用户名: 密码: 验证码:
珠海软土固结性质的宏微观试验及机理分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
软土是工程建设中常见的天然材料,其物理力学性质非常复杂,具有高含水量、大孔隙比、高压缩性、低强度、且渗透性差、结构性显著等特点,广泛分布于沿海、河流中下游及湖泊的三角洲地区。在软土中具有代表性的有淤泥和淤泥质土,主要是由极细的粘土颗粒、有机物、氧化物等固相物质和水组成。珠海软土表现出典型的软土性质,其地基土呈现出低承载力、大沉降量、沉降稳定所需时间长等,这将会直接影响工程造价、进度以及安全性。大量的研究与实践证明,软土特定的历史环境会影响其工程性质的形成,而且软土的工程性质不仅与其矿物成分,颗粒大小、深度、外荷载状态及排水条件有关外,还与其微观颗粒及孔隙特征、颗粒的连结方式及组成排列、颗粒之间的胶结方式等微观结构形态特征有关。目前阶段而言,大量学者都主要从宏观层面对软土的工程特性进行研究,而这从根本上解释不了软土表现不良工程特性的本质规律。本文通过宏观与微观试验,系统的介绍了研究珠海软土工程性质的手段方法,分别从宏观及微观的角度分析了珠海软土固结等工程特性及其固结过程变化的微观机制。
     本文主要开展的研究工作以及理论成果如下:
     (1)通过珠海原状软土不同深度的室内基本物理力学性质试验,得出珠海软土颗粒土以细粒土为主,粘土矿物含量大。珠海软土中颗粒以粘粒和粉粒等细粒土为主,且矿物成分中,粘土矿物以高岭石为主,其次为伊利石,蒙脱石含量较少。比表面积较大,液塑限与其比表面积呈正相关关系;粘土矿物比表面积值及吸附性能强于非粘土矿物,结合水量高;比表面积与渗透系数呈现一定负相关性,表现出比表面积越大,渗透性越低的特征。
     (2)通过珠海软土的常规固结试验及回弹试验的成果数据,可以得出珠海软深厚土层属于欠固结土。软土的固结特征与先期固结压力相关,当固结压力超过先期固结压力时,土体的固结速率呈现增长趋势。水平向固结系数在固结的初始阶段与竖向固结有较大区别,随着土样深度的增加,最终的固结系数稳定值呈现减小趋势。珠海相软土的结构性较强,当固结压力超过上覆土体荷载时,土体处于回弹初始阶段,回弹曲线特征较为平缓;当固结压力卸载到小于上覆土体荷载时,土样处于快速回弹阶段,回弹曲线特征较陡,孔隙比增长迅速。
     (3)运用环境扫描电子显微镜技术对珠海原状不同深度及不同切面方向的软土以及固结后的土样进行观测分析,得出珠海天然软土的微观结构主要有蜂窝状结构、海绵状结构及凝块状结构三种类型。土颗粒呈曲片絮凝状叠聚体,微孔隙分布较多,深部比浅部土样的微观颗粒小,密实度大,且絮凝结构明显,微孔隙分布多,定向概率熵较大。固结过程中大量的大孔隙被压缩成小孔隙,土体变得更加密实,颗粒也无明显定向性,颗粒单元体呈现出由原来边-面、边-边组合转化为面-面组合为主,无明显曲片状结构,颗粒凝聚成团,且相互之间接触紧密。在荷载增加的过程中,孔隙中的水分减少,结合水膜变薄,颗粒凝聚成团状形式。大孔隙面积和数量减少,小孔隙数量增多,等效孔径相应减小,孔隙由粒间孔隙向团聚单元体内部孔隙转变。固结过程中垂直方向比水平方向的微观性质变化明显,长轴容易被切割破坏成小颗粒,土样的微观结构单元体特性主要在受压方向发生相应的变化。
     (4)通过压汞试验,研究珠海软土的渗透作用对其微观孔隙尺度分布的变化影响,及固结过程当中土样的微观孔隙变化规律进行分析。珠海原状软土的微观孔隙都主要分布400nm-2500nm及30nm-400nm。渗透后土样的微观孔隙有所增大,渗透力的作用带走了部分颗粒,且孔隙集中分布孔径大于原状样的峰值孔径值,同时软土的孔隙面积有所减小,且对微观孔隙尺度的分布有均化的作用。在固结过程中土体较大的孔隙逐渐转变为较小孔隙。软土试样在固结压力100kPa200kPa,孔隙比及平均孔径仍在减小,但速度减缓。
     (5)针对单向固结的普遍方程和太沙基单向固结理论,通过微观参量比表面积S、等效孔径D、颗粒的定向概率熵H m、颗粒的分形维数D p与土的固结系数的相应关系,给出了考虑微观因素修正的固结系数方程,并通过微观参量的范围取值,给出了相应微观参量的影响因子α、β、ζ、η数值。并通过实际的工程,真空联合堆载预压对珠海金湾软土的现场取样图片、十字板剪切数据、及实际固结沉降量等结果的分析,验证其分析值与室内的宏观与微观试验测试分析的数据及理论的正确性及可靠性。
Soft soil is a common natural material, which is widely distributed on the surface of theearth. Its physical and mechanical properties are very complex, with high water content, highpore ratio, high compression, low strength, poor permeability and visible structure. Silt andmuddy soil are mainly composed by much fine clay particles, organic matter, oxides and solidphase material and water. Soft soil in Zhuhai is of the typical nature of the soft soil. The soilused on foundation, shows low bearing capacity, large amount of the settlement, the longertime required to stabilize. It also has a direct impact on the progress, cost and safety of theproject. The formation of soft soil engineering properties is closely related to their specifichistorical circumstances. Lots of research and practice have proved that the engineeringproperties of soft soil are related to not only the material composition, particle size, drainageconditions, depth and external loads state, but also its microscopic pores, the particlecharacteristics, the composition an arrangement of the particles and microscopic structures.For a long time the researchers studied the engineering properties of soft soil mainly from themacro level. The fundamental mechanisms and natural rule of the adverse engineeringcharacteristics cannot be explained and illustrated. Through the macro and micro perspective,this article introduced the method of studying the engineering properties of soft soil fromZhuhai and analyzed the microscopic mechanism of the engineering properties of soft soilfrom Zhuhai through a comprehensive macro-and micro-angle.
     The mainly research work and theoretical achievements are obtained as follows.
     (1) Through basic physical and mechanical properties tests of Zhuhai undisturbed softsoil with different depth in lab, it is concluded that Zhuhai soft soil particles are given priorityto fine grained soil, with high content clay mineral. Zhuhai soft soil particle is mainly of finegrained soil with clay and silt. For mineral composition, kaolinite takes the most percentageof clay mineral, followed by illite and montmorillonite. The specific surface area of Zhuhaisoft soil is large. The liquid and plastic limit show positive correlation with the specificsurface area. The specific surface area and adsorption property of clay mineral is better thannon-clay mineral, with high combined water. Specific surface area and permeabilitycoefficient present certain negative correlation. It shows that the larger specific surface area is, the lower the permeability characteristics.
     (2) From the conventional consolidation test and rebound test data of Zhuhai soft soil, itcan conclude that Zhuhai soft soil belong to owe consolidation soil. The consolidationcharacteristics are related to pre-consolidation pressure. When consolidation pressure waslarger than pre-consolidation pressure, the consolidation rate presented growth trend. Thehorizontal consolidation coefficient has big difference from vertical consolidation in the initialstages. As the depth increased, the final consolidation coefficient stable value presenteddecrease trend. The constitutive property of Zhuhai soft soil is strong. When consolidationpressure was greater than the overlying soil pressure, the soil was at the rebound initial stage,and the resilience curve characteristics showed relatively gentle. When consolidation pressuredischarged to less than the overlying soil pressure, soil samples were at rapid rebound stage,and the resilience curve turned steep, with rapid growth void ratio.
     (3) Using environmental scanning electron microscope technology to analyze Zhuhaiundisturbed and consolidated soil samples, from different depth and section direction, it isconcluded that Zhuhai natural soft soil microstructure is mainly of honeycomb structure,spongy structure and clotted structure. Soil particle is curved piece flocculence fold polymers,with large micro pore distribution. The deep microscopic particles are smaller than shallow,with high compactness and clear flocculation structure. The micro pore distribution andorientation probability entropy is large. In the process of consolidation, many big pores werepressed into small pore, the soil turn compactness. The soil particles showed no apparentdirectional property. The particle elements changed from side-surface, surface-surface toedge-edge combination, with no obvious curve sheet structure. The particle conglomerated,and closely contacted with each other. As the loading increased, the pore water reduced, andbound water membrane thinned, turned to conglomerate shape form. The big pore area andquantity reduced, small pore increasing, equivalent pore diameter decreased, and then the porechanged from inter-granular to internal. In the process of consolidation, microscopiccharacteristic of vertical direction changed more obviously than horizontal direction. The longshaft was easy to be cut into small grain. So the microscopic structure element characteristicwas mainly at the pressure direction.
     (4) Through the mercury injection test, it is researched that the influence of infiltration effect on microscopic pore size distribution for Zhuhai soft soil, besides the microscopic porechange rule through consolidation process. The microscopic pore of Zhuhai undisturbed softsoil mainly distributed at400nm-2500nm and30nm-400nm. The microscopic poreshowed kind of increase after penetration. The reason is that the effect of seepage force takesaway part of particle, and the concentration pore diameter is greater than undisturbed peakaperture value. At the same time, soft soil pore area reduced, and the micro pore scaledistribution showed homogenization effect. In the consolidation process, the larger poregradually changed into smaller pore of soft soil samples. As consolidation pressure increased,at the stage of consolidation pressure between100kPa and200kPa, void ratio rapidlydecreased and the average aperture also decreased rapidly. When consolidation pressureturned to more than200kPa, the pore ratio and average aperture still kept reduced, but slowdown.
     (5) According to the consolidation mechanisms of unidirectional universal equation andTerzaghi unidirectional consolidation theory, the corresponding relation between microscopicparameters and consolidation coefficient was analyzed, such as specific surface area,equivalent aperture, grain orientation probability entropy, and granular fractal dimension. Theconsolidation coefficient equation was given, which considered micro factors correction.Through the microscopic parameter range value, the corresponding microscopic parametersinfluencing factor value was also obtained. Through the practical engineering of vacuum jointpreloading on Zhuhai Jinwan soft soil, the analysis of the sampling image, vane shear dataand actual consolidation settlement, verified the accuracy and reliability of the analysis value,data and theory by indoor macro and micro tests.
引文
[1]黄镇国.珠江三角洲形成发育演变[M].科学普及出版社广州分社,1982.
    [2]高国瑞.中国海相沉积土微结构研究和工程性质[J].中国科学B辑.1984(09).
    [3]陈国能,张珂,贺细坤,等.珠江三角洲晚更新世以来的沉积-古地理[J].第四纪研究.1994(01).
    [4]冯秀丽,林霖,庄振业,等.现代黄河水下三角洲全新世以来土层岩土工程参数与沉积环境之间的关系[J].海岸工程.1999(04).
    [5]卢博,李传荣.珠江口外海沉积物(原状样)微结构特征及其物理性质[J].海洋学报(中文版).2002(02).
    [6]洪振舜,立石义孝,邓永锋.强结构性天然沉积土的强度变形特性[J].岩土力学.2004(08).
    [7]刘春莲,秦红,车平,等.广东三水盆地始新统"土+不"心组生油岩元素地球化学特征及沉积环境[J].古地理学报.2005(01).
    [8]石名磊,刘建华.海相沉积粉质中间土的物理状态[J].东南大学学报(自然科学版).2005(06).
    [9]陈勇,单红仙,贾永刚.黄河沉积粉土渗透系数变化研究[J].海洋湖沼通报.2005(04).
    [10]邱金波.上海市浅部数层硬土的沉积环境、时代及划分对比[J].上海地质.2005(01).
    [11]朱丽东,周尚哲,叶玮,等.中国南方红土沉积与环境变化研究[J].浙江师范大学学报(自然科学版).2005(02).
    [12]石名磊,刘建华,赵俊明.天然海相中间沉积土性质研究[J].中国矿业大学学报.2005(05).
    [13]朱丽东,叶玮,周尚哲,等.金衢盆地第四纪红土沉积粒度组成特征[J].海洋地质与第四纪地质.2006(04).
    [14]袁守国.天然沉积亚砂土固结特性研究[J].苏州科技学院学报(工程技术版).2006(03).
    [15]邱本仁,王海成,王培青.内陆河湖相沉积软(弱)土定名及其工程性能评价[J].西部探矿工程.2006(12).
    [16]童立元,蔡国军,刘松玉,等.基于CPTU测试的泻湖相沉积土固结屈服应力和OCR确定方法(英文)[J]. Journal of Southeast University.2007(01).
    [17]陈国兴,王炳辉,刘建达.新近沉积土的动剪切模量和阻尼比试验研究[J].地下空间与工程学报.2008(03).
    [18]刘维正,石名磊.低路堤下长江漫滩相沉积土的工程特性评价[J].东南大学学报(自然科学版).2008(05).
    [19]朱定华,施军建,陈国兴.南京新近沉积淤泥质土震陷特性试验研究[J].防灾减灾工程学报.2008(01).
    [20]周卫安,谢石连.上海地区湖沼相沉积第④层的岩土工程特征初探[J].科技信息(学术研究).2008(36).
    [21]叶玮,朱丽东,李凤全,等.中国中亚热带网纹红土的地球化学特征与沉积环境[J].土壤学报.2008(03).
    [22]党改红,丁伯阳,张勇,等.杭州第四系沉积土的动力特性研究[J].工程勘察.2009(12).
    [23]孙宏伟.北京新近沉积土基础工程特性研究[J].建筑结构.2009(12).
    [24]李军霞,王常明,张先伟,等.两种滨海相软土固结特性的试验研究[J].水文地质工程地质.2009(05).
    [25]曾玲玲,刘松玉,洪振舜.天然沉积结构性土的EOP压缩特性[J].东南大学学报(自然科学版).2010(03).
    [26]李治中.会宁县祖历河阶地沉积特征及岩土工程对策分析[J].甘肃地质.2010(02).
    [27]祝刘文.海相饱和软土固结特性的研究[J].港工技术.2010(04).
    [28]朱赞成,王小岗.浙东南海相沉积土各向异性参数测定[J].贵州大学学报(自然科学版).2010(01).
    [29]李敏,颉永平.不同沉积地球化学特征对沉积环境的指示意义[J].内蒙古石油化工.2010(16).
    [30]梁娟,李春初.人类活动影响下磨刀门河口的泥沙输运沉积[J].泥沙研究.2010(03).
    [31]苗顺德,张功成,梁建设,等.珠江口盆地北部坳陷带文昌组地震反射特征及沉积环境分析[J].天然气地球科学.2010(05).
    [32]关进安,梁德青,吴能友,等.海底多相流作用下的含水合物沉积地层静水力学性质分析[J].现代地质.2010(05).
    [33]温淑瑶,杨德涌,陈捷.膨润土及其酸化土、碱处理酸化土的X射线衍射特征及扫描电镜下的表面特征分析[J].矿物学报.2001,21(3):453-456.
    [34]李向全,胡瑞林,张莉.软土固结过程中的微结构变化特征[J].地学前缘.2000(01).
    [35]陈嘉鸥,叶斌,郭素杰,等.珠江三角洲软土SEM微结构定量研究[J].电子显微学报.2001(01).
    [36]蒋雪琴,王盛源,莫海鸿.软土微结构的试验研究[J].工程勘察.2001(04).
    [37]王清,王凤艳,肖树芳.土微观结构特征的定量研究及其在工程中的应用[J].成都理工学院学报.2001(02).
    [38] Nakaoka K, Yamamotoa S, Hasegawa H, et al. Long-term consolidation mechanismsbased on micro–macro behavior and in situ XRD measurement of basal spacing of clayminerals[J]. Applied Clay Science.2004,26(2004)521–533.
    [39] Cetin H. Soil-particle and pore orientations during consolidation of cohesive soils[J].Engineering Geology.2004,73(2004)1–11.
    [40]张信贵,吴恒,方崇,等.水土相互作用与土细观结构变异的X射线衍射分析[J].桂林工学院学报.2005(3):301-304.
    [41] Voyiadjis G Z, Song C R. A coupled micro-mechanical based model for saturatedsoils[J]. Mechanics Research Communications.2005,32(2005)490–503.
    [42] Xia J, Huang G, Yan S. Behaviour and engineering implications of recent floodplain softsoil along lower reaches of the Yangtze River in Western Nanjing,China[J]. EngineeringGeology.2006,87(2006)48–59.
    [43]张季超,许勇,李伍平,等.基于微结构参数的饱和软土工程性质的研究[J].建筑结构.2007(11).
    [44]张礼中,胡瑞林,李向全,等.土体微观结构定量分析系统及应用[J].地质科技情报.2008(01).
    [45]周翠英,林春秀.基于微观结构的软土变形计算模型[J].中山大学学报(自然科学版).2008(01).
    [46] Chang C S, Hicher P Y, Yin Z Y, et al. Elastoplastic Model for Clay withMicrostructural Consideration[J]. ASCE Journal of engineering mechanics.2009:917-931.
    [47]梁健伟,房营光,谷任国.极细颗粒黏土的比表面积测试与分析(英文)[J].科学技术与工程.2009(09).
    [48]周晖,房营光,禹长江.广州软土固结过程微观结构的显微观测与分析[J].岩石力学与工程学报.2009(S2).
    [49] Elliot T R, Reynolds W D, Heck R J. Use of existing pore models and X-ray computedtomography to predict saturated soil hydraulic conductivity[J]. Geoderma.2010,156:133-142.
    [50]周晖,房营光,曾铖.广州饱和软土固结过程微孔隙变化的试验分析[J].岩土力学.2010(S1).
    [51]黄文熙.土的工程性质[M].北京:水利电力出版社,1983.
    [52] H. G. Simultaneous consolidation of continuous layer of unlike compressible soil[J].Trans ASCE.1945,110:1327-1356.
    [53] Schiffman R L S J R. One-dimensional consolidation of layered system[J]. JSMFDASCE.1970,96(4):1499-1504.
    [54] L S R. Consolidation of soil under time-dependent loading and varying permeability[J].Proc. Highway Research Bord.1958,37.
    [55] Wilson N E E M. Consolidation of soils under cyclic loading[J]. Canadian GeotechnicalJournal.1974,2(3):420-423.
    [56] Alson E E K R. Randomness of settlement rate under stochastic load[J]. Journal of theEngineering Mechanics Division ASCE.1974,100(6):1211-1226.
    [57] Baligh M M L J. Consolidation theory for cyclic loading[J]. Journal of GeotechnicalEngineering division, ASCE.1978,125(4):415-431.
    [58] A B R. Consolidation of fine-grained soils by drained wells[J]. Trans ASCE.1948,113:718-733.
    [59]吴世明,陈龙珠,杨丹.周期荷载作用下饱和粘土的一维固结[J].浙江大学学报(自然科学版).1988(05).
    [60]蔡袁强,徐长节,丁狄刚.循环荷载下成层饱水地基的一维固结[J].振动工程学报.1998(02).
    [61]徐长节,蔡袁强,吴世明.任意荷载下成层弹性地基的一维固结[J].土木工程学报.1999(04).
    [62]谢康和.双层地基一维固结理论与应用[J].岩土工程学报.1994.
    [63]谢康和,潘秋元.变荷载下任意层地基一维固结理论[J].岩土工程学报.1995(05).
    [64] Pyrah I C. One dimensional consolidation of layered soils[J]. Geotechnique.1996,46(3):555-560.
    [65] Zhu G Y J H. Consolidation of double soil layers under depth-dependent ramp rampload[J]. Geotechnique.1999,49(3):415-421.
    [66] O X W K. Consolidation of double-layered ground with vertical drains[J]. Numer. Anal.Meth. Geomech.2001,25:1449-1465.
    [67]莫海鸿,邱青长,董志良.软土地基孔隙水压力降低引起的压缩分析[J].岩石力学与工程学报.2006(S2).
    [68]林青,宗全兵.基于加载效应的Terzaghi一维固结理论有限单元解析[J].福建建筑.2006(06).
    [69]刘轶,陈新民.基于均匀化理论的一维固结问题研究[J].南京工业大学学报(自然科学版).2006(04).
    [70]张超杰,王立忠,陈云敏,等.结构性扰动土一维固结行为的定量分析[J].江南大学学报(自然科学版).2006(06).
    [71]刘忠玉,杨荣根.考虑起始水力梯度时双层地基的一维固结[J].合肥工业大学学报(自然科学版).2006(05).
    [72]华夏,王新辉,徐俊军.软土路基软弱下卧层的一维固结问题[J].交通标准化.2006(05).
    [73]刘添俊,莫海鸿.长期循环荷载下饱和软粘土性状研究及低路堤软土地基长期沉降的分析[D].广州:华南理工大学,2008.
    [74]陈平山,莫海鸿.真空预压加固地基等效固结度的简化计算[J].华南理工大学学报(自然科学版).2008(01).
    [75]丁庆国.海相结构性软土的一维固结试验研究[J].交通标准化.2008(06).
    [76]黎志辉,陈晓平,周秋娟.饱和软黏土渗透特性及对一维大变形固结影响[J].岩石力学与工程学报.2009(S2).
    [77]潘旦光,楼梦麟.变参数土层一维固结的半解析解[J].工程力学.2009(01).
    [78]蓝林华,富明慧.求解一维饱和土固结方程的时程精细积分方法[J].中山大学研究生学刊(自然科学、医学版).2009(02).
    [79]王俊,雷宏武,徐芬,等.变渗透系数软土一维非线性固结沉降数值模拟[J].地下水.2010(02).
    [80]文新伦.多层地基Terzaghi一维固结解[J].岩土工程学报.2010(S2).
    [81]张建红,何昌荣.往返荷载作用下非饱和砂性土的液化强度和孔压规律[J].四川大学学报(工程科学版).1994(01).
    [82]刘晓敏,赵慧丽,王连俊.非饱和粉质粘土土水特性的试验研究[J].石家庄铁道学院学报.2001(03).
    [83]彭华,陈胜宏.饱和—非饱和岩土非稳定渗流有限元分析研究[J].水动力学研究与进展A辑.2002(02).
    [84]毛尚之.非饱和膨胀土的土-水特征曲线研究[J].工程地质学报.2002(02).
    [85]张延军,张延诘.非饱和渗流作用下土坡的数值计算分析[J].地球与环境.2005(03).
    [86]叶为民,钱丽鑫,白云,等.由土–水特征曲线预测上海非饱和软土渗透系数[J].岩土工程学报.2005(11).
    [87]孙树林,王利丰.饱和、非饱和有机质粉土抗剪强度的对比[J].岩土工程学报.2006(11).
    [88]詹良通.非饱和膨胀土边坡中土水相互作用机理[J].浙江大学学报(工学版).2006(03).
    [89]杨树荣,拱祥生,黄伟庆,等.非饱和粘性路基土回弹模量之研究[J].岩土工程学报.2006(02).
    [90]刘金龙,栾茂田,王吉利,等.降雨条件下土坡饱和-非饱和渗流及稳定性分析[J].岩土力学.2006(S1).
    [91]黄茂松,贾苍琴.考虑非饱和非稳定渗流的土坡稳定分析[J].岩土工程学报.2006(02).
    [92]刘小平,赵明华,陈安.从饱和度再认识非饱和表层土吸力[J].湖南大学学报(自然科学版).2007(07).
    [93]查甫生,刘松玉,杜延军,等.非饱和黏性土的电阻率特性及其试验研究[J].岩土力学.2007(08).
    [94]朱崇辉,刘俊民,严宝文,等.非饱和黏性土的抗拉强度与抗剪强度关系试验研究[J].岩石力学与工程学报.2008(S2).
    [95]汪东林.非饱和土体变试验研究及其在地面沉降中的应用[J].岩石力学与工程学报.2008(10).
    [96]董建军,邵龙潭,刘永禄,等.基于图像测量方法的非饱和压实土三轴试样变形测量[J].岩土力学.2008(06).
    [97]常立君,刘小文.江西地区非饱和红土的强度特性试验研究[J].陕西建筑.2008(02).
    [98]秦爱芳,羌锐,谈永卫,等.非饱和土层一维固结特性分析[J].岩土力学.2010(06).
    [99]李冰河,谢康和,应宏伟,等.变荷载下软粘土非线性一维固结半解析解[J].岩土工程学报.1999(03).
    [100]李冰河,王奎华,谢康和,等.软粘土非线性一维固结有限差分法分析[J].浙江大学学报(工学版).2000(04).
    [101]施建勇,杨立昂,赵维炳,等.考虑土体非线性特性的一维固结理论研究[J].河海大学学报(自然科学版).2001(01).
    [102]曹宇春,陈云敏,黄茂松.任意施工荷载作用下天然结构性软粘土的一维非线性固结分析[J].岩土工程学报.2006(05).
    [103]吴朝晖,王茂丽,胡春林.软土地基一维非线性固结沉降的研究[J].国外建材科技.2006(04).
    [104]马崇武,刘忠玉,王卫平.非达西渗流时一维固结方程的两种数值解法[J].兰州理工大学学报.2007(03).
    [105]杨帆,祁斌.基于有限差分法的软粘土一维固结方程求解[J].中国水运(理论版).2007(07).
    [106] Wong H, Chin J L, J. M P, et al. Sedimentation–consolidation of a double porositymaterial[J]. Computers and Geotechnics.2007,34(2007)532–538.
    [107]张力霆,齐清兰,张振军,等.一种求解变系数渗压固结微分方程的数值方法[J].数学的实践与认识.2008(15).
    [108]刘忠玉,孙丽云,乐金朝,等.基于非Darcy渗流的饱和黏土一维固结理论[J].岩石力学与工程学报.2009(05).
    [109]鄂建,陈刚,孙爱荣.考虑低速非Darcy渗流的饱和黏性土一维固结分析[J].岩土工程学报.2009(07).
    [110] Lancellotfa R, Preziosi L. A general nonlinear mathmatical model for soil consolidationproblems[J]. Engeneering Science.1997,0020-7225/97.
    [111] Wang W D, Wang J G, Wang Z L, et al. An unequal-order radial interpolation meshlessmethod for Biot's consolidation theory[J]. Computers and Geotechnics.2006,34(2007)61–70.
    [112] Moavenian M H, Yasrobi S S. Volume change behavior of compacted clay due toorganic liquids as permeant[J]. Applied Clay Science.2007,39(2008)60–71.
    [113] Ravichandran N, Machmer B, Krishnapillai H, et al. Micro-scale modeling of saturatedsandy soil behavior subjected to cyclic loading[J]. Soil Dynamics and EarthquakeEngineering.2010,30(2010)1212–1225.
    [114] Murad M A, Guerreiro J N, Loula A F D. Micromechanical computational modeling ofsecondary consolidation and hereditary creep in soils[J]. Computer method in appliedmechanics and engineering.2001,190(2001)1985-2016.
    [115]林鹏,许镇鸿,徐鹏,等.软土压缩过程中固结系数的研究[J].岩土力学.2003(01).
    [116]赫晓光,徐林荣.基于固结试验的固结系数合理选择探讨[J].水文地质工程地质.2003(05).
    [117]李涛,张仪萍,曹国强,等.推算室内固结系数的剩余沉降对数法[J].岩土工程学报.2003(06).
    [118]顾绍付,徐林荣,赫晓光.对室内试验固结系数和渗透系数的相关性探讨[J].山西建筑.2004(23).
    [119]余闯,刘松玉.考虑应力水平的软土固结系数计算与试验研究[J].岩土力学.2004(S2).
    [120]包太,刘新荣,朱凡,等.固结系数的最小二乘法计算[J].岩土工程学报.2005(10).
    [121]庄迎春,刘世明,谢康和.萧山软粘土一维固结系数非线性研究[J].岩石力学与工程学报.2005(24).
    [122]刘忠玉,刘忠广,马崇武.考虑起始水力梯度时饱和黏土的一维固结[J].郑州大学学报(工学版).2006(03).
    [123]周秋娟,陈晓平.软土次固结特性试验研究[J].岩土力学.2006(03).
    [124]朱巧娣,汪要武.软土固结系数计算方法探讨[J].西部探矿工程.2006(12).
    [125]钱春香,刘兵科,彭丽云.饱和黏土固结特性的试验研究[J].铁道建筑.2007(12).
    [126]马莉.标准固结试验与快速固结试验方法的对比分析[J].山西建筑.2007(20).
    [127]包太,刘宝琛,刘新荣.改进的最小二乘法计算固结系数[J].重庆建筑大学学报.2007(02).
    [128]林奕禧.珠海市软土分布区工程建设指引[M].珠海:中国建筑工业出版社,2010.
    [129]彭立才,林奕禧,黄良机.珠海软土地区管桩质量事故分析及处理[J].岩土工程学报.2011(S2):169-173.
    [130]张宇明.浅析珠海西区欠固结软土地基的沉降灾害及防治[J].广东土木与建筑.2010(6):11-13.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700