用户名: 密码: 验证码:
带转换高层框架结构基于变形和损伤的抗震性能评估方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国经济高速发展,为了满足建筑功能多样化的要求,出现大量带转换层的竖向不规则结构。由于钢-混凝土组合构件具有优越的力学性能,广泛应用于带转换层的建筑结构中,以达到提高转换结构抗震性能的目的。在本文分析算例中,带转换高层框架结构主要采用钢管混凝土柱和型钢混凝土梁作为转换构件。震害调查和分析研究表明,强震下带转换层竖向不规则结构的变形集中与能量积聚出现在转换层处,在转换层及其相邻楼层处形成层侧移破坏机制,引起结构发生局部或整体倒塌破坏。即使严格按照规范进行抗震设计,在强震下结构进入弹塑性状态后,以单一变形性能指标进行的抗震设计,也不能有效地控制带转换层竖向不规则结构的地震损伤破坏。针对上述问题,考虑到结构破坏与最大变形和累积滞回耗能相关,提出基于变形(结构最大层间位移角)和损伤(结构整体损伤指数)的双系统抗震性能评估方法,弥补采用单一抗震性能评估指标的缺陷。从地震易损性层面上,评估带转换层竖向不规则这类结构的抗震可靠性。
     本文主要开展以下几个方面的研究工作:
     (1)出于结构破坏实质是地震输入能量超过结构所能消耗能量的考虑,对带转换高层框架结构累积滞回耗能分布进行研究。对比分析在不同地震动作用下结构最大层位移角和地震损伤分布是否一致。研究表明采用单一的变形指标,不能全面地评估带转换层竖向不规则结构的抗震性能,有必要建立基于变形和损伤的双系统抗震性能评估方法。
     (2)基于变形和损伤的双系统抗震性能评估方法是建立在地震易损性分析的基础上,地震动强度参数选取的合理性,直接影响结构地震易损性分析的正确性。根据大量动力非线性时程分析结果,对各个地震动强度参数与结构最大地震响应进行对数线性回归分析,以相关系数、标准差、线性回归方程斜率作为参数选取指标,选取出与结构地震响应关系最密切的地震动强度参数,为以变形和损伤为性能指标的地震易损性评估方法研究提供合理的地震动强度参数。
     (3)由于采用单一地震动强度参数不能充分地反映地震动特性对结构易损性的影响,因此在完成地震动强度参数选取研究的基础上,以结构最大层间位移角为性能指标,考虑地震动三要素中振幅和频谱特性的影响,进行能够考虑多个地震动特性参数的地震易损性曲面分析,建立基于变形的地震易损性评估方法。计算分析表明,基于结构最大层间位移角的地震易损性分析,低估了带转换高层框架结构发生重度损伤破坏的概率,有必要补充以损伤为指标的地震易损性评估方法。
     (4)在以损伤为性能指标的地震易损性评估方法中,结构整体损伤指数是通过结构构件损伤指数推算出来,因此首先需要对结构构件的地震损伤模型进行研究。由于带转换高层框架结构中,采用钢管混凝土柱和型钢混凝土梁作为转换构件,综合考虑损伤模型研究现状和钢-混凝土组合构件滞回特性后,首先,选取和修正基于累积滞回耗能的Kratzig损伤模型,用于钢管混凝土柱的地震损伤评估。然后,利用基于累积滞回耗能的梁柱损伤比,推算出型钢混凝土转换梁的损伤指数。最后,通过一系列组合构件的抗震性能试验,校验修正的Kratzig损伤模型和基于梁柱损伤比的推算方法是正确与合理。
     (5)在完成构件地震损伤模型修正与校验后,探究从构件层次到楼层层次、结构整体层次的损伤演化过程,建立以结构整体损伤指数为性能指标的地震易损性评估方法,用于带转换高层框架结构的抗震可靠性评估。在构件损伤推算出楼层损伤过程中,采用引入构件重要性系数的加权组合方式进行计算。在楼层损伤推算出结构整体损伤过程中,提出了基于累积滞回耗能的楼层损伤分布系数,合理地简化从楼层损伤指数到结构整体损伤指数的计算过程。计算分析表明,基于结构整体损伤指数的地震易损性曲面分析,能较合理地评估带转换高层框架结构发生重度损伤破坏的概率。
     (6)构建基于变形和损伤的双系统抗震性能评估方法,系统介绍该评估方法的实现步骤。将基于双系统的抗震性能评估方法应用到带转换高层框架结构的抗震可靠性分析中,并且分别从结构整体损伤和构件损伤两个方面,评估带转换高层框架结构的抗震性能。结构整体损伤评估表明,当结构处于基本完好和轻度损伤破坏状态时,评估主控参数可以采用结构最大层位移角。当结构处于中度和重度损伤破坏状态时,评估主控参数可以采用结构整体损伤指数。结构构件损伤评估表明,强震下带转换高层框架结构损伤破坏集中发生在底层与转换层的钢管混凝土柱和钢筋混凝土框架梁上。随地震动强度增大,钢管混凝土柱损伤加剧。最终,由于结构底层与转换层发生严重的损伤破坏引起结构发生整体破坏。
With the rapid economic development in China, the vertical irregular structures withtransfer story have become one trend of high-rise building for meeting the requirement ofmultifunctional building structure. The steel-concrete composite components are commonlyapplied to the building with transfer story due to their good mechanical properties. In the casestudy of this paper, the concrete filled steel tube (CFST) columns and steel reinforcedconcrete (SRC) beams are adopted as the transfer component to improve the seismicperformances of frame structure with transfer story. But the seismic damage investigationsand researches show that the vertical irregular structures with transfer story may fail easilyunder earthquake excitations because abrupt changes of the vertical stiffness causedeformation concentration and energy accumulation at transfer stories. The soft story orcolumn-hinging failure occurring in the vicinity of transfer stories may induce local or globalcollapse of the structure. Although the building with transfer story is designed strictly on thecode for seismic design, when the building is in elastic-plastic state under strong earthquakeexcitation, the seismic damage of the vertical irregular structure with transfer story can’t becontrolled effectively according to the seismic design using the single performance indexbased on the deformation. To solve these problems, considering that the damage of thebuildings are closely related to maximum deformation and cumulative hysteretic energy, aseismic performance assessment method based on deformations (inter-story drift angle of thestructural system) and damages (cumulative hysteretic energy) from structural components tostructural system is proposed to overcome the deficiency of the seismic design using thesingle performance index. The seismic reliability of the vertical irregular structure can beevaluated on the basis of the seismic fragility analysis.
     The main researches and conclusions are as follow:
     (1) Considering that the essence of the structure damage is the earthquake input energylarger than energy which the structure can consume, the distribution of cumulative hystereticenergy of the frame structure with transfer story is investigated. The comparison between thedistribution of inter-story drift angle and cumulative hysteretic energy is conducted to identifythe deficiency of the seismic design using the single performance index and provide basis for establishing the dual system of seismic performance assessment method based on thedeformation and damage.
     (2) The seismic performance assessment method based on the deformation and damageis established on the seismic fragility analysis. The validity of seismic fragility analysis isaffected by the rationality of the ground motion intensity parameter selection. Based on thenonlinear time history analysis results, the log-linear regression analyses between variousground motion intensity parameters and maximum seismic responses of the structure arecarried out. The ground motion intensity parameters, which are mostly related with thestructural seismic responses, are selected according to the correlation coefficient, standarddeviation and regression coefficient. The reasonable ground motion intensity parameter can beprovided to the study on the seismic fragility assessment method based on deformation indexand damage index.
     (3) Because the influence of the ground motion characteristics on the seismic fragility ofthe structure can’t be reflected sufficiently when the single ground motion intensity parameteris adopted. In order to consider the influence of more ground motion characteristic parameterson the seismic fragility, the seismic fragility surface analysis is conducted on the basis of thestudy on the ground motion intensity parameter selection. The deformation-based (themaximum inter-story drift angle) seismic fragility assessment method is established. Theresults show that the exceedance probability of the frame structure with transfer story insevere damage state is underestimated by the deformation-based seismic fragility analysis. Itis necessary to establish the damage-based seismic fragility assessment method to compensatefor the shortcomings.
     (4) In the damage-based seismic fragility assessment method, the damage index ofoverall structure is calculated by the damage indices of structural components. Therefore, theseismic damages of structural components will be evaluated firstly. The CFST columns andSRC beam are adopted as transfer components in the frame structure with transfer story.Considering the state-of-art of the damage model and the hysteretic characteristics ofsteel-concrete composite components, an energy-based damage index model proposed byKratzig is selected and modified to evaluate the seismic damages of CFST column. Thedamage index of SRC beam can be calculated through the ratio of the cumulative hysteretic energy of beam to the cumulative hysteretic energy of column. The validity of the modifieddamage index model and the calculation method based on the ratio of the beam damage to thecolumn damage will be verified by some published experiments.
     (5) Based on the verification of the modified damage index model for structuralcomponent, the damage evolution from the structural component to the story and the overallstructure is investigated. The damage-based (the damage index of overall structure) seismicfragility assessment method is established. In the damage evolution from the structuralcomponent to the story, the weighting method considering the importance coefficient ofstructural component is adopted to calculate the damage index of the story. In the damageevolution from the story to the overall structure, the damage distribution coefficient of storybased on the cumulative hysteretic energy is proposed to simplify the calculation process ofthe damage index of the overall structure. The results show that the exceedance probability ofthe frame structure with transfer story in severe damage state can be evaluated adequately bythe damage-based seismic fragility analysis.
     (6) The seismic performance assessment system based on the deformation and damage isconstructed. The analysis steps of the new seismic performance assessment method aresummarized. The dual system of seismic performance assessment method will be applied toevaluating the seismic reliability of the frame structure with transfer story. The seismicperformances of frame structure with transfer story can be assessed from the damage of theoverall structure and structural component respectively. The results show that the maximuminter-story drift angle can be adopted as the main evaluation parameter when the structure isin complete state or slight damage state. The damage index of overall structure can be adoptedas the main evaluation parameter when the structure is in moderate or severe damage states.The damage evaluation shows the seismic damages of the frame structure with transfer storyconcentrate on the CFST columns and RC beams in the first and transfer story. The damagesof the CFST columns are aggravated with the increase of seismic intensity. The severedamage occurring in the first and transfer story induces the global collapse of the structure.
引文
[1]徐培福,王翠坤,肖从真.剪力墙竖向不连续结构的震害与抗震设计概念[J].建筑结构学报,2004,25(5):1-9
    [2] San Fernando, California, Earthquake of February9,1971[R]. U.S. Department of Commerce,1973
    [3] Moss Peter J, Carr Athol J, Pardeon Gerarde. Inelastic analysis of the imperial county servicesbuilding[R]. Bulletin of the New Zealand National Society for Earthquake Engineering,1983
    [4] Moehle J P. Seismic response of vertically irregular structures[J]. Journal of Structural Engineering,1984,110(9):2002-2014
    [5] Valmundsson E V, Nau J M. Seismic response of building frames with vertical structuralirregularities[J]. Journal of Structural Engineering,1997,123(1):30-40
    [6]清华大学土木结构组,西南交通大学土木结构组,北京交通大学土木结构组.汶川地震建筑震害分析[J].建筑结构学报,2008,29(4):1-9
    [7]吴轶,何铭基,蔡健等.带耗能腋撑型钢混凝土转换框架结构地震易损性分析[J].工程力学,2012,29(10):184-192
    [8] Yao J.T.P, Munse W.H. Low cycle axial fatigue behavior of mild steel[J]. Journal of StructuralDivision,1969,95(ST8):5-24.
    [9] Mizuhata K, Gyoten Y, Kitamura H. Study on low cycle fatigue of a structural frame due torandomly varying load[A]. Proceedings of6th World Conference on Earthquake Engineering[C],1981:3031-3036.
    [10] Fajfar P, Vidic T, Fischinger M. Seismic demand in medium-period and long-period structures[J].Earthquake Engineering and Structural,1989,18(4):1133-1144
    [11] Fajfar P, Vidic T. Consistent inelastic design spectra: hysteretic and input energy[J]. EarthquakeEngineering and Structural Dynamics,1994,23(5):523-537
    [12] Bertero V V, Uang C M. Issues and future directions in the use of an energy approach forseismic-resistant design of structures[A]. In nonlinear seismic analysis and design of reinforcedconcrete buildings[C], Elsevier Applied Science, London,1992:95-104
    [13] Williams M. Suggested improvements to performance based seismic damage indices for concretestructures: state-of-art review[J]. Earthquake Spectra,1995,28(l):319-349
    [14] Green D R. The interaction of solid shear walls and their supporting structures[J]. Building sciences,1972,4(7):239-248
    [15] MacLeod I M and Green D R. Frame idealization for shear wall support systems[J]. Structuralengineer,1973,51(2):71-74
    [16] Smith B S and Riddington J R. The composite behavior of elastic wall-beam systems[J]. Proceedinginstitute civil engineer,1977,63(2):377-391
    [17] J S Kuang and Puvvala J. Continuous transfer beams supporting in-plane loaded shear walls in tallbuildings[J]. Structural design of tall Buildings,1996,4(5):281-293
    [18] J S Kuang and Atanda A I. Interaction based analysis of continuous transfer girder system supportingin-plane loaded coupled shear walls[J]. Structural design of tall Buildings,1998,4(7):285-293
    [19] J S Kuang and Shubin Li. Interaction-based design formulas for transfer beams: box foundationanalogy[J]. Practice Periodical On Structural Design and Construction,2005,2(10):127-132
    [20] J S Kuang and Shubin Li. Interaction-based design tables for transfer beams supporting in-planeloaded shear walls[J]. Structural design of tall Buildings,2001,2(10):121-133
    [21] Han-Seon Lee, Dong-Woo Ko. Seismic response characteristics of high-rise RC wall buildingshaving different irregularities in lower stories[J]. Engineering Structures,2007,29(11):3149-3167
    [22]底层大空间剪力墙结构研究组.底层大空间剪力墙结构十二层模型试验研究[J].建筑结构学报,1984,5(2):1-8
    [23]徐培福,郝锐坤,吴廉仲等.底层大空间剪力墙结构抗震设计[J].建筑科学,1985,1(1):28-37
    [24]郝锐坤,徐培福,黄宝清等.底层大空间剪力墙结构十二层模型拟动力试验研究[J].建筑科学,1985,1(1):38-52
    [25]娄宇,丁大钧,魏琏.上部开洞剪力墙转换大梁结构的试验研究[J].东南大学学报,1996,26(6B):116-120
    [26]娄宇,丁大钧,魏琏.梁式转换层设计中的一些问题探讨[J].四川建筑科学研究,1996,22(1):7-11
    [27]刘杨,沈蒲生.地震作用下转换层上、下结构侧向刚度对框支剪力墙受力性能的影响[J].工程抗震与加固改造,2005,27(3):12-16
    [28]刘杨,孟焕陵,沈蒲生.地震作用下钢管混凝土柱框支剪力墙结构受力性能研究[J].四川建筑科学研究,2007,33(1):150-153
    [29]倪忠.框支短肢剪力墙梁式转换结构的抗震性能试验研究[D].重庆大学硕士学位论文,2005
    [30]冯光华.带腋撑梁式转换结构性能研究[D].华南理工大学硕士学位论文,2010
    [31]钟树生,史世伦,卢挺等.框支短肢剪力墙结构中斜柱转换结构抗震试验研究[J].重庆建筑大学学报,2007,29(1):70-74
    [32]黄淼.不同转换梁截面高度的框支短肢剪力墙斜柱式转换结构的抗震试验研究[D].重庆大学硕士论文,2008
    [33]李世民.不同斜柱角度框支短肢剪力墙斜柱式转换结构的抗震试验研究[D].重庆大学硕士论文,2009
    [34]赵大梅.不同墙肢布置方式的框支短肢剪力墙斜柱式转换结构的抗震试验研究[D].重庆大学硕士论文,2010
    [35]吴轶,何铭基,杨春等.基于增量动力分析的带耗能腋撑钢筋混凝土转换结构抗震性能评估[J].地震工程与工程振动,2010,30(5):72-79
    [36]申晓平.框支短肢剪力墙抗震性能试验研究及有限元分析[D].重庆大学硕士学位论文,2011
    [37]马相明.不同斜柱角度的框支短肢剪力墙斜柱式转换结构抗震性能试验研究[D].重庆大学硕士学位论文,2011
    [38]刘建伟.框支剪力墙结构合理破坏机制及控制措施研究[D].重庆大学博士学位论文,2011
    [39]钟堂福.框支短肢剪力墙结构的静力弹塑性分析[D].哈尔滨工业大学硕士学位论文,2011
    [40]阴生帅.带梁式转换层的高层建筑抗震性能分析[D].西安建筑科技大学硕士学位论文,2011
    [41]傅传国,梁书亭,马辉.钢骨混凝土梁式转换层结构抗震性能试验研究[J].建筑结构,2002,30(4):61-64
    [42]戴国亮,蒋永生,傅传国等.高层型钢混凝土底部大空间转换层结构性能研究[J].土木工程学报,2003,36(4):24-32
    [43]李玉荣.型钢混凝土梁式转换框架结构的试验和理论研究[D].浙江大学博士学位论文,2005
    [44]李玉荣,裘涛,孙炳楠.型钢混凝土转换节点的抗剪性能[J].江南大学学报,2006,5(2):236-240
    [45]李国强,崔大光,李一松.型钢混凝土梁柱框支剪力墙结构抗震性能试验研究[J].地震工程与工程振动,2006,26(2):80-87
    [46]崔大光.型钢混凝土梁柱框支剪力墙结构抗震性能研究[D].同济大学博士学位论文,2006
    [47]黄敏,杨春,禹奇才等.新型钢骨混凝土转换梁的工程应用[J].广州大学学报,2005,4(5):437-440
    [48]吴轶,杨春,蔡健等.内置钢构架型钢混凝土转换深梁传力机理试验研究[J].土木工程学报,2008,41(12):21-27
    [49]杨春,蔡健,吴轶等.内置钢构架钢骨混凝土转换深受弯构件试验研究[J].建筑结构学报,2008,29(2):92-98
    [50]杨春,吴轶,蔡健等.内置钢构架钢骨混凝土转换梁力学性能参数分析[J].华南理工大学学报(自然科学版),2008,36(12):28-33
    [51]吴轶,何铭基,周云等.带耗能腋撑型钢混凝土转换结构减震性能分析[J].工程抗震与加固改造,2010,32(2):68-74
    [52]何铭基.带耗能腋撑型钢混凝土转换结构抗震性能研究[D].广州大学硕士学位论文,2010
    [53]郑俊光.带耗能腋撑型钢混凝土梁转换结构抗震性能试验研究及设计方法初探[D].广州大学硕士学位论文,2011
    [54]王成.型钢混凝土转换梁的内力分析及设计方法研究[D].哈尔滨工程大学硕士学位论文,2011
    [55]张誉,赵鸣,方健等.空腹桁架式结构转换层的试验研究[J].建筑结构学报,1999,20(6):11-17
    [56]唐兴荣,蒋永生,丁大钧等.新型钢筋混凝土空腹桁架的结构分析[J].东南大学学报,1996,26(6B):94-96
    [57]唐兴荣,蒋永生,丁大钧.预应力混凝土桁架转换层结构的试验研究和设计建议[J].土木工程学报,2001,34(4):32-40
    [58]唐兴荣,王燕,王恒光等.混凝土叠层桁架转换结构预应力施工与监测[J].施工技术,2009,38(10):54-60
    [59]唐兴荣,王恒光,王燕等.带叠层桁架转换层高层建筑结构整体模型振动台试验研究[J].建筑结构学报,2011,32(6):18-26
    [60]刘劲松.大跨度钢桁架转换结构振动台试验研究[J].世界地震工程,2006,22(4):145-149
    [61]吴玉华,楼文娟,叶小刚.大跨度钢桁架转换层结构的竖向地震反应分析[J].地震工程与工程振动,2011,31(4):89-93
    [62]荣维生,王亚勇.板式转换结构转换层位置对高层建筑抗震性能的影响[J].建筑科学,2004,20(4):1-7
    [63]荣维生,王亚勇.转换层上、下结构侧向刚度对板式转换高层建筑抗震性能的影响[J].工程抗震与加固改造,2004,27(6)1-8
    [64]何益斌,李艳,黄频.厚板转换结构拓扑优化设计[J].湖南大学学报(自然科学版),2011,38(3):1-6
    [65]征万荣.高层建筑板式转换层结构抗震性能分析[D].西南交通大学硕士学位论文,2011
    [66]荣维生,王亚勇,谢益人等.高层箱形转换结构上、下楼板和转换梁共同工作分析[J].建筑结构,2008,38(12):77-80
    [67]梁文彦.高层建筑箱形转换层结构计算[D].哈尔滨工程大学硕士论文,2004
    [68]钟和平.带箱形转换层高层建筑结构抗震分析与设计[D].重庆大学硕士学位论文,2006
    [69]徐培福,傅学怡,耿娜娜等.搭接柱转换结构的试验研究与设计要点[J].建筑结构,2003,33(12):3-7
    [70]陈代秉.搭接柱转换结构的受力性能研究分析[D].西南交通大学硕士论文,2005
    [71]吴兵,傅学怡,冯沛芸.搭接墙转换结构工作机理和设计方法[J].兰州理工大学学报,2008,34(4):133-136
    [72]陈涛,肖从真,田春雨等.搭接墙转换结构的试验研究[J].工程抗震与加固改造,2010,32(1):85-92
    [73]凌志彬.带拱式转换层高层结构弹塑性研究[D].华东交通大学硕士学位论文,2011
    [74]梁炯丰,邓治平,程丽红等.高位拱式转换层结构弹性地震反应分析[J].四川建筑科学研究,2011,37(5):178-180
    [75]吴从晓,周云,邓雪松等.高位转换粘滞阻尼减震结构阻尼器合理阻尼系数研究[J].振动与冲击,2011,30(3):180-184
    [76]邓雪松,吴从晓,周云等.高位转换防屈曲支撑减震结构支撑简化设计方法研究[J].振动与冲击,2011,30(2):248-251
    [77]吕西林,朱旭东,卢文胜.高位转换消能减震结构振动台试验研究[J].建筑结构学报,2011,32(4):46-52
    [78]叶列平,经杰.论结构抗震设计方法[A].第六届全国地震工程会议论文集[C],南京:东南大学出版社,2002:419-429
    [79]张静怡,李春祥.抗震性能设计的发展[J].自然灾害学报,2004,13(5):128-135.
    [80] Houser G W. Behavior of structures during earthquake[J]. Journal of Engineering Mechanics,1959,85(4):109-129
    [81] Paulay T., Priestley M. J. N.著,戴瑞同等译.钢筋混凝土和砌体结构的抗震设计[M].北京:中国建筑工业出版社,1998.
    [82] Fajfar P, Krawinkler H. Nonlinear seismic analysis and design of reinforced concrete buildings[M].London and New York: Elsevier Applied Science,1992.
    [83] Uang C M, Bertero V V. Use of energy as a design criterion in earthquake-resistant design[R].Report No. UCB/EERC-88/18, University of California at Berkeley,1988
    [84] Park Y J, Ang A H. Mechanistic seismic damage model for reinforced concrete[J]. Journal ofStructural Engineering,1985,111(4):722-739
    [85] Whitman R V, Reed J W, Hong S T. Earthquake damage probability matrices[A]. Proceedings of theFifth World Conference on Earthquake Engineering[C], Rome, Italy,1973:2531-2540
    [86] SEAOC Vision2000. A framework for performance-based engineering[S]. US: Structural EngineersAssociation of California,1995
    [87] ATC-40. Seismic evaluation and retrofit of concrete buildings[S]. US: California Seismic SafetyCommission,1996
    [88] FEMA273. NEHRP guidelines for the seismic rehabilitation of buildings[S]. US: FederalEmergency Management Agency,1997
    [89] Tae Hyung Lee, Khalid M Mosalam. Probabilistic seismic evaluation of reinforced concretestructural components and systems[R]. US: University of California, Berkeley,2006
    [90]缪志伟.钢筋混凝土框架剪力墙结构基于能量抗震设计方法研究[D].清华大学博士学位论文,2009
    [91] Applied Technology Council. Earthquake damage evaluation data for California[R]. Report ATC-13,Redwood City, CA,1985
    [92] Federal Emergency Management Agency. Multi-hazard loss estimation methodology, Earthquakemodel. HAZUS-MH MR1Technical Manual, Washington, DC,2003
    [93] Karbassi A, Nollet M J. Development of seismic vulnerability curves for masonry buildings usingthe applied element method[A]. ATC&SEI2009Conference on Improving the SeismicPerformance of Existing Buildings and Other Structures[C],2009,1353-1360
    [94] Park S, Van de Lindt J W. Formulation of seismic fragility for a wood-frame building based onvisually determined damage indexes[J]. Journal of Performance of Constructed Facilities,2009,23(5):346-352
    [95] Choi E, DesRoches R, Nielson B G. Seismic fragility of typical bridges in moderate seismic zones [J].Engineering Structures,2004,26(2):187-199
    [96] Tekie P B, Ellingwood B R. Seismic fragility assessment of concrete gravity dams[J]. EarthquakeEngineering and Structural Dynamics,2003,32(14):2221-2240
    [97] Ji J, Elnashai A S, Kuchma D A. An analytical framework for seismic fragility analysis of RChigh-rise buildings[J]. Engineering Structures,2007,29(12):3197-3209
    [98] Ramamoorthy S K. Seismic fragility estimates for reinforced concrete framed buildings[D]. Ph.D.Dissertation, Civil Engineering Department, Texas A&M University, TX, U.S.A.,2006
    [99] Ellingwood B R, Celik O C, Kinali K. Fragility assessment of building structural systems inMid-America[J]. Earthquake Engineering and Structural Dynamics,2007,36(13):1935-1952
    [100] Ji J, Elnashai AS, Kuchma DA. Seismic fragility relationships of reinforced concrete high-risebuildings[J]. The Structural Design of Tall and Special Buildings,2009,18(3):259-277
    [101] Cagdas Kafali, Mircea Grigoriu. Seismic fragility analysis: application to simple linear and nonlinearsystems[J]. Earthquake Engineering and Structural Dynamics,2007,36(13):1885-1900
    [102] Y.Pan, A.K.Agrawal, M.Ghosn and S.Alampalli. Seismic fragility multispan simply supported steelhighway bridges in New York State. II: fragility analysis, fragility curves, and fragility surfaces[J].Journal of Bridge Engineering,2010,15(5):462-472
    [103] D.M. Seyedi, P.Gehl, J.Douglas. Development of seismic fragility surfaces for reinforced concretebuildings by means of nonlinear time history analysis[J]. Earthquake Engineering and StructuralDynamics,2010,39(1):91-108
    [104] P.S. Koutsourelakis. Assessing structural vulnerability against earthquakes using multi-dimensionalfragility surfaces: A Bayesian framework[J]. Probabilistic Engineering Mechanics,2010,25(1):49-60
    [105] Taylor E, Dyke S. Development of fragility relationships for smart structures[A]. Proceedings of4thWorld Conference on Structural Control&Monitoring[C], San Diego, California,2006
    [106] Güneysis E M, Altay G. Seismic fragility assessment of effectiveness of viscous dampers in R/Cbuildings under scenario earthquakes[J]. Structural Safety,2008,30(5):461-480
    [107]王天威,杨春环.铁路桥梁震害预测和抗震加固[J].铁道建筑,1991,16(8):4-9
    [108]尹之潜.地震灾害与损失预测方法[M].北京:地震出版社,1995
    [109]宋立军,唐丽华,尹力峰等.石河子市建筑物群体易损性矩阵的建立方法与震害预测[J].内陆地震,2001,15(4):320-325
    [110]常业军,吴曙光.底层框架砖房的震害预测方法[J].华南地震,2001,2(1):57-61
    [111]于红梅,许建东,张素灵等.基于集集地震德建筑物易损性统计分析[J].防灾科技学院学报,2006,8(4):17-20
    [112]张令心,江近仁,刘洁平.多层住宅砖房的地震易损性分析[J].地震工程与工程振动,2002,22(1):49-55
    [113]楼思展,叶志明,陈玲俐.框架结构房屋地震灾害风险评估[J].自然灾害学报,2005,14(5)99-105
    [114]孙文林.基于性能的钢框架结构非线性地震反应分析[D].湖南大学硕士论文,2006
    [115]玉军.钢筋混凝土高层建筑结构抗震弹塑性分析方法的研究及其应用[D].湖南大学硕士论文,2007
    [116]吕大刚,李晓鹏,王光远.基于可靠度和性能的结构整体地震易损性分析[J].自然灾害学报,2006,5(2):107-114
    [117]周靖,蔡健,方小丹.强柱系数基于结构易损性的抗震性能评估[J].西北地震学报,2007,29(3):207-212
    [118]刘晶波,刘阳冰,闫秋实等.基于性能的方钢管混凝土框架结构地震易损性分析[J].土木工程学报,2010,43(2):39-47
    [119]朱建,谭平,卜国雄等.钢筋混凝土低层框架结构易损性分析[J].华中科技大学学报(自然科学版),2010,38(5):109-112
    [120]吴轶,何铭基,杨春等.基于增量动力分析的带耗能腋撑钢筋混凝土转换结构抗震性能评估[J].地震工程与工程振动,2010,30(5):72-79
    [121]何铭基,吴轶,蔡健,黄炎生,杨春.基于IDA的带耗能腋撑转换框架地震易损性分析[J].华南理工大学学报(自然科学版),2011,39(12):144-141
    [122]曾志和,樊剑,余倩倩.基于性能的桥梁结构概率地震需求分析[J].工程力学,2012,29(3):156-162
    [123]朱海南,叶继红.基于结构易损性理论的网壳失效模式分析初探[J].振动与冲击,2011,30(6):248-255
    [124]韩淼,那国坤.基于增量动力法的剪力墙结构地震易损性分析[J].世界地震工程,2011,27(3):108-113
    [125]李磊,郑山锁,李谦.基于IDA的型钢混凝土框架的地震易损性分析[J].广西大学学报:自然科学版,2011,36(4):535-541
    [126]吕大刚,于晓辉,陈志恒.钢筋混凝土框架结构侧向倒塌地震易损性分析[J].哈尔滨工业大学学报,2011,43(6):1-5
    [127]施炜,叶列平,陆新征等.不同抗震设防RC框架结构抗倒塌能力的研究[J].工程力学,2011,28(3):41-48
    [128]周靖,罗高杰,方小丹.强震作用下竖向不规则RC框架结构抗震易损性分析[J].建筑结构学报,2011,32(11):134-142
    [129]王亚勇.汶川地震震害启示:抗震概念设计问题//汶川地震建筑震害调查与灾后重建分析报告
    [R].北京:中国建筑工业出版社,2008
    [130]马千里.钢筋混凝土框架结构基于能量抗震设计方法研究[D].清华大学博士学位论文,2009
    [131]刘伯权,白绍良,赖明.抗震结构的破坏准则评述及探讨[J].重庆建筑工程学院学报,1993,15(4):1-8
    [132] T.F.Zahrah, W.J.Hall. Seismic energy absorption in simple structures[R]. Structural Research Series,No.501, University of Illinois, Urbana-Champain Illinois,1982
    [133] Akiyama H. Earthquake resistant design based on the energy concept[A]. Proceedings of9thWCEE[C], Tokyo-Kyoto, Japan,1988:905-910
    [134] Housner.G.W. Behavior of Structures during Earthquake[J]. Journal of the Engineering MechanicsDivision,1959,85(4):109-129
    [135]肖明葵.基于性能的抗震结构位移及能量反应分析方法研究[D].重庆大学博士学位论文,2004
    [136] Teran-Gilmore A, Avila E, Rangel G. On the use of plastic energy to establish strength requirementsin ductile structures[J]. Engineering Structures,2003,25(7):965-980.
    [137]肖明葵,刘波,白绍良.抗震结构总输入能量及其影响因素分析[J].重庆建筑大学学报,1996,18(2):21-33
    [138] Zahrah T F, Hall W J. Earthquake energy absorption in SDOF structures[J]. Journal of EarthquakeEngineering,1984,110(8):1757-1772
    [139]北村春幸.基于性能设计的建筑振动解析[M].第一版,裴星洙,廖红建,张立译,西安:西安交通大学出版社,2006:128-130
    [140] Stojadinovic B, Thewalt C R. Energy balanced hysteresis models[R]. The11thworld Conference onEarthquake Engineering Report No.UCB/EERC-96/01. Earthquake Engineering Research Center.University of California at Berkeley,1996
    [141]肖明葵,刘纲,白绍良等.抗震结构的滞回耗能谱[J].世界地震工程,2002,18(3):110-115
    [142] Housner.G.W. Limit design of structures to resist earthquakes[A]. Proceedings of the1st WorldConference on Earthquake Engineering[C], Oakland, California,1956:1-12.
    [143]程光煜.基于能量抗震设计方法及其在钢支撑框架结构中的应用[D].清华大学硕士学位论文,2007
    [144] Pierino Lestuzzia, Hugo Bachmann. Displacement ductility and energy assessment from shakingtable tests on RC structural walls[J]. Engineering Structures,2007,29(8):1708-1721
    [145] GB50010-2010混凝土结构设计规范[S].北京:中国建筑工业出版社,2010
    [146] Mander J B, Priestley M J N, Park R. Theoretical stress-strain model for confined concrete[J].Journal of Structural Engineering,1988,114(8):1804-1826
    [147]钟善桐.钢管混凝土统一理论——研究与应用[M].北京:清华大学出版社,2003
    [148]过镇海,时旭东.钢筋混凝土原理和分析[M].北京:清华大学出版社,2003
    [149] Filippou F C, Issa A. Nonlinear Analysis of Reinforced Concrete Frames under Cyclic LoadReversals[R]. EERC Report88-12, Earthquake Engineering Research Center, Berkeley.1988.
    [150] Vulcano A, Bertero V V Colotti V. Analytical model of RC structural wall[A]. Proc. Of9th WCEE
    [C], Tokyo,1988,(6):41-46.
    [151] S. W. Alves, C. R. Noble. Experimental Validation of LLNL Finite Element Codes for NonlinearSeismic Simulations[R]. Lawrence Livermore National Laboratory,2006
    [152]崔大光.型钢混凝土梁柱框支剪力墙抗震性能研究[D].同济大学工学博士学位论文,2006
    [153]曲哲,叶列平,潘鹏.建筑结构弹塑性时程分析中地震动记录选取方法的比较分析[J].土木工程学报,2011,44(7):10-21
    [154] He Mingji, Yang Chun, Cai Jian, Huang Yansheng, Wu Yi. Probabilistic evaluation of effects ofcolumn moment magnification factor on seismic performance of reinforced concrete frames[J].Advanced Materials Research,2011,243-249:251-257
    [155]包世华,张铜生.高层建筑结构设计和计算(上册)[M].北京:清华大学出版社,2005
    [156]周奎,李伟,余金鑫.地震易损性分析方法研究综述[J].地震工程与工程振动,2011,31(1):106-112
    [157]郝敏.地震烈度物理标准及地震动破坏势研究[D].哈尔滨工业大学硕士学位论文.2006
    [158] Douglas C.M, George C.R, Norma F.H..工程统计学[M].第三版,代金,魏秋萍译,北京:中国人民大学出版社,2005
    [159]陈亮.钢筋混凝土桥梁地震易损性分析方法[J].上海公路,2007,26(3):48-51
    [160] Luco N, Cornell AC. Structure-specific scalar intensity measures for near-source and ordinaryearthquake ground motions[J]. Earthquake Spectra,2007,23(2):357-392
    [161] Giovenale P, Cornell AC, Esteva L. Comparing the adequacy of alternative ground motion intensitymeasures for the estimation of structural responses[J]. Earthquake Engineering and StructuralDynamics,2004,33(8):951-979
    [162] Mackie K, Stojadinovic B. Probabilistic seismic demand model for California highway bridges[J].Journal of Bridge Engineering,2001,6(6):468-480
    [163] Jamie E.Padgett, Bryant G.Nielson, Reginald DesRoches. Selection of optimal intensity measures inprobabilistic seismic demand models of highway bridge portfolios[J]. Earthquake Engineering andStructural Dynamics,2008,37(5):711-725
    [164] Zeris C A. Three-dimensional nonlinear response of reinforced concrete building[D]. Berkeley:University of California,1986
    [165] SeismoSoft. SeismoStruct—A computer programme for static and dynamic nonlinear analysis offramed structures (online). Available from URL: http://www.seismosoft.com
    [166] Mari A, Scordies A. Nonlinear geometric material and time dependent analysis of three dimensionreinforced and prestressed concrete frames[R]. SESM82-12,1984
    [167] Martinez-Rueda J E, Einashai A S. Confined concrete model under cyclic load[J]. Materials andStructures,1997,30(3):139-147
    [168]韩林海,杨有福.现代钢管混凝土结构技术[M].北京:中国建筑工业出版社,2007:157–159
    [169]蔡健,孙刚.方形钢管约束下核心混凝土的本构关系[J].华南理工大学学报(自然科学版),2008,36(1):105-109
    [170]陈曦,周德源.五种本构模型在钢管混凝土有限元中的比较[J].工程力学,2009,26(6):116-121
    [171]吴文平,黄炳生,樊建慧.3种不同钢管混凝土本构关系模型研究[J].四川建筑科学研究,2009,35(6):19-23
    [172] Susantha K A S, Ge Hanbin, Tsutomu U. Unaxial stress-strain relationship of concrete confined byvarious shaped stee tubes[J]. Engineering Structures,2001,23(10):1331-1347
    [173] Sugupta D P G, Mendis P A. Design of high-strength-concrete-filled tube column[A]. In:Proceedings of the Fifth East-Asia-Pacific Conference on Structural Engineering andConstruction[C]. Griffith University, Australia,1995:427-432
    [174] Tang J, Hino S, Kuroda I. Modeling of stress-strain relationships for steel and concrete in concretefilled circular steel tubular columns[J]. Steel Constructure Engineering,1996,11(3):35-46
    [175] Elnashai A S, Elghazouli A Y. Performance of composite steel/concrete members under earthquakeloading Part I: Analytical model[J]. Earthquake Engineering and Structural Dynamics,1993,22(4):315-345
    [176] Monti G, Nuti C. Method of analysis for cyclically loaded R.C. plane frames including changes ingeometry and non-elastic behaviour of elements under combined normal force and bending[J].Symposium on the Resistance and Ultimate Deformability of Structures Acted on by Well DefinedRepeated Loads, International Association for Bridge and Structural Engineering,1973, Zurich,Switzerland:15-22
    [177] Filippou F C, Popov E P, Bertero V V. Effects of bond deterioration on hysteretic behavior ofreinforced concrete joints[R]. USA: Earthquake Engineering Research Centre, University ofCalifornia Berkeley,1983
    [178] Filippou F C, Popov E P, Bertero V V. Modeling of RC joints under cyclic excitations [J]. Journal ofStructural Engineering,1983,109(11):2666-2684
    [179] Martinelli P, Filippou F C. Simulation of the shaking table test of a seven-storey shear wallbuilding[J]. Earthquake Engineering and Structural Dynamics,2009,38(5):587-607
    [180] Pinho R, Elnashai A S. Dynamic collapse testing of a full-scale four storey RC frame[J]. Journal ofEarthquake Technology,2000,34(4):143-164
    [181] Fardis M N. Design of an irregular building for the SPEAR project-description of the3-storeystructure[R], University of Patras, Greece,2002
    [182]贡金鑫,仲伟秋,赵国藩.工程结构可靠性基本理论的发展与应用(3)[J].建筑结构学报,2002,23(6):2-9
    [183] Gardoni P, Kiureghian A D, Mosalam K M. Probabilistic capacity models and fragility estimates forreinforced concrete columns based on experimental observations[J]. Journal of EngineeringMechanics, ASCE,2002,128(10):1024-1038
    [184] Watson J A, Abrahamson N A. Selection of ground motion time series and limits on scaling[J]. SoilDynamics and Earthquake Engineering,2006,26(5):477-482
    [185] Trifunac M.D, Brady A G.. A study on the duration of strong duration earthquake ground motion[J].Bulletin of the Seismological Society of America.1975,65(3):585-626
    [186] GB50011-2010建筑抗震设计规范[S].北京:中国建筑工业出版社,2010:474-475
    [187]蔡健,周靖,方小丹.钢筋混凝土框架中震可修标准及简化抗震设计方法[J].地震工程与工程振动,2006,26(2):13-19
    [188]邓小刚.多层钢筋砼框架房屋的震害预测方法[J].工程抗震,1993,16(1):28-33
    [189] Vamvatsikos D, Cornell C A. Incremental dynamic analysis[J]. Earthquake engineering andstructural dynamics,2002,31(3):491-514
    [190]胡聿贤.地震工程学[M].第三版,北京:地震出版社,2005:91-100
    [191] Kratzig W B. Damage evolution in reinforced concrete members under cyclic loading[A].Proceedings of5th International Conference on Structural Safety and Reliability[C]. San Francisco,1989:795-802
    [192]江见鲸,陆新征,叶列平.混凝土结构有限元分析[M].北京:清华大学出版社,2005
    [193] Park Y J, Ang H S. Mechanistic seismic damage model for reinforced concrete[J]. Journal ofStructural Engineering,1985,111(4):722-739
    [194] Gulkan P, Sozen M A. Inelastic responses of reinforced concrete structure to earthquake motions[J].Journal of the American Concrete Inst,1974,71(12):604-610
    [195] Banon H, Biggs J M, Irvine H M. Seismic damage in reinforced concrete frames[J]. Journal ofStructural Engineering, ASCE,1981,107(9):1713-1729
    [196] Magdy S L Roufaiel, Christian Meyer. Analytical modeling of hysteretic behavior of R/C frames[J].Journal of Structural Division, ASCE,1987,113(3):429-444
    [197] Otani S, Cheung V W, Lai S S. Behaviour and analytical models of reinforced concrete columnsunder biaxial earthquake load[C]. Proceedings of3rdCanadian Conference on EarthquakeEngineering[A]. Montreal, Canada,1979:1141-1168
    [198] Ghobarah A, Abou-Elfath H, Biddah A. Response-based damage assessment of structures[J].Earthquake Engineering and Structural Dynamics,1999,28(1):79-104
    [199]刘海卿,陈小波,王学庆.基于损伤指数的框架结构倒塌分析综述[J].自然灾害学报,2008,17(1):186-190
    [200] Powell G H, Allchababadi R. Seismic damage prediction by deterministic methods: concept andprocedures[J]. Earthquake Engineering and Structural Dynamics,1988,16(5):719-734
    [201] Krawinkler H, Zohrei M. Cumulative damage in steel structure subject to earthquake groundmotions[J]. Computer and Structure,1983,16(1):531-534
    [202]沈祖炎,董宝,曹文衔.结构损伤积累分析的研究现状和存在的问题[J].同济大学学报,1997,25(2):135-139
    [203] Darwin D, Nmai C K. Energy dissipation in RC beams under cyclic load[J]. Journal of StructuralEngineering,1986,112(8):1826-1846
    [204] Kumar Satish, Usami T. Damage evaluation in steel box columns by cyclic loading tests[J]. Journalof Structural Engineering,1996,122(6):626-634
    [205] Rahanama M, Krawinkler H. Effects of soft soil and hysteretic model on seismic demand[R].Blume-108, The John A Blume Earthquake Engineering Center, Stanford, California,1993
    [206] Mehanny S S, Gregory G.D. Modeling of assessment of seismic performance of composite frameswith reinforced concreted concrete columns and steel beams[R]. The John A Blume EarthquakeEngineering Center, Stanford University,2000
    [207] Mander J B, Cheng C T. Remewable hinge detailing for bridge columns[A]. Pacific conference onearthquake engineering[C]. Melbourne, Australia,1995:197-206
    [208]刘伯权.钢筋混凝土抗震结构的破坏准则及可靠性分析[D].重庆建筑大学博士论文,1995
    [209] Young Soo Chung, Christian Meyer, Masanobu Shinozuka. Modeling of concrete damage[J]. ACIStructural Journal,1989,186(3):259-271
    [210]于海洋.钢筋混凝土结构地震损伤模型研究[D].重庆大学硕士论文,2004
    [211] Kunnath S K, Reinhorn A M, Lobo R F. IDARC Version3.0: A program for the inelastic damageanalysis of R/C structures[R]. Technical Report NCEER-92-0022, National Center for EarthquakeEngineering Research, State University of New York, Buffalo,1992
    [212]江近仁,孙景江.砖结构的地震破坏模型[J].地震工程与工程振动,1987,7(l):20-26
    [213]杜修力,欧进萍.建筑结构地震破坏评估模型[J].世界地震工程,1991,7(3):50-58
    [214]欧进萍等.层非线性抗震钢结构的模糊动力可靠性分析[J].地震工程与工程振动,1990,10(4):27-37
    [215]牛荻涛,任利杰.改进的钢筋混凝土结构双参数地震破坏模型[J].地震工程与工程振动,1996,16(4):44-53
    [216]吕大刚.基于最优设防荷载和性能的抗灾结构智能优化设计研究[D].哈尔滨建筑大学博士论文,1999
    [217]邱法维,杨卫东,欧进萍.钢管混凝土柱滞回耗能和累积损伤的实验研究[J].哈尔滨建筑大学学报,1996,29(3):41-45
    [218]郭蓉.加固方钢管混凝土框架的抗震性能试验与理论研究[D].天津大学建筑工程学院硕士学位论文,2007
    [219]杜喜凯.往复荷载作用下钢管混凝土柱性能试验及理论分析[D].天津大学建筑工程学院硕士学位论文,2010
    [220] Cenk Tort, Jerome F Hajjar. Damage measures for performance-based design of rectangular concretefilled steel tube members and connections[J]. Earthquake Spectra,2004,20(4):1317-1348
    [221]肖明葵,刘纲.结构的滞回耗能特性及其影响因素分析[J].工程力学,2000,增刊:242-247
    [222] Erol Kalkan, Sashi K Kunnath. Effective cyclic energy as a measure of seismic demand[J]. Journalof Earthquake Engineering,11:725-751
    [223]张国伟.钢管混凝土柱在地震作用下的累积损伤性能研究[D].湖南大学博士学位论文,2009
    [224]林松.高性能钢管混凝土柱在水平低周反复荷载作用下的试验研究[J].铁道科学与工程学报,2006,3(1):22-26
    [225]韩林海,姜绍飞,曹宇清等.大轴压比情况下钢管混凝土柱滞回性能的试验研究[J].钢结构,1999,14(4):14-18
    [226]伊新富,方鸿强.钢管高强混凝土压弯构件抗震性能的试验研究[J].建筑钢结构进展,2004,6(2):23-32
    [227]王湛,甄永辉.钢管高强混凝土压弯构件滞回性能的研究[J].地震工程与工程振动,2000,20(4):51-55
    [228]张春梅,阴毅,周云.钢管高强混凝土柱抗震性能的试验研究[J].地震工程与工程振动,2004,24(4):86-89
    [229]窦立军,钟善桐.钢管混凝土低周疲劳的实验研究[J].哈尔滨建筑工程学院学报,1991,24(增刊):81-87
    [230]韩林海,杨有福,游经团,黄宏.圆钢管混凝土压弯构件滞回性能的试验研究与理论分析[J].中国公路学报,2004,17(3):51-56
    [231]何文辉.约束钢管混凝土柱抗震性能的试验与理论研究[D].湖南大学硕士学位论文,2004
    [232] Yan Xiao, Zhongxin Zhang, Jianhua Hu, Sashi k.kunnath, Pengxin Guo. Seismic behavior of CFTcolumn and steel pile footings[J]. Journal of Bridge Engineering,2011,16(5):576-586
    [233] Julia Marson, Michel Bruneau. Cyclic testing of concrete-filled circular steel bridge piers havingencased fixed-based detail[J]. Journal of Bridge Engineering,2004,9(1):14-23
    [234] P.Gajalakshmi, H Jane Helena. Behaviour of concrete-filled steel columns subjected to lateral cyclicloading[J]. Journal of Constructional Steel Research,2012,75(8):55-63
    [235]钟善桐.钢管混凝土结构[M].北京:清华大学出版社,2003
    [236]韩林海.钢管混凝土结构——理论与实践[M].北京:科学出版社,2004
    [237]白国良,秦福华.型钢钢筋混凝土原理与设计[M].上海:科学技术出版社,2000
    [238]曹秀丽.型钢混凝土受弯构件变形和裂缝的研究[D].西安建筑科技大学硕士学位论文,2003
    [239]李飞平.型钢高强高性能混凝土框架的损伤分析[D].西安建筑科技大学硕士学位论文,2009
    [240] Cenk Tort, J F Hajjar. Damage assessment for performance-based design of rectangular concretefilled steel tubes[A]. Fifth International Conference on Composite Construction in Steel andConcrete[C]. South Africa,2004:390-401
    [241]赵鸿铁.钢与混凝土组合结构[M].北京:科学出版社,2001
    [242]赵世春.型钢混凝土组合结构计算原理[M].西安:西安交通大学,2004
    [243]吴轶,杨春,郑俊光等.带耗能腋撑型钢混凝土梁转换结构抗震性能研究[J].土木工程学报,2012,45(6):74-82
    [244] Rodriguez-Gomez S, Cakmak A S. Evaluation of seismic damage indices for reinforced concretestructures[R]. Buffolo, New York: National Center for Earthquake Engineering Research, TechnicalReport NCEER-90-0022. State University of New York at Buffalo,1990
    [245] Xianglin G, Zuyan S. Damage analysis on reinforced concrete structures under earthquake series[A].Proceedings of ICBBE-VII[C]. Seoul Korea:1997
    [246]黄志华,吕西林,周颖,卜一.高层混合结构地震整体损伤指标研究[J].统计大学学报,2010,38(2):170-177
    [247] Park Y J, Alfredo H S, Yi K W. Seismic damage analysis of reinforced concrete buildings[J]. Journalof Structural Engineering,1985,111(4):740-757
    [248]吴波,欧进萍.钢筋砼结构在主余震作用下的反应与损伤分析[J].建筑结构学报,1993,14(5):45-53
    [249]吴波,李惠等.结构损伤分析的力学方法明[J].地震工程与工程振动,1997,17(l):14-21
    [250]曹秋迪.基于构件尺度的框架_核心筒结构地震损伤评价方法[D].哈尔滨工业大学硕士学位论文,2010
    [251]杨栋,丁大均等.钢筋混凝土框架结构的地震损伤分析[J].南京建筑工程学报,1995,35(4):8-13
    [252] JGJ3-2010高层建筑混凝土结构技术规程[S].北京:中国建筑工业出版社,2010
    [253]何利,叶献国. Kratzig及Park-Ang损伤指数模型比较研究[J].土木工程学报,2010,43(12):1-6
    [254]王建民,李辉,陈龙珠.框架结构层间相对位移变化量在结构损伤检测中的应用[J].工业建筑,2005,35(11):47-49

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700