     A straw manboard project with the capacity of50000m~3per year was analyzed using lifecycle assessment (LCA) method. The results show212.58kg standard coal and0.16kg oilare consumed to produce1m~3straw manboard. The resource consumption coefficient and theweighted environmental potentials for1m~3straw manboard are2.18mPR90and15.03PET2010. The sum energy consumption for1m~3straw manboard is6228.56MJ and coal is themain consumption energy. The life cycle of straw manboard project exerts the worst influenceover acid and has a nonnegligible bad effect on dusk and eutrophication, while strawmanboard project has a good effect on global warming.
引文
[1]国家林业局、国家发展改革委财政部、商务部国家税务总局.林业产业振兴规划(2010-2012年),北京,2009.
    [2]九正建材网,世界木材供需状况分析. http://news.jc001.cn/12/0601/661924_2.html.
    [3]陈琳.农作物秸秆资源综合利用的战略研究——以农作物秸秆人造板产业化发展为例[D].南京林业大学,2007.
    [4]木业先锋,竹材资源国内外现状, http://www.forestry.gov.cn/portal/ztzx/s/1244/content-136248.html.
    [5]国家财政部.财政部将尽快出台支持秸秆能源化利用政策[J].林业实用技术,2008,(8):39.
    [6]国家财政部,财政部将尽快出台支持秸秆能源化利用政策[J].林业实用技术,2008,(8),39.
    [7]国家环境保护总局、农业部、财政部、铁道部、交通部、中国民用航空总局.秸秆禁烧和综合利用管理办法,北京,1999年4月12日.
    [8]Marjo Nikulin,Anna-Liisa Pasanen,Seija Berg,et al. Stachybotrys atra growth and toxinproduction in some building materials and fodder under different relative humidities[J]. Appliedand environmental microbiology,1994,60(9):3421-3424.
    [9]John Simonsen. Utilizing straw as a filler in thermoplastic building materials[J]. Constructionand building materials,1996,10(6):435-440.
    [10]彭珍凤,陈杏华,查跃华.农村秸秆处理和资源化利用技术现状与发展趋势[J].农业装备技术,2009,35(2):11-13.
    [11]Weng Wei,Yang Jitao,Zhao Qingling,et al. Current Situation and Developing Direction ofStraw Utilization Technology in China [J]. China Resources Comprehensive Utilization,2004,7:10-11.
    [12]Lu Binglin,Wang Wenli,Li Juan,et al. Maturing process of cattle manure high temperaturecomposting with mixing different ratio of wheat straw [J]. Environmental Pollution&Control,2010,32(1):30-34.
    [13]Peng Yu,Yi Jianhua,Pu Wenxuan,et al. Effect of Rice Straw Returning on Tobacco FieldSoil Nitrogen Mineralization[J]. Chinese Agricultural Science Bulletin,2006,22(10):230.
    [14]Han Lujia,Yan Qiaojuan,Liu Xiangyang,et al. Straw Resources and Their Utilization inChina [J]. Transactions of The Chinese Society of Agricultural Engineering,2002,18(3):87-91.
    [15]Li Wei Lin Shusheng Tan Yuzhi,Tang Xiuying. Innovated Techniques on ComprehensiveUtilization of Crop Straw [J]. Transactions of The Chinese Society of Agricultural Engineering,2000,16(1):14-17.
    [16]郭向勇,赵霄龙,曹力强,艾明星,节能型农作物秸秆板材综述[C].//2008年中国国际墙体保温材料及应用技术交流会,杭州,中国建筑业协会中国建筑学会,2008年10月1日.
    [17]N Padkho. A new design recycle agricultural waste materials for profitable use rice straw andmaize husk in wall[J]. Procedia Engineering,2012,32:1113-1118.
    [18]侯国艳孙成建.植物纤维建材在我国的实用性和广泛性[J].中国建材科技,2006,3:39-40.
    [19]盛莉.植物纤维墙体材料的发展现状及前景展望[J].安徽农业科学,2010,38(21):11335-11336.
    [20]石磊,赵由才,柴晓利.我国农作物秸秆的综合利用技术进展[J].中国沼气,2005,32(2):11-14.
    [21]赵纪新,李日强.浅析我国秸秆资源的综合利用现状[J].科技情报开发与经济,2010,20(29):189-191.
    [22]王仁振.碱化秸秆的工业化生产技术[J].饲料工业,1997,3:1-3.
    [23]Butter D A. Reductive methylation of membrane proteins in human erythrocyte ghosts[J]. JAnim Sci,1982,54:173-178.
    [24]李日强,张峰,张伟峰.氨化和固态发酵玉米秸秆生产饲料蛋白的研究[J].农业环境科学学报,2006,25(6):1636-1639.
    [25]Masayuki Taniguchi,Hiroyuki Suzuki,Daisuke Watanabe,et al. Evaluation of pretreatmentwith Pleurotus ostreatus for enzymatic hydrolysis of rice straw[J]. Journal of bioscience andbioengineering,2005,100(6):637-643.
    [26]Kyung-Hae Lee,Bo-Seung Kang,Young-Kwon Park,et al. Influence of reaction temperature,pretreatment, and a char removal system on the production of bio-oil from rice straw by fastpyrolysis, using a fluidized bed[J]. Energy&fuels,2005,19(5):2179-2184.
    [27]BM Jenkins,AP Bhatnagar. On the electric power potential from paddy straw in the Punjaband the optimal size of the power generation station[J]. Bioresource Technology,1991,37(1):35-41.
    [28]Tritib Suramaythangkoor,Shabbir H Gheewala. Potential of practical implementation of ricestraw-based power generation in Thailand[J]. Energy Policy,2008,36(8):3193-3197.
    [29]王科俊,王克成.神经网络建模、预报与控制[M].哈尔滨工程大学出版社哈尔滨,1996.
    [30]Seung Woo Lee,Sang Sung Nam,Seong Bo Kim,et al. The effect of Na2CO3on thecatalytic gasification of rice straw over nickel catalysts supported on kieselguhr[J]. KoreanJournal of Chemical Engineering,2000,17(2):174-178.
    [31]A Ergudenler,AE Ghaly. Agglomeration of silica sand in a fluidized bed gasifier operating onwheat straw[J]. Biomass and bioenergy,1993,4(2):135-147.
    [32]Sabine Weber,Stephan Stubner,Ralf Conrad. Bacterial populations colonizing and degradingrice straw in anoxic paddy soil[J]. Applied and environmental microbiology,2001,67(3):1318-1327.
    [33]杜鹰,万宝瑞.农业现代化与可持续发展[M].农业科技出版社北京,2004.
    [34]赵秋霞,赵丽.河北省利用秸秆发电的现状研究[J].农机化研究,200:36-37;40.
    [35]Xianyang Zeng,Yitai Ma,Lirong Ma. Utilization of straw in biomass energy in China[J].Renewable and Sustainable Energy Reviews,2007,11(5):976-987.
    [36]郭建维,宋晓锐,崔英德.流化床反应器中生物质的催化裂解气化研究[J].燃料化学学报,2001,29(4):319-322.
    [37]刘长跃.秸秆还田的利与弊[J].农业环境与发展,2004,5:37-38.
    [38]冯璐,秸秆造纸要三思而行. http://www.greentimes.com/lscy/html/2012-06/28/content_3212256.htm.
    [39]陈秋玲;李如燕;孙可伟;张春红;李建昌.利用麦秆制聚氨酯多元醇研究[J].高分子通报,2009,11:37-43.
    [40]谭凤芝;曹亚峰;李沅;曲晗.利用玉米秸秆制备高吸水树脂[J].大连工业大学学报,2009,28(5):362-365.
    [41]金鑫;王可答;刘利军;黄美玉;江英彦.玉米秸秆制取高吸水树脂及性能研究[J].化学世界,2008,49(10):598-600;597.
    [42]方林,玉米秸秆原料发酵生产丁二酸工艺研究[C].//江南大学,无锡,2009.
    [43]黄秀梅,李建,陈可泉,左鹏,姜岷.利用玉米秸秆水解液厌氧发酵产丁二酸的研究[J].中国酿造,2009,6:31-34.
    [44]宋玉梅.秸秆全利用阳离子吸附剂的设计合成及应用[J].大连理工大学,2012,大连
    [45]发展改革委,农业部.关于编制秸秆综合利用规划的指导意见.北京,2009.
    [46]吴创之,庄新姝,周肇秋,曹红梅.生物质能利用技术发展现状分析[J].中国能源,2007,29(9):35-42.
    [47]王璐,肖健.农作物秸秆利用技术现状及发展对策[J].安徽农学通报,2010,16(15):166-168.
    [48]张璐,稻秸秆和桑皮提取非织造纤维材料的方法研究[D].安徽农业大学,2008.
    [49]杨继涛翁伟,赵青玲,张百良.我国秸秆资源化技术现状及其发展方向[J].中国资源综合利用,2004,7:18-21.
    [50]林一涛,韩卿.浅析植物秸秆在建材行业的发展空间[J].江苏造纸,,2010,2:11-13,20.
    [51]Butchaiah Gadde,Sébastien Bonnet,Christoph Menke,et al. Air pollutant emissions from ricestraw open field burning in India, Thailand and the Philippines[J]. Environmental Pollution,2009,157(5):1554-1558.
    [52]HM Chen,CR Zheng,C Tu,et al. Chemical methods and phytoremediation of soilcontaminated with heavy metals[J]. Chemosphere,2000,41(1):229-234.
    [53]Yukihiko Matsumura,Tomoaki Minowa,Hiromi Yamamoto. Amount, availability, andpotential use of rice straw (agricultural residue) biomass as an energy resource in Japan[J].Biomass and bioenergy,2005,29(5):347-354.
    [54]侯国艳,冀志江,农作物秸秆在建筑材料中的应用[C].//固体废弃物在城镇房屋建筑材料的应用研究——中国硅酸盐学会房建材料分会2006年学术年会论文集,海口市,2006.
    [55]Ke Zhen Sun. Research on the Strategies of Green Building Materials[J]. Advanced MaterialsResearch,2012,457:50-53.
    [56]Sun, K. Research on the Design for Sustainability and its Green Building Materials[J].Advanced Materials Research,2012,479:2279-2282.
    [57]KMA Hossain, M Lachemi, S Easa. Stabilized soils for construction applicationsincorporating natural resources of Papua New Guinea[J]. Resources, conservation and recycling,2007,51(4):711-731.
    [58]Shi Tuo,Cheng Jianjun. The Low-Technology Experience of Chinese Traditional PileDwelling[C]. IEEE,2010:1-4.
    [59]Han-Seung Yang,Dae-Jun Kim,Young-Kyu Lee,et al. Possibility of using waste tirecomposites reinforced with rice straw as construction materials[J]. Bioresource Technology,2004,95(1):61-65.
    [60]R Zulkifh,MJ Mohd Nor,MF Mat Tahir,et al. Acoustic properties of multi-layer coir fibressound absorption panel[J]. Journal of Applied Sciences,2008,8(20):3709-3714.
    [61]王立华,段毅凡.农作物秸秆在建材工业中的应用[J].建材发展导向,2010,8(3):58-59.
    [62]邢航.麦秸均质板的加工及应用前景[C].2000:93-98.
    [63]史小娟,杨创创,张亚祖,张远群.农业剩余物在人造板中的利用[J].陕西农业科学,2003,6:33-36.
    [64]郭星恺.我国农作物秸秆人造板发展前景展望[J].人造板通讯,2001,8(1):6-8.
    [65]任仲杰,顾孟迪.我国农作物秸秆综合利用与循环经济[J].安徽农业科学,2005,11:35-37.
    [66]高建民李延军.我国秸秆人造板研究近况及发展前景[J].建筑人造板,2002,1:3-5.
    [67]涂平涛.以农业剩余物为原料生产的建筑板材及其发展现状[J].砌块与墙板,2004,12:30-36.
    [68]H. Savastano,P. G. Warden,R. S. P. Coutts. Potential of alternative fibre cements as buildingmaterials for developing areas[J]. Cement&Concrete Composites,2003,25(6):585-592.
    [69]Simpson H Irle M. Agricultural residues for cement-bonded composites. In: Moslemi A,editor. Inorganic-Bonded Wood and Fiber Composite Materials Conference Proceedings[J].1996,5:54–58.
    [70]Suzuki M Eusebio DA. Production and properties of plant materials cement bondedcomposites. Bulletin of the Experimental Forest Laboratory, Tokyo University of Agricultureand Technology[J].1990:27.
    [71]Eusebio DA. Rapid curing of cement-bonded boards from agricultural residues. In: MoslemiA, editor. Inorganic-Bonded Wood and Fiber Composite Materials Conference Proceedings[J].2000,7:233–246.
    [72]P. Soroushian,F. Aouadi,H. Chowdhury,et al. Cement-bonded straw board subjected toaccelerated processing[J]. Cement&Concrete Composites,2004,26(7):797-802.
    [73]G. P. Han,C. W. Zhang,D. M. Zhang,et al. Upgrading of urea formaldehyde-bonded reedand wheat straw particleboards using silane coupling agents[J]. Journal of Wood Science,1998,44(4):282-286.
    [74]X.Q. Mo, Hu, J., Sun, X.S., Ratto, J.A. Compression and tensile strength of lowdensitystraw-protein particleboard[J]. Industrial Crops and Products,2001,14:1–9.
    [75]H. S. Yang,D. J. Kim,H. J. Kim. Rice straw-wood particle composite for sound absorbingwooden construction materials[J]. Bioresource Technology,2003,86(2):117-121.
    [76]N. Boquillon,G. Elbez,U. Schonfeld. Properties of wheat straw particleboards bonded withdifferent types of resin[J]. Journal of Wood Science,2004,50(3):230-235.
    [77]X. J. Li,Z. Y. Cai,J. E. Winandy,et al. Selected properties of particleboard panelsmanufactured from rice straws of different geometries[J]. Bioresource Technology,2010,101(12):4662-4666.
    [78]Stone L. A passive solar straw bale school[J]. Solar Today,1999,13(1):32-35.
    [79]T. Ashour,H. Wieland,H. Georg,et al. The influence of natural reinforcement fibres oninsulation values of earth plaster for straw bale buildings[J]. Materials&Design,2010,31(10):4676-4685.
    [80]Ashour TH. The use of renewable agricultural by-products as building materials.[D].2003,Egypt: Benha University
    [81]Mejdi Jeguirim,Sophie Dorge,Angélique Loth,et al. Devolatilization kinetics of miscanthusstraw from thermogravimetric analysis[J]. International Journal of Green Energy,2010,7(2):164-173.
    [82]Yu Zhaosheng,Ma Xiaoqian,Liu Ao. Thermogravimetric analysis of rice and wheat strawcatalytic combustion in air-and oxygen-enriched atmospheres[J]. Energy Conversion andManagement,2009,50(3):561-566.
    [83]Mahmoud A Youssef,Seddik S Wahid,Maher A Mohamed,et al. Experimental study onEgyptian biomass combustion in circulating fluidized bed[J]. Applied Energy,2009,86(12):2644-2650.
    [84]Haosheng Zhou,AD Jensen,Peter Glarborg,et al. Numerical modeling of straw combustionin a fixed bed[J]. Fuel,2005,84(4):389-403.
    [85]Cuiping Wang,Fengyin Wang,Qirong Yang,et al. Thermogravimetric studies of the behaviorof wheat straw with added coal during combustion[J]. Biomass and bioenergy,2009,33(1):50-56.
    [86]LF Calvo,M Otero,BM Jenkins,et al. Heating process characteristics and kinetics of ricestraw in different atmospheres[J]. Fuel Processing Technology,2004,85(4):279-291.
    [87]刘莎莎,烟台万华零甲醛板材生产线投产. http://stock.jrj.com.cn/2007-07-27/000002475598.shtml.
    [88]张琳琳,鲍继锋.新型环保节能建材秸秆砌块的发展与应用[J].建筑节能,2007,4:38-40.
    [89]马建武杨旭.秸秆在哈尼族民居建筑可持续更新中的节能性分析与应用前景[J].山东林业科技,2008,5:101-103.
    [90]姜欢.稻草纤维生产水泥基泡沫保温墙体材料的研究[M].大连:大连理工大学,2008,
    [91]孙玉宽.主要利用秸秆制成的建筑材料材料及其制备方法[P]. ZL03114551.
    [92]熊汉国,汪振炯.一种利用油菜秸秆制作的装饰材料及其制备方法[P].ZL200610018378.
    [93]罗吉祥.钢结构建筑复合多功能墙板[P]. ZL20041002260.
    [94]戢娇.新型农作物秸秆复合墙体的应用研究[J].西安科技大学,2011,陕西西安市
    [95]丁占来,任德亮,郑凤山.玉米秸秆制作建筑装饰复合板的研究[J].石家庄铁道学院学报,2004,3:47-48.
    [96]冉染.复合秸秆瓦设计与性能研究[M].南京:南京林业大学,2006.
    [97]王垚马捷,金涌.秸秆基建筑保温材料的节能减排分析[J].生态与农村环境学报,2010,26(5):430-435.
    [98]于衍真李国忠.植物纤维增强水泥基复合材料的性能研究[J].硅酸盐通报,1997,3:42-45.
    [99]王逢瑚,李源玲,孙建平,朱晓冬.稻草阻燃人造板的生产工艺[J].福建林学院学报,2009,29(1):49-52.
    [100]李源玲.阻燃饰面稻草板生产工艺研究[D].东北林业大学,2009.
    [101]田松峰,罗伟光,荆有印,et al.玉米秸秆燃烧过程及燃烧动力学分析[J].太阳能学报,2008,29(12):1569-1572.
    [102]马孝琴.生物质燃烧动力学特性实验研究[J].可再生能源,2004,6:18-22.
    [103]张鹤丰.中国农作物秸秆燃烧排放气态,颗粒态污染物排放特征的实验室模拟[D].复旦大学,2009.
    [104]祝宇琳.热分析技术主流方向探讨[J].信息技术,2011,9:175-176.
    [105]冯超.秸秆资源利用LCA及其燃烧特性分析[D].华南理工大学,2009.
    [106]卫佩行,周定国,龙海蓉.热分析技术在胶合板/木材阻燃性能评价中的应用[J].中国人造板,2012,1:17-21.
    [107]A. Kumar,L. J. Wang,Y. A. Dzenis,et al. Thermogravimetric characterization of cornstover as gasification and pyrolysis feedstock[J]. Biomass&Bioenergy,2008,32(5):460-467.
    [108]A. Chouchene,M. Jeguirim,B. Khiari,et al. Thermal degradation of olive solid waste:Influence of particle size and oxygen concentration[J]. Resources Conservation and Recycling,2010,54(5):271-277.
    [109]A. Demirbas. Effects of temperature and particle size on bio-char yield from pyrolysis ofagricultural residues[J]. Journal of Analytical and Applied Pyrolysis,2004,72(2):243-248.
    [110]T. Mani,P. Murugan,J. Abedi,et al. Pyrolysis of wheat straw in a thermogravimetricanalyzer: Effect of particle size and heating rate on devolatilization and estimation of globalkinetics[J]. Chemical Engineering Research&Design,2010,88(8A):952-958.
    [111]C. P. Wang,F. Y. Wang,Q. R. Yang,et al. Thermogravimetric studies of the behavior ofwheat straw with added coal during combustion[J]. Biomass&Bioenergy,2009,33(1):50-56.
    [112]L. F. Calvo,M. Otero,B. M. Jenkins,et al. Heating process characteristics and kinetics ofrice straw in different atmospheres[J]. Fuel Processing Technology,2004,85(4):279-291.
    [113]Z. S. Yu,X. Q. Ma,L. Ao. Kinetic studies on catalytic combustion of rice and wheat strawunder air-and oxygen-enriched atmospheres, by using thermogravimetric analysis[J]. Biomass&Bioenergy,2008,32(11):1046-1055.
    [114]Z. S. Yu,X. Q. Ma,A. Liu. Thermogravimetric analysis of rice and wheat straw catalyticcombustion in air-and oxygen-enriched atmospheres[J]. Energy Conversion and Management,2009,50(3):561-566.
    [115]浮爱青,谌伦建,杨洁,朱振忠.小麦与玉米秸秆的热解过程及其动力学分析[J].化学工业与工程,2009,26(4):350-353.
    [116]Genesh A Raveendran K, Khilar K C. Pyrolysis characteristics of biomass and biomasscomponents [J]. Fuel,1996,75(8):987-998.
    [117]P. Girods, A. Dufour, Y. Rogaurne, et al. Pyrolysis of wood waste containingurea-formaldehyde and melamine-formaldehyde resins[J]. Journal of Analytical and AppliedPyrolysis,2008,81(1):113-120.
    [118]O. Senneca,R. Chirone,P. Salatino. Oxidative pyrolysis of solid fuels[J]. Journal ofAnalytical and Applied Pyrolysis,2004,71(2):959-970.
    [119]Kawamoto S Hirata T, Okuro A. Pyrolysis of melamine-formaldehyde andurea-formaldehyde resins [J]. J Appl Polym Sci,1991,42(12):3147-3163.
    [120]G. Zheng,J. A. Kozinski. Thermal events occurring during the combustion of biomassresidue[J]. Fuel,2000,79(2):181-192.
    [121]B. V. L'vov. Mechanism and kinetics of thermal decomposition of carbonates[J].Thermochimica Acta,2002,386(1):1-16.
    [122]R.Colomba C.Di Blasi. Modeling and simulation of combustion processes of charring andnon-charring solid fuels [J]. Progress in Energy and Combustion Science,1993,19:71-104.
    [123]孙绍增聂其红,李争起,张晓杰,吴少华,秦裕琨.褐煤混煤燃烧特性的热重分析法研究[J][J].燃烧科学与技术,2001,7(1):72-76.
    [124]X. G. Li,B. G. Ma,X. Li,et al. Thermogravimetric analysis of the co-combustion of theblends with high ash coal and waste tyres[J]. Thermochimica Acta,2006,441(1):79-83.
    [125]梁爱云;惠世恩;徐通模;赵钦新;周屈兰;谭厚章;孙鹏.几种生物质的TG-DTG分析及其燃烧动力学特性研究[J].可再生能源,2008,26(4):56-61.
    [126]金保升贾相如,王清华.污水污泥着火和燃烧特性研究[J].锅炉技术,2007,38(4):61-67.
    [127]孙学信徐朝芬.用TG-DTG-DSC研究生物质的燃烧特性[J].华中科技大学学报(自然科学版),2007,35(3):126-128.
    [128]J. Fangrat,Y. Hasemi,M. Yoshida,et al. Surface temperature at ignition of wooden basedslabs (vol27, pg249,1996)[J]. Fire Safety Journal,1997,28(4):379-380.
    [129]周霞高亚萍.阻燃与未阻燃装饰装修木材在不同氧浓度下的热分析[J].火灾科学,2007,16(4):214-219.
    [130]贾立荣张娟.高层建筑内装修阻燃技术研究[J].武警学院学报,2007,23(10):11-14.
    [131]施海云,方梦祥,王树荣,余春江,骆仲泱.建筑装潢中几种常见板材热解特性及动力学研究[J].火灾科学,2002,11(4):211-216.
    [132]S. R. Beck T. V Lee. New integral approximation formula for kinetics analysis ofnonisothermal TGA data[J]. AIChEJ,,1984,30:517-519.
    [133]S. Martin. Diffusion-controlled ignition of cellulosic materials by intense radiant energy [A].Tenth Symposium (International) on Combustion [C], The Combustion Institute.1965.
    [134]Kashiwagi T Ohleiller T J, Wemer K. Wood gasification at fire level heat flux [J].Combustion and Flame,1978,69:155-170.
    [135]陆继圣肖忠平,马世春,杨文斌.热重法研究阻燃杉木间伐材热解反应动力学[J].福建林学院学报,2002,22(2):113-116.
    [136]赵广杰;罗文圣;古野毅;任强.阻燃处理木材燃烧残余物的热分解特征[J].北京林业大学学报,2006,28(3):133-138.
    [137]李坚刘迎涛,王清文. FRW阻燃中密度纤维板的热性能分析[J].东北林业大学学报,2006,34(5):61-62.
    [138]龙毅木业,多层板. http://www.longyiwood.com/news/html/?423.html
    [139]中国建设报,'石膏板的种类及用途. http://www.chinajsb.cn/gb/content/2001-08/30/ontent_48810.htm
    [140]L. Belbir, H. A. Zeriou. Thermal decomposition of a Moroccan wood under a nit rogenatmosphere [J]. Thermochimica Acta,1995,258(1):243-248.
    [141]杨志忠.热重分析技术在烟气脱硫中的应用[J].东方电气评论,2000,14(3):174-177.
    [142]戴文仪.生物质颗粒燃料燃烧特性及燃烧动力学实验研究[D].吉林大学,2008.
    [143]L. M. Zhang,Z. C. Tan,S. D. Wang,et al. Combustion calorimetric and thermogravimetricstudies of graphite and coals doped with a coal-burning additive[J]. Thermochimica Acta,1997,299(1-2):13-17.
    [144]E Okandan M. V. Kok. Kinetic analysis of DSC and thermogravimetric data on combustionof lignite[J]. Journal of Thermal Analysis and Calorimetry,1996,46(6):1657-1669.
    [145]M. F. Bardon V. K. Rao, R. A. Stowe. Kinetic parameters of composite propellants fromthermogravimetric data[J]. Combustion and Flame,1995,102(1-2):219-225.
    [146]Fullwood M. J. Gopala Krishan R., Bartholomew C. H. Catalysis of Char Oxidation byCalcium Minerals: Effects of Calcium Compound Chemistry on Intrinsic Reactivity of DopedSpherocarb and Zap Chars[J]. Energy Fuels,1994,8:984-989.
    [147]Nimmagada R. Joshi A., Herrington J. Oxidation kinetics of diamond, graphite, and chemicalvapor deposited diamond films by thermal gravimetry [J]. J. Vac. Sci. Technol,1990,8:2137-2142.
    [148]V. Slovak. Determination of kinetic parameters by direct non-linear regression from TGcurves[J]. Thermochimica Acta,2001,372(1-2):175-182.
    [149]S. B. Wang,V. Slovak,B. S. Haynes. Kinetic studies of graphon and coal-char reaction withNO and O2: direct non-linear regression from TG curves[J]. Fuel Processing Technology,2005,86(6):651-660.
    [150]陈传敏,赵长遂,庞克亮,梁财. O2/CO2气氛下燃煤过程中NOx排放特性实验研究[J].东南大学学报(自然科学版),2005,35(5):738-741.
    [151]李斌,池涌,李爱民,曾庭华,严建华,岑可法.造纸污泥与废水污泥流化床焚烧时NOx和SO2的排放特性研究[J].工程热物理学报,1998,19(6):776-779.
    [152]余兆南,曾庭华.污泥流化床焚烧时NOx的排放规律研究[J].环境保护,1998,2:36-38.
    [153]李爱民,高宁博,李润东,魏砾宏. NOx和SO2在污泥气化焚烧处理中的排放特性[J].燃烧科学与技术,2004,10(4):289-294.
    [154]冯波,袁建伟,刘皓,卢建欣,林志杰,刘德昌.循环流化床煤燃烧中氮氧化物排放的研究[J].工程热物理学报,1996,17(1):125-128.
    [155]Y. Q. Hu,N. Kobayashi,M. Hasatani. The reduction of recycled-NOx in coal combustionwith O2/recycled flue gas under low recycling ratio[J]. Fuel,2001,80(13):1851-1855.
    [156]H. Liu,R. Zailani,B. M. Gibbs. Comparisons of pulverized coal combustion in air and inmixtures of O2/CO2[J]. Fuel,2005,84(7-8):833-840.
    [157]汤传毅,万融.棉纺织品的生命周期清单分析[J].上海纺织科技,2003,06:1-3.
    [158]顾道金,朱颖心,谷立静.中国建筑环境影响的生命周期评价[J].清华大学学报(自然科学版),2006,12:1953-1956.
    [159]张培,田长生,黄志甲.钢铁产品生命周期影响评价方法[J].安徽工业大学学报(自然科学版),2007,01:84-88.
    [160]T. Yoshioka,K. Aruga,T. Nitami,et al. Energy and carbon dioxide (CO2) balance of loggingresidues as alternative energy resources: system analysis based on the method of a life cycleinventory (LCI) analysis[J]. Journal of Forest Research,2005,10(2):125-134.
    [161]薛拥军,向仕龙,刘文金.中密度纤维板产品的生命周期评价[J].林业科技,2006,06:47-49.
    [162]李晓平,周定国,于艳春.利用生命周期评价法评价农作物秸秆人造板的环境特性[J].浙江林学院学报,2010,02:210-216.
    [163]A. A. Burgess,D. J. Brennan. Application of life cycle assessment to chemical processes[J].Chemical Engineering Science,2001,56(8):2589-2604.
    [164]王修兰.全球农作物对大气CO2及其倍增的吸收量估算[J].气象学报,1996,04:466-473.
    [165]李刚.生物质能源化利用与硫循环[J].可再生能源,2004,04:39-40.
    [166]钱小瑜.发展农作物秸秆人造板大有可为[J].中国人造板,2010,12:1-5.
    [167]王庆一.中国与世界能源数据[M].北京,2005,
    [168]朱祺.生物柴油的生命周期能源消耗、环境排放与经济性研究[D].上海交通大学,2008.
    [169]纪丹凤,夏训峰,席北斗,等.生活垃圾焚烧处理方式的生命周期评价[J].再生资源与循环经济,2010,05:28-32+36.
    [170]马丽丽,龚先政,高峰,等.纸面石膏板生产的资源消耗和环境影响分析[J].武汉理工大学学报,2012,03:120-123.
    [171]薛拥军.板式家具产品的生命周期评价[D].中南林业科技大学,2007.
    [172]王婧,张旭,黄志甲.基于LCA的建材生产能耗及污染物排放清单分析[J].环境科学研究,2007,06:149-153.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700