用户名: 密码: 验证码:
免Z轴旋转洗出的6-RSPS模拟器平台若干关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文在分析国内外驾驶模拟器发展现状的基础之上,针对传统Stewart平台不能围绕Z轴3600旋转的特点,当车辆连续加速回转时,由于没有足够的转角,而不能提供持续的偏航角速度,降低了驾驶的逼真度。对此,本文提出了免Z轴旋转洗出的6-RSPS (revolute-spherical-prismatic-spherical)模拟器平台,并系统地研究了该平台机构的运动学、精度、动力学、工作空间、洗出算法等相关关键技术,并通过仿真验证了相关理论的有效性及可行性。具体研究内容如下:
     提出了免Z轴旋转洗出的6-RSPS模拟器平台,确定了机构的实施方案;计算了机构的自由度;根据杆长矢量关系,得到了平台位置、姿态与伸缩支杆的长度和旋转支杆的旋转角度之间的关系,进而推导出机构的一组逆解,与经典的Stewart机构反解唯一的特点对比,6-RSPS结构的反解存在多个解;并确定相关参数的约束及优化条件,根据约束及优化条件得到了最优逆解;提出用BFS(Broyden-Fletcher-Shanmo)算法求解并联机构的运动学正解,取得良好的效果。
     分析了影响6-RSPS模拟器平台位姿精度的因素,然后根据误差独立作用原理建立总体误差模型,并利用微分法通过对运动学方程求导建立各个环节的独立误差模型,探讨了旋转角度误差、杆长误差、静平台铰链误差及动平台铰链误差等各个误差对动平台的精度产生的影响,并通过仿真验证各个环节对动平台误差产生的影响;基于此模型可对6-RSPS机构的位姿精度进行评估,为进一步提高该机构的位姿精度提供了理论依据。
     利用虚位移方法进行了机构的静力学分析,建立了静力学模型,得到了机构在静止或低速时多个位姿下伸缩支杆的驱动力以及旋转支杆的驱动力矩;然后利用凯恩方法进行了机构的逆动力学分析,建立了适用于6-RSPS机构的动力学模型,得到了机构在运动时伸缩支杆的驱动力以及旋转支杆的驱动力矩;并分别通过仿真验证了建模方法的正确性,为动力学优化、控制及仿真提供了良好的理论基础。
     分析了对6-RSPS模拟器平台工作空间产生影响的因素,以及各因素对平台位姿的限制;并针对本机构的特点,提出了先搜索YOZ面上Y轴正半轴截面上的工作空间,然后将截面旋转360°求解三维工作空间的方法,使得搜索量大大减少,提高了搜索效率;并应用此搜索方法求得多个位姿状态下的工作空间。
     在Stewart平台经典洗出算法的基础之上,根据6-RSPS模拟器平台的特点,提出了适用于本机构的免于Z轴旋转方向的洗出算法;并对算法中的相关参数选择进行了研究,然后进行了仿真实验,仿真结果表明:免于Z轴旋转方向的洗出算法对于6-RSPS模拟器平台是切实可行并合适的,可以避免Z轴旋转方向上的洗出算法,从而能够更精确地模拟车辆转弯时的感觉,可有效提高驾驶的逼真度。
In this paper, based on the analysis of the research status of the driving simulator, regarding the shortcomings of the traditional Stewart platform which can't rotate around the Z-axis within360°range, for this reason, the feeling of the driving simulator simulating vehicle turning continuously was limited. The6-RSPS platform which can rotate360°around the Z-axis was proposed. Some key technologies such as the kinematics, dynamics, accuracy analysis, workspace and washout algorithm of6-RSPS were studied systematically. The effective and feasibility of the theory proposed was verified by simulation. Specific research contents are as follows:
     6-RSPS platform for simulator was proposed, the design scheme of the mechanism was determined, and the degree of freedom of the mechanism was calculated. According to the vector relationship of the link-length, the relationship between the position and orientation of the platform and the length of the telescopic link and rotation angle of link was obtained, then, a group of inverse solution was deduced. Compare to the classic Stewart platform which has only one inverse solution, the6-RSPS platform has more than one inverse solution. So the conditions of the constraints and optimization of the relevant parameters was proposed, and the optimal inverse solution of the mechanism was obtained according to the conditions. In order to get the forward kinematics of the6-RSPS parallel mechanism, BFS algorithm was proposed and great results was achieved.
     The factors that influence the accuracy of the6-RSPS platform were analyzed, the overall error model was established in accordance with the principle of independent role of the error, the independent error model of all factors was established by using the differential method for kinematic equations. The impact on the accuracy of the moving platform generated by the error of rotate-angle, the error of link-length, the error of joint on static platform and the error of joint on moving platform and so forth were discussed, and verified the correctness by simulation. Based on this model, the accuracy of position and orientation of6-RSPS platform can be assessed, providing a theoretical basis for improving the accuracy of position and orientation further.
     Statics of the6-RSPS mechanism was analysis by the principle of virtual work, and the model of statics was established. The driving force of stretching-link and driving torque of rotating-link under different position and orientation was obtained. Inverse dynamics of the6-RSPS mechanism was analyzed by Kane principle, and the model of inverse dynamics was established. The driving force of stretching-link and driving torque of rotating-link under moving was obtained. The correctness of the modeling was verified according to simulation, providing a theoretical basis for dynamic optimization, control and simulation.
     The factors that influence the workspace of the6-RSPS platform were analyzed, and how these factors restrict the position and orientation of the platform was studied. Regarding the characteristics of the mechanism, proposing the method of search the workspace on the surface of YOZ on the positive of Y-axis cross-section, and then rotate360°, the3-D workspace was obtained. The efficiency of searching process was improved, and several workspaces under multiple position and orientation state were obtained using this method.
     Based on the classical washout algorithm on the Stewart platform, regarding the characteristics of6-RSPS, a new washout algorithm suitable for the mechanism was proposed, and related parameters of the algorithm were researched. The results of simulation experiment show:the washout algorithm that without washouting the rotation on the direction of the Z-axis for6-RSPS platform is feasible and appropriate. It proved that it can be able to simulate the feeling of simulator simulating vehicle turning continuously more accurately and effectively.
引文
[1]J. E. Gwinnett. "Amusement Devices", US PatentNo.1,789,680, January 20,1931.
    [2]V. E. Gough, S. G. Whitehall. Universal Tyre Test Machine. Proceedings of the FISITA Ninth International Technical Congress, May,1962:117-137.
    [3]K. L. Cappel. Motion Simulator. US Patent No.3,295,224, January 3,1967.
    [4]D. Stewart. A Platform with Six Degrees of Freedom. Proc. Instn. Mech. Engre. (Part I), 1965,180(15):371-386.
    [5]Kurokawa, Ko., Wierwille, Walter W. Validation of a driving simulation facility for instrument panel task performance. Proceedings of the Human Factors Society 34th Annual Meeting, Orlando, October 8-12,1990:1299-1303.
    [6]Lum, Harry S., Roberts, King M., DiMarco, Richard J, et al. Highway Simulator Analysis of Background Colors for Advance Warning Signs. Public Roads.1983,47(3):89-96.
    [7]Seidenglanz, E. All-wheel-drive off road commercial vehicles development activities at Mercedes-Benz. Eighteenth Fisita Congress-The Promise of New Technology in the Automotive Industry, Torino, Italy, May 7-11,1990:541-547.
    [8]Suetomi Takamasa, Horiguchi Akinori, Okamoto Yoshihixa, et al. Driving simulator with large amplitude motion system. SAE Technical Paper Series.1991,100(6):94-101.
    [9]Jo, D.-Y., Haug, E.J. Workspace analysis of closed loop mechanisms with unilaterial constraints. American Society of Mechanical Engineers, Design Engineering Division(Publication) DE, New York, NY, USA, September 17-21,1989,19(3):53-60.
    [10]Williams, Edward J. Simulation instruction-corporate vs. campus. Proceedings of the Winter Simulation Conference, New York, NY, USA,1993:1384-1387.
    [11]Freeman, Jeffrey S. Iowa driving simulator:a tool for human factor and vehicle virtual prototyping research. Heavy Vehicle Systems,1994,1(2):223-230.
    [12]http://www.nads-sc.uiowa.edu/.
    [13]Yun D.-S., Choi J.-H., Lee G.-Y., et al. The concept for the integration tele-operated unmanned vehicle and driving simulator.2001 IEEE International Symposium on Industrial Electronics Proceedings, Pusan, Korea, June 12-16,2001:1419-1426
    [14]Bellmann, Tobias. An innovative driving simulator:Robocoaster.32nd FISITA World Automotive Congress 2008, Munich, Germany, September 14-19,2008:568-575.
    [15]Xu Peijun, Peticca Gerry, Wong Dan. Atechnique for developing a high accuracy durability test for a light truck on a six degree-of -freedom road test simulator. International Journal of Vehicle Design,2008,47(1-4):190-304.
    [16]Wu Ping-Lin, Liao Chung-Shu, Chieng Wei-Hua. Optimization setting of dynamics parameters for an Atv simulator. International Journal of Robotics and Automation, 2011,26(4):401-418.
    [17]Auckland R. A., Manning W. J., Carsten O. M. J., et al. Advanced driver assistance systems: Objective and subjective performance evaluation. Vehicle System Dynamics, 2008,46(1):883-897.
    [18]http://www.56.com/u30/v_NTY3MjgOMjc.html?id=92908.
    [19]http://zhan.renren.com/amazingcars?gid=3891118874186122745&from=post&checked=tru e.
    [20]Murano Takahiko, Yonekawa Takashi, Aga Masami, et al. Development of hign-performance driving simulator. SAE International Journal of Passenger Cars-Mechanical Systems,2009,2(1):661-669.
    [21]Jongwon Kim, Jae Chul Hwang, Jin Sung Kim, et al. Eclipse II:A New Parallel Mechanism Enabling Continuous 360-Degree Spinning Plus Three-Axis Translation Motions. IEEE Transactions on Robotics and Automation,2002,18(3):367-373.
    [22]吴耀武,潘伍朝.MUL-QLM汽车驾驶模拟器系统.系统仿真学报.1995,7(A00):19-24.
    [23]刘永红,薛表.63A式水陆坦克驾驶训练模拟器的姿态仿真.计算机仿真2002,19(3):15-17.
    [24]钱蔚,张旦,王婉.汽车驾驶模拟器中3D场景的设计和实现.计算机仿真.1999,26(12):90-93.
    [25]赵又群,管欣,郭孔辉.开发型驾驶模拟器.公路交通科技,1995,12(3):64-66.
    [26]李勋祥,陈定方.分布式汽车驾驶交互仿真系统的实现.计算机辅助设计与图形学学报,2008,20(1):129-135.
    [27]沙伟平,田万仓.驾驶模拟器运动力学分析.计算机仿真,1994(4):24-30.
    [28]宗长富,高越,麦莉.ADSL驾驶模拟器运动模拟逼真度的改进.系统仿真学报,2001,13(2):178-181.
    [29]谢艳平.具有360度回转功能的六自由度运动平台的优化设计.华中科技大学硕士学位论文,2008.
    [30]尹小琴,马履中.三平移并联机构3-RRC的工作空间分析.中国机构工程.2003,14(18):1531-1533.
    [31]E. F. Fichter. Kinematics of a Parallel Connection Manipulator. Design Engineering Technology Conference, New York, NY, USA,1984:1-8.
    [32]D. C. H. Yang, T. W. Lee. A Feasibility Study of the Platform Type of Robotic Manipulator-From the Kinematic Viewpoint. ASME J. Mech Transmits Autuo. Des., 1984,106(2):191-198.
    [33]C. Innocenti, V. Praenti-Castelli. Forward Kinematics of the General 6-6 Fully Parallel Mechanism:An Exhaustive Numerical Approach Via a Mono-Dimensional Search Algorithm. 22nd Biennial Mechanisms Conference, Scottsdale, USA, September 13-16,1992:545-552.
    [34]M. Raghavan. The Stewart Platform of General Geometry has 40 Configurations. Journal of Mechanical Design, Transactions of the ASME,1993,115(2):277-280.
    [35]Didrit O, Petitot M, Walter E. Guaranteed solution of direct kinematic problems for general configurations of parallel manipulator. IEEE Transactions on Robotics and Automation, 1998,14(2):259-266.
    [36]Zarkandi S, Daniali HRM. Direct kinematic analysis of a family of 4-DOF parallel manipulators with a passive constraining leg. TRANSACTIONS OF THE CANADIAN SOCIETY FOR MECHANICAL ENGINEERING,2011,35(3):437-459.
    [37]黄真.并联机器人位置正解分析.东北重型机械学院研究报告,1984.
    [38]曲义远,黄真.空间6自由度多回路机构位置的三维搜索法.机器人,1989(5):25-29.
    [39]陈永,严静.同伦迭代法及应用于一般6-SPS并联机器人机构正位置问题.机械科学与技术,1997,16(2):189-194.
    [40]罗佑新,黎大志.求一般6-SPS并联机器人机构的全部位置正解的混池迭代方法.工程设计学报,2003,10(2):70-74.
    [41]车林仙.6-CPS正交并联机器人位置正解分析.农业机械学报,2009(11):212-218.
    [42]Raghavan M, Roth B. Inverse kinematics of the general 6R manipulator and related linkages. Journal of Mechanical Design, Transactions of the ASME,1993,115(3):502-508.
    [43]Dasgupta B, Mruthyunjaya T S. A canonical formulation of the direct position kinematics problem for a general 6-6 Stewart platform, Mechanism and Machine Theory, 1994,29(6):819-927.
    [44]Husian M, Waldron K J. Direct position kinematics of the 3-1-1-1 Stewart platform. Journal of Mechanical Design, Transactions of the ASME 1994,166(4):1102-1107.
    [45]Innocenti C, Parenti-Castelli V. Direct Position Analysis of the Stewart Platform Mechanism. Mech. Mach. Theory,1990,25(6):611-621.
    [46]Innocenti C. Forward kinematics in polynomial form of the general Stewart platform. ASME Journal of Mechanical Design,2001,123(2):254-260.
    [47]K. H. Hunt, E. J. F. Primrose. Assembly configurations of some in-parallel-actuated manipulators. Mechanism and Machine Theory,1993,28(1):31-42.
    [48]Z. Geng, L. Haynes. A 3-2-1 kinematics configuration of a stewart platform and its application to six DOF pose measurements. Int. J. Robot Comput.-Integr. Manufact., 1994,11(1):23-34.
    [49]Urizar M, Petuya V, Altuzarra O, et al. Analysis of the Direct Kinematic Problem in 3-DOF Parallel Manipulators.10th International Symposium on Science of Mechanisms and Machines, Brasov, ROMANIA, OCT 12-15,2009:445-456.
    [50]文福安,梁崇高,廖启征.并联机器人机构位置正解.中国机械工程,1999,10(9):1011-1013.
    [51]Wen F A, Liang C G. Displacement Analysis of the 6-6 Stewart Platform Mechanisms. Mech. Mach. Theory,1994,29(4):547-557.
    [52]Kamali K, Akbarzadeh A. A novel method for direct kinematics solution of fully parallel manipulators using basic regions theory. PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART I-JOURNAL OF SYSTEMS AND CONTROL ENGINEERING,2011,225(15):683-701.
    [53]Petuya V, Alonso A, Hernandez Oaya. Resolution of the direct position problem of parallel kinematic platforms using the geometrical-iterative method. IEEE International Conference on Robotics and Automation, Barcelona, SPAIN, APR 18-22,2005:3244-3249.
    [54]Geng Z, Haynes L. Neural Network Solution for the Forward Kinematics Problem of a Stewart Platform. Proceedings of the 1991 IEEE International Conference on Robotics and Automation, April 9-11, Sacramento, California,1991:2650-2655.
    [55]周结华,彭侠夫,仲训昱.基于改进型迭代神经网络的三自由度并联机构位置正解分析.机床与液压,2012,40(11):32-35.
    [56]R. Boudreau, N. Turkkan. Solving the Forward Kinematics of Parallel Manipulators with a Genetic Algorithm. Journal of Robotic Systems,1996,13(2):111-125.
    [57]Tsai M S, Shiau T N, Tsai Y J, et al. Direct kinematic analysis of a 3-PRS parallel mechanism. Mechanism and Machine Theory,2003,38(1):71-83.
    [58]K. C. Cheok, J. L. Overholt, R. R. Beck. Exact Methods for Determining the Kinematics of a Stewart Platform Using Additional Displacement Sensors. Journal of Robotics Systems, 1993,10(5):689-695.
    [59]吕崇耀,熊有伦.6-6型并联机构封闭运动学正解单解.华中理工大学学报,1999,27(7):36-38.
    [60]杨光,文福安,魏世民.用于并联机构位置正解的坐标法.机械科学与技术,2001,20(3):399-412.
    [61]A. J. Patel, K. F. Ehmann. Volumetric Error Analysis of a Stewart Platform-Based Machine Tool. Annals of the CIRP,1997,46(1):287-290.
    [62]Oren Masory, Jian Wang, Hanqi Zhuang. Kinematic modeling and calibration for a Stewart platform. Advanced Robotics,1997,11(5):519-539.
    [63]Jian Wang, Oren Masory. On the Accuracy of a Stewart Platform-Part I the effect of Manufacturing Tolerances. Proceedings of the IEEE International Conference on Robotics and Automation. Atlanda, GA, USA, May 2-6,1993:114-120.
    [64]Han S. Kim, Yong J. Choi. The Kinematic Error Bound Analysis of the Stewart Platform. Journal of Robotic Systems,2000,17(1):63-73.
    [65]Timo Ropponen, Tatsuo Arai. Accuracy Analysis of Modified Stewart Platform Manipulator. IEEE International Conference on Robotics and automation, Nagoya, Jpn, May 21-27, 1995:521-525.
    [66]T. S. Liu, J. D. Wang. A relialility Approach to Evaluating Robot Accuracy Performance. Mech. Mach. Theory,1994,29(1):83-94.
    [67]K. L. Ting, Y. Long. Performance Quality and Tolerance Sensitivity of Mechanisms. Journal of Mechanical Design,1996,118(2):144-150.
    [68]J. A. Soons. Error Analysis of a Hexapod Machine Tool. The 3rd International Conference and Exhibition on Laser Metrology and Machine Performance, Huddersfield, W. Yorkshire,UK. July 15-17,1997:346-358.
    [69]Giri D, Moon YM. Error modeling in a reconfigurable machine tool.29th Mechanisms and Robotics Conference, Long Beach, CA, SEP 24-28,2005:1001-1007.
    [70]Xu QS, Li YM. Error analysis and optimal design of a class of translational parallel kinematic machine using particle swarm optimization. Robotica,2009,27:67-78.
    [71]Chaker A, Mika A, Laribi MA, et al. Clearance and manufacturing error's effects on the accuracy of the 3-RCC spherical parallel manipulator. EUROPEAN JOURNAL OF MECHANICS A-SOLIDS,2013,37:86-95.
    [72]刘文涛,李建生.并联杆系机床工作空间与精度分析.制造技术与机床,1998(11):9-11.
    [73]吕崇耀,熊有伦.Stewart并联机构位姿误差分析.华中理工大学学报,1999(8):4-6.
    [74]卢强,张友良.基于统计原理的Stewart平台误差敏感度分析.南京理工大学学报,2001,25(1):67-70.
    [75]洪振宇,梅江平,赵学满等.可重构混联机械手——TriVariant的误差建模与灵敏度分析.机械工程学报,2006,42(12):65-69.
    [76]何雪法,张敏,谢里阳.3-TPT型并联机床的精度分析与仿真.中国机械工程,2008,19(11):1336-1339.
    [77]杨强,孙志礼,闫明等.一种新型并联机构位姿误差建模及灵敏度分析.中国机械工程,2008,19(14):1649-1653.
    [78]单鹏,谢里阳,田万禄.基于D-H矩阵的Stewart型并联机床位姿误差计算模型.机械工程学报,2010,46(17):186-191.
    [79]Fichter E F. A Stewart Platform-Based Manipulator:General Theory and Practical Construction. International Journal of Robotics Research,1986,5(2):157-182.
    [80]Ji Z. Study of the effect of leg inertia in Stewart platforms. IEEE International Conference on Robotics and Automation, Atlanta, GA, USA, May 2-6,1993,121-126.
    [81]Dasgupta B, Mruthyunjaya T S. A Newton-Euler formulation for the inverse dynamics of the Stewart platform manipulator. Mechanism and Machine Theory,1998,33(8):1135-1152.
    [82]Dasgupta B, Choudhury P. General strategy based on the Newton-Euler approach for the dynamic formulation of parallel manipulator. Mechanism and Machine Theory,1999, 34(6):801-824.
    [83]Choi HB, Konno A, Uchiyama M. Inverse Dynamics Analysis of a 4-d.o. f. Parallel Robot H4. ADVANCED ROBOTICS,2010,24(1-2):159-177.
    [84]孔令富,张世辉,肖文辉等.基于牛顿-欧拉方法的6-PUS并联机构刚体动力学模型.机器人,2004,26(5):395-399.
    [85]冯志友,张燕,杨廷力等.基于牛顿欧拉法的2UPS-2RPS并联机构逆动力学分析.农业机械学报,2009,40(4):193-197.
    [86]Lee K-M, Shah D K. Dynamic analysis of a tree-degrees-of-freedom in-paralle actuated manipulator. IEEE Journal of Robotics and Automation,1988,4(3):361-367.
    [87]Lebret G, Liu K, Lewis F L. Dynamic Analysis and Control of a Stewart Platform Manipulator. Journal of Robotic System,1993,10(5):629-655.
    [88]Pendar H, Vakil M, Zohoor H. Efficient dynamic equations of 3-RPS parallel mechanism through Lagrange method. IEEE Conference on Robotics, Automation and Mechatronics, Singapore, SINGAPORE, DEC 01-03,2004:1152-1157.
    [89]Vakil M, Fotouhi R, Nikiforuk PN. A new Method for Dynamic Modeling of Flexible-Link Flexible-Joint Manipulators. JOURNAL OF VIBRATION AND ACOUSTICS-TRANSACTIONS OF THE ASME,2012,134(1):DOI:10.1115/1.4004677.
    [90]王洪波,黄真.六自由度并联式机器人拉格朗日动力方程.机器人,1990,12(1):23-26.
    [91]白志富,韩先国,陈五一.基于Lagrange方程三自由度并联机构动力学研究.北京航空航天大学学报,2004,30(1):51-54.
    [92]王跃灵,金振林,李研彪.球面3-RRR并联机构动力学建模与鲁棒-自适应迭代学习控制.机械工程学报,2010,46(1):68-73.
    [93]Zhang C D, Song S M. An efficient method for inverse dynamics of manipulators based on the virtual principle. Journal of Robotic Systems,1992,10(5):605-627.
    [94]Tsai L W. Solving the inverse dynamics of a Stewart-Gough manipulator by the principle of virtual work. Journal of Mechanical Design,2000,122(1):3-9.
    [95]Staicu S. Matrix modeling of inverse dynamics of spatial and planar parallel robots. MULTIBODY SYSTEM DYNAMICS,2012,27(2):239-265.
    [96]Akbarzadeh A, Enferadi J. A virtual work based algorithm for solving direct dynamics problem of a 3-RRP spherical parallel manipulator. JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS,2011,63(1):25-49.
    [97]刘旭东.一类带有导向装置的并联机构分析与设计方法研究.博士学位论文,天津大学,2001.
    [98]贾晓辉,田延岭,张大卫.基于虚功原理的3-RRPR柔性精密定位工作台动力学分析.机械工程学报,2011,47(1):68-74.
    [99]宋小科,杨晓钧.基于虚功原理的4PUS-1RPU并联机构动力学分析.组合机床与自动化加工技术,2012(6):25-30.
    [100]You W, Kong MX, Du ZJ, et al. High efficient inverse dynamic calculation approach for a haptic device with pantograph parallel platform. MULTIBODY SYSTEM DYNAMICS, 2009,21(3):233-247.
    [101]李兵,王知行,李建生.基于凯恩方程的新型并联机床动力学研究.机械科学与技术,1999,18(1):41-43.
    [102]Min-Jie Liu, Cong-Xin Li, Chong-Ni Li. Dynamics Analysis of the Gough-Stewart Platform Manipulator. IEEE Transactions on Robotics and Automation,2000,16(1):94-98.
    [103]李鹭扬,吴洪涛,朱剑英.Gough-Stewart平台高效动力学建模研究.机械科学与技术,2005,24(8):887-889.
    [104]李新友,陈五一,韩先国.基于Kane方程的3UPS/S并联机床动力学研究.机床与液压,2011,39(13):1-5.
    [105]O. Masofy, J. Wang. Workspace Evaluation of Stewart Platforms. Journal of Advanced Robotics,1995,9(4):443-461.
    [106]Mircea Badescu, Constantinos Mavroidis. Workspace Optimization of 3-Legged UPU and UPS Parallel Platforms With Joint Constraints. ASME Jouranl of Mechanical Design, 2004,126(2):291-300.
    [107]Yunjiang Lou, Guanfeng Liu, Ni Chen, et al. Optimal design of parallel manipulators for maximum effective regular workspace.2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS, Edmonton, AB, Canada, August 2-6,2005:1208-1213.
    [108]Bruno Monsarrat, Clement M. Gosselin. Workspace Analysis and Optimal Design of a 3-Leg 6-DOF Parallel Platform Mechanism. IEEE Transactions on Robotics and Automation, 2003,19(6):654-966.
    [109]G. Barrette, C. M. Gosselin. Determination of the Dynamic Workspace of Cable-Driven Planar Parallel Mechanisms. Trans. Of ASME, Journal of Mechanical Design, 2005,127(2):242-248.
    [110]J. S. Zhao, M. Chen, K. Zhou, et al. Workspace of Parallel Manipulators with Symmetric Identical Kinematic Chains. Mechanism and Machine Theory,2006,41(6):632-645.
    [111]L. W. Tsai. Robot Analysis:the mechanics of serial and parallel manipulator. John Wiley&Sons.1999:223-259.
    [112]Gosselin C M. Determination of the workspace of 6-DOF parallel Manipulator. Journal of mechanisms, transmissions, and automation in design,1990,12(3):331-336.
    [113]T. Huang, J. S. Wang, C. M. Gosselin, et al. Kinematic Synthesis of Hexapods with Specified Orientation Capability and Well-conditioned Dexterity. ASME Journal of Manufacturing Systems,1999,119(1):27-32.
    [114]Ilian A. Bonev, Clement M. Gosselin. Analytical Determination of the Workspace of Symmetrical Spherical Parallel Mechnisms. IEEE Transactions on Robotics, 2006,22(5):1011-1017.
    [115]Jingshan Zhao, Min Chen, Kai Zhou, et al. Workspace of parallel manipulators with symmetric identical kinematic chains. Mechanism and Machine Theory,2006,41(6):632-645.
    [116]刘辛军,张立杰,高峰.基于AutoCAD平台的六自由度并联机器人位置工作空间的解析求解方法.机器2,2000,22(6):457-464.
    [117]张立杰,刘辛军.球面三自由度并联机器人可达工作空间的研究.中国机械工程,2001,12(10):1122-1125.
    [118]周兵,毛泰祥.3自由度RPS并联机构工作空间分析.湖南大学学报:自然科学版,2003,30(1):58-61.
    [119]曹永刚,张玉茹,马运忠.6-RSS型并联机构的工作空间分析与参数优化.机械工程学报,2008,44(1):19-24.
    [120]李浩,张玉茹,王党校.6-RSS并联机构工作空间优化算法对比分析.机械工程学报,2010,46(13):61-67.
    [121]张立杰,雷超,郭菲等.一种3-RPS并联平台机构偏转能力的分析.燕山大学,2012,36(3):196-200.
    [122]Schmidt S.F, Conrad B. Motion Drive Signals for Piloted Flight Simulators. NASA CR-1601,1970:639-646.
    [123]P. R. Grant, L. D. Reid. Motion Washout Filter Tuning:Rules and Requirements. Journal of Aircraft,1997,34(2):145-151.
    [124]Russel V. Parrish, James E. Dieudonne, Roland 1. Bowles, et al. Coordinated Adaptive Washout for Motion Simulator. Journal of Aircraft,1975,12(1):44-50.
    [125]Raphael Sivan, Jehuda Ish-Shlom, Jen-Kuang Huang. An Optimal Control Application to the Design of Moving Flight Simulators. IEEE Transactions on Systems, man and Cybernetics, 1982,12(6):818-827.
    [126]M. A. Nahon, L. D. Reid, J. Kirdeikis. Adaptive Simulator Motion Software with Supervisory Control. Journal of Guidance, Control, and Dynamics,1992,15(2):376-383.
    [127]Sigeru Omatu, Michifurni Yoshioka. Self-tuning Neuro-PID control and application. Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, Orlando, FL, USA, October 12-15,1997:1985-1989.
    [128]Richard Anthony Romano. Motion control logic for large excursion driving simulators. Doctor, University of Iowa,1999.
    [129]Robert J. Telban, Frank M. Cardullo. Developments in human centered cueing algorithms for control of flight simulator motion systems. AIAA,1999:1-11.
    [130]Robert J. Telban. Motion Cueing Algorithm Development:New Motion Cueing Program Implementation and Tuning. NASA/CR-2005-213746,2005.5.
    [131]Robert J. Telban. Motion Cueing Algorithm Development:NPiloted Performance Testing of the cueing Algorithms. NASA/CR-2005-213748,2005.5.
    [132]Amir Naseri, Peter Grant. An improved adaptive motion drive algorithm. AIAA Modeling and Simulation Technologies Conference 2005, San Francisco, CA, United states, August 15-18, 2005:1192-1200.
    [133]Liao Chung-Shu, Huang Chih-Fang, Chieng Wei-Hua. A novel washout filter design for a six degree-of freedom motion simulator. JSME International Journal, Series C:Mechanical Systems, Machine Elements and Manufacturing,2004,47(2):626-636.
    [134]Stratulat Anca, Roussarie Vincent, Vercher Jean-Louis, et al. Improving the realism in motion-based driving simulators by adapting tilt-translation technique to human perception. VR 2011-IEEE Virtual Reality 2011, Proceedings, Singapore, March 19-23,2011:47-50.
    [135]杨小波,宗昌富,胡子正.开发型驾驶模拟器体感模拟算法及其评价.汽车工程,1994,16(6):321-328.
    [136]宗昌富,麦莉,胡子正等.汽车动态仿真器运动系统的两种驱动算法模拟逼真度分析与比较.汽车工程,1997,19(5):268-273.
    [137]韩俊伟,张晋.飞行模拟器的洗出算法研究.中国民航学院学报,2005,23(4):37-42.
    [138]吴博,吴盛林,董彦良等.水陆坦克运动模拟洗出滤波算法设计.南京理工大学学报(自然科学版),2005,29(2):169-173.
    [139]王小亮,李立,张卫华.列车驾驶模拟器经典洗出算法的参数优化.中国铁道科学,2008,29(5):102-107.
    [140]杨宇,郑淑涛,韩俊伟.飞行模拟器经典洗出算法参数选择研究.计算机仿真,2011,28(1):72-75.
    [141]Grant PR, Reid LD. Motion washout filter tuning:Rules and requirements. AIAA Flight Simulation Technologies Conference, BALTIMORE, MD, AUG 07-10,1995:145-151.
    [142]黄真,赵永生,赵铁石.高等空间机构学.高等教育出版社,2006.
    [143]冯康.数值计算方法.国防工业出版社,1978.
    [144]林成森.数值计算方法.科学出版社,1998.
    [145]Jiri Tlusty, John Ziegert, Shannon Ridgeway. Fundamental Comparision of the Use of Serial and Parallel Kinematics for Machines Tools. Annals of the CIRP,1999,48(1):351-356.
    [146]Olivier Company, Sebastien Krut, Franccois Pierrot. Internal Singularity Analysis of a Class of Lower Mobility Parallel Manupulators with Articulated Traveling Plate, IEEE Transactions on Robotics.2006,1 (22):1-11.
    [147]邬昌峰.6-SPS并联机器人工作空间研究及其优化设计.硕士学位论文,合肥工业大学,2003.
    [148]王小亮,李立,张卫华.列车驾驶模拟器经典洗出算法的参数优化.中国铁道科学,2008,29(5):102-106.
    [149]吴博,吴盛林,董彦良等.水陆坦克运动模拟洗出滤波算法设计.南京理工大学学报,2005,29(2):169-173.
    [150]P. R. Grant, L. D. Reid. PROTEST:An expert system for tuning simulator washout filter. Journal of Aircraft,1997,34(2):152-159.
    [151]杨宇.飞行模拟器动感关键技术研究.博士学位论文,哈尔滨工业大学.2010.
    [152]许彩霞.STEWART平台的WASHOUT算法研究.硕士学位论文,哈尔滨工业大学.2008.
    [153]Min Kyu Park, Min Cheol Lee, Ki Sung Yoo, et al. Development of the PNU Vehicle Driving Simulator and Its Performance Evaluation. Proceeding of the 2001 IEEE International Conference on Robtotics & Automation, Seoul, Korea, May 21-26,2001:2325-2330.
    [154]Thong-Shing Hwang, Ming-Sung Kuo, Sheng-Ping Hsieh. Optimal Genetic and Adaptive Fuzzy Washout Filter Design in the Motion-Cueing Simulator. Asian Journal of Control, 2008,10(1):88-95.
    [155]O. M. Hullen. Implementation, Testing and Application PROTEST Simulator Motion Expert Tuning Software. Master Thesis, University of Toronto.2000.
    [156]Reid L. D. Nahon M. A. and Kirdeikis J. Adaptive simulator motion software with supervisory control. Journal of Guidance, Control and Dynamics.1992,15(2):376-383.
    [157]马飞,陈志雄,朱金陵.列车驾驶模拟器体感模拟研究.计算机与数字工程.2007,35(5):36-39.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700