用户名: 密码: 验证码:
基于使用性能的钢桥面铺装环氧沥青混合料设计研究与疲劳寿命预测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钢桥面铺装技术是大跨径桥梁建设的关键技术之一,一直受到国内外学术界与工程界的高度重视与关注。现阶段,国内外钢桥面铺装方案主要有双层SMA类、浇注式类、环氧类和ERS类,其中尤以环氧类铺装在国内外钢桥面铺装中所占比例最大。就环氧沥青混合料本身而言是一种性能优良的铺装材料,但调查表明部分环氧沥青混合料铺装层在使用过程中出现抗滑性能较差、易疲劳开裂、坑槽等病害。究其原因主要是现阶段设计的环氧沥青混合料构造深度和摩擦系数较小;设计时未把疲劳性能纳入混合料配合比设计当中,而只是作为一项路用性能验证指标,且对环氧沥青混合料疲劳破坏机理及寿命预测研究有待进一步深入研究;针对环氧沥青混合料粘弹性行为及韧脆转变温度研究较少。要解决这些问题不可能一蹴而就,需要从材料性能评价、力学分析机理、混合料设计等多角度系统性进行研究。基于上述背景,本文按照“针对性、实用性”的研究准则,通过现状调研、理论分析、数值模拟和试验验证的手段尝试解决环氧沥青混凝土铺装中存在的一些关键技术问题,完善环氧沥青混合料设计方法和水平,为钢桥面铺装建设作出贡献。
     本文首先针对国内外钢桥面铺装环氧沥青混合料使用状况开展调研工作,总结分析现阶段混合料铺装层病害特点及存在不足之处;其次,针对环氧沥青混合料铺装层使用现状,提出基于抗滑、抗疲劳开裂的设计方法和评价指标,并对环氧沥青混合料的韧脆转变温度及转变区进行研究;随后对设计的环氧沥青混合料开展粘弹性行为研究工作,为铺装层力学行为分析提供基础数据参数;采用有限元分析方法对铺装层不利状态的力学行为进行研究,并基于室内试验的基础上,开展混合料疲劳性能及耐久极限研究工作;最后,基于实桥荷载谱和环境谱的基础上,融合前文研究结果,完成铺装层环氧沥青混合料的疲劳寿命预测。本文开展主要研究工作如下:
     1、为了提高环氧沥青混合料的抗滑性能和抗疲劳性能,对原有级配和设计方法进行改进和完善,将“粗骨料空隙填充法(CAVF)”和“冲击韧性”引入到配合比设计当中,建立起J积分与冲击韧性之联系,并通过试验验证冲击韧性与疲劳性能之关系;并对设计的沥青混合料开展抗滑性能、防水性能和疲劳性能等路用性能研究工作,提出以“空隙率、构造深度、冲击韧性”作为环氧沥青混合料配合比设计的评价指标,并基于冲击韧性的基础上,揭示了环氧沥青混合料的韧脆转变温度和转变区
     2、采用DMA试验方法研究环氧沥青及混合料宽温宽频范围内粘弹性行为,并对试验原理、试验仪器和试验参数等进行阐述。通过DMA试验获得不同温度、频率下环氧沥青及混合料的粘弹参数,综合分析总结加载温度和频率对环氧沥青及混合料粘弹性行为影响,并基于时温等效原理和非线性最小二乘法的基础上,确定环氧沥青混合料宽频范围内动态模量主曲线方程和移位因子,为铺装层力学行为分析提供基础数据参数。
     3、基于动态模量参数基础上,运用有限元软件建立梁板三维实体混合有限元模型,以港珠澳大桥工程为背景,结合桥梁分析软件Midas Civil采用两层次分析法对不利位置处铺装层力学状态进行分析,首先建立全桥梁单元模型,考虑整体变温、梯度变温及车道荷载作用下的结构整体变形;其次,针对变形不利位置,运用“板-壳”模型理论进行局部分析,并采用多车道整体布载方式确定最不利荷载作用下的铺装层力学状态,进而明确钢桥面铺装层各项应力状态的最大值,最后分析了车载与温度耦合作用下铺装层的力学状态。研究结果为疲劳试验应变水平的选择和铺装层材料疲劳性能设计提供理论依据。
     4、探寻不同加载水平对环氧沥青混合料疲劳性能影响,基于外延法基础上确定环氧沥青混合料疲劳耐久极限,并综合分析了环氧沥青种类和用量、混合料级配类型、平均沥青膜厚度和长期老化等因素对疲劳耐久极限的影响。研究成果揭示了环氧沥青混合料铺装层疲劳破坏机理及其影响因素,为钢桥面铺装领域疲劳寿命预测设计提供理论支持。
     5、开展钢桥面铺装层混合料疲劳损伤研究与寿命预测工作,以外界大气温度和太阳辐射量为自变量,采用多元线性回归分析方法获得钢桥面铺装层温度场预估公式,提出基于温度和荷载耦合作用下铺装层疲劳累积损伤叠加原理和计算公式,推导出钢桥面铺装层疲劳寿命预测具体方法和步骤。并以港珠澳大桥桥面铺装工程为案例,基于实桥荷载谱、环境谱的基础上进行疲劳寿命预测分析。
     6、以肇庆马房大桥钢桥面铺装工程为实体应用,将本文研究成果用于工程实践中,从目前使用情况来看,效果较理想,未发生任何形式的破坏,该研究成果具有较大的推广价值。
Steel deck pavement technology is one of the key technologies of the long span bridgeconstruction, has been attented and concerned greatly by academia and engineering sector ofdomestic and abroad. At the present stage, the pavement program of domestic and abroadsteel bridge deck are main double-SMA type, Gussasphalt type, Epoxy asphalt type and ERStype, especially the epoxy pavement type has the largest proportion in the domestic andabroad steel deck pavement. Epoxy asphalt is a mixture of epoxy resin, a curing agent and amatrix asphalt by the complexity of the chemical modification, the cured epoxy asphaltmixture is good material which has high strength and mechanical properties. As far as epoxyasphalt which is an excellent paving materials, but the survey showes that part epoxypavements appear poor skid resistance, prone to fatigue cracking and some pits diseases inthe course of using, The reasons are main that structure depth and friction coefficient ofdesigned epoxy asphalt mixture are slow; fatigue properties are not included in the Mixdesigns, just as a verification indicator of road performance, and the research for fatiguefailure mechanism and life prediction of epoxy asphalt mixture are not deep enough; theresearch for viscoelastic behavior and the ductile-brittle transition temperature of the epoxyasphalt mixture are less. Solving these problems can not be done overnight, need multi-angleresearch from material performance evaluation, mechanical analysis mechanism, mixturedesign method. Based on the above background, this article is in accordance with the“targeted,practicality”research guideline, try to resolve some of the key technical issues of epoxyasphalt concrete pavement by the status survey, the theoretical analysis, numerical simulationand experimental verification means, fill epoxy asphalt mixture design method and level,contribute for the construction of steel bridge deck pavement.
     First of all, this article carries out survey and research work for the using condition ofdomestic and abroad epoxy asphalt mixture of steel bridge deck pavement, summary andanalysis disease characteristics and existing inadequate aspects of the mixture pavement atthis stage; Secondly, proposed design methods and evaluation of sliding and anti-fatiguecracking, and study epoxy asphalt mixture ductile-brittle transition temperature and transitioninterval; then carry out viscoelastic behavior research for the designd epoxy asphalt mixture,provide basic data parameters for mechanical behavior analysis of the pavement; using finiteelement analysis method to study the mechanical behavior of pavement, carring out thefatigue endurance limit research for mixture performance based on the basis of laboratory test;at last, complete fatigue life prediction of the epoxy asphalt mixture pavement based on the real bridge load spectrum and environmental spectrum. The main research work of this articleare as follows:
     1、In order to improve the skid resistance and fatigue resistance of epoxy asphalt mixture,improve the original gradation and design methods, introduce Course Aggregate Void Fillingmethod (CAVF) and impact toughness to the mix design, establish the relation between Jintegral and impact toughness; according to designed asphalt mixtures, carry out skidresistance performance,waterproofing performance and fatigue performance research works,proposed “porosity, structure depth, impact toughness” to be design evaluation index of epoxyasphalt concrete mixture design. Based on the basis of the impact toughness, reveals theductile-brittle transition temperature and transition range of epoxy asphalt mixture.
     2、Using DMA test methods to research wide temperature broadband viscoelasticbehavior for epoxy asphalt and mixture, and elaborate test principle, test equipment and testparameters. Get different temperature and different frequency viscoelastic parameters ofepoxy asphalt and mixture by DMA tests, analysis and summarize the load temperature andfrequency impact on epoxy asphalt and mixture viscoelastic behavior comprehensively, andbase on the time-temperature equivalence principle and the nonlinear least-squares method toidentify a wide frequency range of epoxy asphalt mixture dynamic modulus master curveequation and the shift factor, provide basic data parameters for the proposed model mechanicsanalysis, provide basic data parameters for mechanical behavior analysis of the pavement
     3、Based dynamic modulus parameters,using finite element software to create the beamand slab three-dimensional entities mixed finite element model, in the back ground of HongKong-Zhuhai-Macao bridge project, Combine bridge analysis software Midas Civil and usetwo-level analysis method to analyze mechanical state unfavorable position. At first, establishfull-bridge beam unit model, consider the structure overall deformation by the overall variabletemperature, the gradient variable temperature and lane loads; Secondly, according todeformation unfavorable position, use the theory of plate-shell model to carry out localanalysis,and determine pavement mechanical state under the most unfavorable load usingmulti-lane overall layout load way, moreover, clear the maximum value of steel bridge deckpavement stress state; and analysis mechanical state of the pavement because of moduluschange, provide the basis for the design of material performance.
     4、Explore the impact of different load level of epoxy asphalt mixture on fatigueperformance, determine the epoxy asphalt mixture fatigue endurance limit based on epitaxyand dissipated energy ratio, analyze the fatigue endurance limit impact factors comprehensively because of epoxy asphalt types and dosage, mixture gradation type, theaverage asphalt film thickness and long-term aging, provide a reliable basis for late pavementmixture fatigue life prediction.
     5、Carry out asphalt mixture fatigue damage degree research, put outside air temperatureand solar radiation as the independent variable,using multiple linear regression analysismethod to estimate steel bridge deck pavement temperature field formula, proposed fatiguecumulative damage superposition principle and formula based on the temperature and loadcoupling, deduced steel bridge deck pavement fatigue life prediction methods and procedures.As a case of the Hong Kong-Zhuhai-Macao bridge deck pavement engineering, carry outfatigue life prediction based on the actual bridge load spectrum and environmental spectrum.
     6、 Put Zhaoqing MaFang bridge steel deck pavement engineering as the entityengineering application, analyze the disease main influencing factors of Zhaoqing MaFangsteel deck pavement, according to ChemCo epoxy asphalt mixture and TAF epoxy asphaltmixture,carry out pavement performance, construction temperature and curing time comparedresearch. Finally, apply the results of this paper study into engineering practice, from thecurrent situation, use of the effect is very ideal with great promotional value.
引文
[1]胡光伟.大跨径钢桥面铺装体系力学分析与优化设计[D].南京:东南大学博士学位论文,2005
    [2]王伯惠.斜拉桥结构发展和中国经验[M].北京:人民交通出版社,2003
    [3]曾宪武,王永珩.桥梁建设的回顾和展望[J].公路,2002,2002(01):14-21
    [4]周孟波.悬索桥手册[M].北京:人民交通出版社,2003
    [5] Wai-Fai.Bridge Engineering Handbook[M].Boca Raton: CRC Press,2000
    [6]港珠澳大桥连续钢箱梁桥面铺装研究预报告[R].华南理工大学,2011
    [7]罗桑.基于损伤断裂分析的钢桥面铺装层疲劳行为与寿命预估研究[D].南京:东南大学博士学位论文,2010
    [8] I.J.Dussek,Well(Trinidad Lake Asphalt)Lid.Mastic asphalt(and gussasphalt)surface courses[C].In:Cliff Nicholls Asphalt Surfacing London and New YorkE&FN Sponan print of Routledge,1998.
    [9]张力,陈仕周.钢桥面铺装技术的研究与发展[J].公路,2001,01(01):2-3
    [10]沈金安.改性沥青与SMA路面[M].北京:人民交通出版社,1998
    [11]卢永贵.沥青马蹄脂碎石混合料研究[D].西安:长安大学博士学位论文,2001
    [12]李洪涛.大跨径悬索桥新型钢桥面铺装结构研究[D].南京:东南大学博士学位论文,2006
    [13]田其轩译.德国钢桥面铺装规范[S].重庆交通科研设计院,2000
    [14] BS-1447-1988.Specification for Masticasphalt (limestone fineaggregate)forroads,pavings in building[S],1988
    [15] BS-5284.Methods of Sampling and testing mastic asphalt used in building andcivil engineering[S],1993
    [16]多田宏行.橋面舗装の設計と施工[M].東京:鹿島出版会,1996,pp:390-395
    [17]吕伟民,孙大权.沥青混合料设计手册[M].北京:人民交通出版社,2007
    [18] T F Mika.Polyepoxied compositions[J].USP3012487,1961
    [19]刘克非.环氧沥青结合料试验研究[D].长沙:长沙理工大学硕士学位论文,2008
    [20]吕伟民,郭忠印.高强沥青混凝土的配制与性能[J].公路,中国公路学报,1996,01(09):8-13.
    [21]吕伟民.热拌高强沥青混凝土的配制原理及其力学特性[J].同济大学学报,1995,05(23):520-523
    [22]刘大梁,朱梦良,张淑琴.环氧改性沥青砂试验研究[J].长沙电力学院学报(自然科学版),1998,01(13):76-79)
    [23]黄卫,钱振东,程刚,杨军.大跨径钢桥面环氧沥青混凝土铺装研究[J].科学通报,2002,47(24):1894-1896
    [24]黄卫,胡光伟,张晓春.大跨径钢桥面沥青混合料特性研究[J].公路交通科技,2002,02(19):53-55
    [25]徐伟,张肖宁.钢桥面铺装材料粘弹性及疲劳损伤特征的试验研究[J].中南公路工程,2006,04(31):111-115
    [26]徐伟,张肖宁,涂常卫.虎门大桥钢桥面铺装维修方案研究与工程实施[J].公路,2010,05(05):68-71
    [27]洪涌强,徐伟.环氧沥青混合料温度控制研究[J].科学技术与工程,2010,10(05):1298-1300
    [28]杨三强,郝培文.环氧沥青铺装材料加速加载试验研究[J].交通科学与工程,2010,02(06):10-13
    [29]庞渊.环氧沥青混合料钢桥面铺装疲劳性能研究[D].西安:长安大学硕士学位论文,2010,
    [30]何清,姜炜,李知强,张志宏.ERS钢桥面铺装技术在宜昌长江公路大桥中的应用[J].交通科技,2012,2012(03):100-103
    [31]方满胜.树脂沥青组合体系(ERS)钢桥面铺装技术分析[J].安徽建筑,2012(04):134-135
    [32]潘友强,郭忠印.大纵坡小半径钢桥面沥青铺装设计研究[J].同济大学学报(自然科学版),2012,09(40):1334-1336
    [33]韩超,李浩天,贾渝,关永胜.基于现代化检测的环氧沥青钢桥面铺装病害研究[J].公路工程,2011,36(01):51-54
    [34]周晓华,宗海,童义和,于力.环氧沥青混凝土钢桥面铺装层病害分析[J].公路交通科技2010,26(08):105-107
    [35]何长江,钱振东,王建伟,韩光义.环氧沥青混凝土钢桥面铺装病害处治技术研究[J].交通科技,2007,2007(05):42-43
    [36]傅栋梁.钢桥面铺装预防性养护对策分析[J].公路,2010,2010(01):45-48
    [37]蒋玲.环氧沥青混合料应用研究现状与发展趋势[J].化工新型材料,2010,38(09):34-36
    [38]李浩天,关永胜,贾渝,韩超.环氧沥青钢桥面铺装长期性能演变研究[J].中外公路,2010,12(23):230-234
    [39]魏玉莲,宗海.环氧沥青混凝土钢桥面铺装裂缝病害修复研究[J].中国高新技术企业,2010,02(33):178-182
    [40]陈仕周.公路钢箱梁桥面铺装设计与施工技术指南[S].北京:人民交通出版社,2006
    [41]黄卫.大跨径桥梁钢桥面铺装设计理论与方法[M].北京:中国建筑工业出版社,2006
    [42]严家伋.道路建筑材料[M].北京:人民交通出版社,1996
    [43]吴旷怀,张肖宁,张志发.单一粒径为主的密断级配沥青混合料研究[J].哈尔滨建筑大学学报,1998,06(31):120-125
    [44]丛卓红,郑南翔.沥青混合料级配优化设计[J].长安大学学报(自然科学版)2007,03(27):14-17
    [45] William R V,William J P,Samuel H C.Bailey method for gradation selectionin HMA mixture design[R].Transportation Research Circular Number E-C44,2002
    [46] William R V,William J P,Samuel H C.Aggregate blending for asphalt mixdesign Bailey method [J].Transportation Research Record,2001,17(89):146-153)
    [47]郝培文,徐金枝,周怀治.应用贝雷法进行级配组成设计的关键技术[J].长安大学学报(自然科学版),2004,06(24):1-4
    [48]王艳丽.利用贝雷法参数对沥青混合料嵌挤骨架结构的判别[J].公路交通科技,2008,2008(09):76-79
    [49]王立久,刘慧.骨架密实型沥青混合料集料级配设计方法[J].中国公路学报,2008,05(21):6-10
    [50]张肖宁,王绍怀,吴旷怀,王端宜.沥青混合料组成设计的CAVF法[J].公路,2001,12(12):18-21
    [51]张肖宁,郭祖辛,吴旷怀.按体积法设计沥青混合料[J].哈尔滨建筑大学学报,1995,02(28):5-9
    [52]葛折圣,张肖宁,高俊合.富沥青混合料设计方法的改进[J].公路交通科技[J].2007,24(11):49-52,
    [53]邹桂莲,张肖宁,王绍怀,王端宜.富沥青混合料的CAVF法设计[J].公路,2002,03(03):77-79
    [54]孙立军.沥青路面结构行为理论[M].北京:人民交通出版社,2005
    [55]程靳.赵树山.断裂力学[M].北京:科学出版社,2006:115~133
    [56]邹桂莲.旧PCC路面加铺沥青面层的材料组成设计方法研究及应用[D].哈尔滨:哈尔滨工业大学博士学位论文,2001
    [57] B.Hauang,Z.Zhang,W.Kingery.Fatigue Crack Characteristics of Hma MixturesContaining. Rap.5th RILEM Conference on Reflective Cranking in Pavements,France,2004:631~638
    [58]陈篪.弹塑性断裂力学及其应用[J].科学通报,1975(20):329-332
    [59]刘宇.基于半圆弯曲试验的沥青混合料动态响应及断裂性能研究[D].哈尔滨:哈尔滨工业大学博士学位论文,2008
    [60] LIU Yu, ZHANG Xiaoning,XUE Zhongjun.Evaluation Fracture Resistanceof Stress Absorbing Layer Using J Integral Fracture Criterion[J].ScienceTechnology and Engineering,2007,24(07)6363-6367
    [61] MullM A,Sturt K,Yehia A.Fracture resistance characterization of Chemicallymodified crumb rubber asphalt pavement[J]. Journal of Materials Science,2002,37:557—566
    [62] AyatollahiM R,AlihaMRM. Fracture parameters for cracked semicircularspecimen[J]. Rock MechMin Sci,2004;41(3):1-5
    [63] Abdulshafi A A. Majidzadeh K.J integral and cyclic plasticity approach tofatigue and fracture of asphalt mixtures[J].64th Annual Meeting of TRB.Washington D C: Transportation Research Board,1985:112-123
    [64] Bhurke A,Shin E,Drzal L. Fracture morphology and fracture toughnessmeasurement of polymer modified asphalt concrete[J]. TRB76th AnnualMeeting Jan.1997.
    [65] Qian Zhendong,Li Zhi,Chen Chunhong.Fracture Criterion for Mode I Crackof Epoxy Asphalt Concrete Paving Course of Steel Deck Bridge Pavement[J].China Journal of Highway and Transport,2008,21(05):34-38
    [66] Min-Chul Kima,Yong Jun Ohb,Bong Sang Lee.Evaluation of ductile–brittletransition temperature before and after neutron irradiation for RPV steels usingsmall punch tests[J]. Nuclear Engineering and Design,2005,02(35):1799–1805
    [67] M. A. CONTRERAS,C. RODRI′GUEZ,F. J. BELZUNCE.Use of the smallpunch test to determine the ductile-to-brittle transition temperature of structuralsteels[J]. Fatigue&Fracture of Engineering Materials&Structures,2008,01(25):1460-2695
    [68] Rajkiran R,Tiwari D.R. Paul.Polypropylene-elastomer (TPO)nano composites:Ductile-brittle transition temperature[J],Polymer,2012,53:823-831
    [69]王元清,奚望,石永久.钢轨钢材低温冲击功的试验研究[J].清华大学学报(自然科学版),2007,47(09):43-47
    [70]钟群鹏,张峥,李洁,田永江.材料韧脆转移过程的数学模拟和实验标定[J].北京航空航天大学学报,2008,03(07):53-57
    [71]赵建平,张秀敏,沈士明.材料韧脆转变温度数据处理方法探讨[J].石油化工设备,2004,33(4):29-31
    [72]罗晓蓉,陈晨枫,丁欲晓,徐炜新.基于Origin软件正确评定韧脆性转变温度[J].物理测试,2010,02(28):43-47
    [73]逯彦秋,张肖宁,唐伟霞.桥面铺装层温度场的ANSYS模拟[J].华南理工大学学报(自然科学版),2007,35(2):59-63
    [74]沈金安,李福晋,陈景.高速公路沥青路面早期损坏分析与防治对策[M].北京:人民交出版社,2004
    [75] Dongre,Raj,D Angelo,John and Gerry Reinke.A New Criterion for SuperpaveHighTemperature Binder Specification [J].Transportation Research Record,National Research Council,Washington,2004,pp:25-41
    [76]张肖宁.沥青与沥青混合料的粘弹力学原理及应用[M].北京:人民交通出版社,2006
    [77]交通部重庆公路科学研究所译.《美国公路战略研究计划(SHRP)》[M].北京:人民交通出版社,1995
    [78]尹应梅.基于DMA法的沥青混合料动态粘弹特性及剪切模量预估方法研究
    [D].广州:华南理工大学博士学位论文,2011
    [79]迟凤霞.基于变形特性的沥青混合料形态学研究[D].广州:华南理工大学博士学位论文,2008
    [80] Gerald H. Reinke,Stacy Glidden.Development of Mixture Creep PerformanceTests Using a Dynamic Shear Rheometer[J]. Transportion Research Board of theNational Academies.2004
    [81] Andrei,D.Witczak,M.W.,and Mirza,M.W.Development of a RevisedPredictive Model for the Dynamic (Complex) Modulus of Asphalt Mixtures,Development of the2002Guide for the Design of New and RehabilitationPavement Structures–NCHRP1-37A,1999, pp:56~72
    [82] Y. H. Huang.Pavement Analysisand Design. Prentice Hall[J]. NewJersey.1993:72~186
    [83] National Cooperative Highway Research Program.A Guide for MechanisticEmpirical Design of New and Rehabilitated Pavement Structures. ARA,Inc.2004:31~77
    [84]高英.基于动态参数的沥青路面设计方法研究[J].同济大学博士研究生学位论文,1999:5~42
    [85]赵延庆,吴剑,文健.沥青混合料动态模量及其主曲线的确定与分析[J].公路,2006(8):163~167
    [86]闵召辉.热固性环氧树脂沥青及沥青混合料开发与性能研究[D].南京:东南大学,2004
    [87]薛连旭.基于疲劳特性的环氧沥青混合料设计研究[D].广州:华南理工大学博士学位论文,2010
    [88] Airey,G. D.,Rahimzadeh,B. and Collop.Linear and Nonlinear RheologicalProperties of Asphalt Mixtures [R].Proceedings the4th European Symp. on thePerformance of Bituminous and Hydraulic Materials in Pavements, TheNetherlands,2002,pp:137~145
    [89] Anderson,D. A.Binder characterization Physical properties. Strategic HighwaysResearch Program, Rep.No.SHRP-A-369, National Research Council,Washington,D.C.1994
    [90] Gordon D. Airey,Behzad Rahimzadeh,Andrew C.Collop. Linear RheologicalBehavior of Bituminous Paving Materials[J]. Journal of Materials in CivilEngineering.2004,16(3):212~220
    [91] Airey,G. D.,Rahimzadeh.Linear viscoelastic limits of bituminous binders[J].Assoccation Asphalt Paving Technolgy,1971,pp:160~196
    [93] Wekumbura C.Linear and Non—linear viscoelastic Behaviour of Selected Neatand Polymer Modified Asphalts(PMAs)[D], Department of Civil Engineering,University of Calgary,2005.
    [94]郭咏梅,倪富健,肖鹏.基于线黏弹范围的改性沥青动态流变性能[J].江苏大学学报,2011,32(04):178-182
    [95]张肖宁,任永利,迟凤霞.基于动态频率扫描的环氧沥青混合料性能研究[J].华中科技大学学报(自然科学版),2009,37(07):103-105
    [96]姚波,程刚,王晓.基于弯曲试验模式的环氧沥青混合料动态模量[J].东南大学学报(自然科学版),2011,41(03):598-600
    [97]菅原照雄.沥青混合料的动态性质及其在沥青路面结构力学分析中的应用.沥青混合料力学性能研究论文集[R].哈尔滨.哈尔滨建筑大学,.1982:123~126
    [98]叶国铮.柔性路面疲劳与优化设计[M].北京:人民交通出版社,1989
    [99]何曼君,陈维孝,董西侠.高分子物理[M].上海:复旦大学出版社,1990
    [100] Pellinen,T.K.,and M. W. Witczak.Stress Dependent Master Curve constructionfor Dynamic (Complex) Modulus[J]. Journal of the Association of AsphaltPaving Technologists,2002,71:321~345:
    [101] R.M.Christensen..Theory of Viscoelasticity[M].Second Edition, AcdemicPress,Inc,1982:39~160
    [102]金日光、刘薇.应力一温度等效性及WLF方程参数的物理意义[J].北京化工学院学报,1994,21(02):19-23
    [103]孙志忠,袁慰平.闻初.数值分析(第二版)[M].东南大学出版社.2002
    [104]汪林,陈仕周,黄冰释.掺纤维环氧沥青混合料性能试验研究[J].公路,2010,11(11):189-193
    [105] Wohler A.Versuche uber die Festigkeit der Eisen wage nachen[J]. Journal ofEngineering,1860(4):160-161
    [106] H.Di Benedetto,C.de La Roche,H.Baaj,A.Pronk and R.Lundstrom.Fatigueof bituminous mixtures[J]. Materials and Structures,2004,04(27):202-216
    [107] Monismith C L,Epps J A,Kasianchuk D A.Asphalt Mixture Behavior inRepeated Flexure[R].Report TE70-5Berke-ey,Institute of Transportation andTraffic Engineering,University of California,1970:81-89
    [108] Carpenter S H,Ghuzlan K,Shen S.Fatigue Endurance Limit for Highway andAirport Pavements[J]. Journal of the Transportation Research Board,Transportation Research Board of the National Academies,2003(1832):131-138.
    [109] Khal ID H,Artamend I.Characterization of Fatigue Damage for PavingAsphaltic Materials[J]. Fatigue&Fracture of Engineering Materials&Structures,2005,28(12):1113-1118.
    [110] Benedetto D H,Roche C D L,Baaj H,et al. Fatigue of Bituminous Mixtures[J]. Materials and Structures,2004,37(3):202-216
    [111] Sudip Bhattacharjee,Aravind Krishna Swarmy,and Jo Sias Daniel.Applicationof Elastic-Viscoelastic Correspondence Principle to Determine FatigueEndurance Limit of Hot-Mix Asphalt[J]. Transportation Research Board of theNational Academies,2009,2126(02):12-18
    [112] E.Ray Brown.Methods for determining the endurance limit using beam fatiguetests[J]. International Conference on Perpetual Pavement,2006Sept:13-15
    [113]张志祥,陈荣生,白琦峰.LSM沥青混合料疲劳极限试验研究[J].公路交通科技,2006,23(04):19-22
    [114]平树江,深爱琴,李鹏长.寿命路面沥青混合料疲劳极限研究[J].中国公路学报,2009,22(01):35-38
    [115]徐欧明,韩森,高世君.沥青混合料疲劳耐久极限研究[J].武汉理工大学学报,2010,32(08):45-48
    [116] Benedetto,H.D.Fatigue performance of Bitumious Mixture[J].Materials andStructures,2004,37(3):202-216
    [117] Carpenter,S. H.,Ghuzlan,A.K,Shihui Shen.Pellinen Fatigue Endurance Limitfor Highway and Airport Pavement[J]. Journal of the Transportation ResearchBoard,2007,01:131-138,
    [118] P.J.Yoo a&I.L.Al-Qadi.A strain-controlled hot-mix asphalt fatigue modelconsidering low and high cycles[J]. International Journal of PavementEngineering,2010,07(06):566-570
    [119] Ghuzlan,Khalid.Fatigue Damage Analysis in Asphalt Concrete Mixtures BasedUpon Dissipated Energy Concept[M]. Ph.D Thesis,University of Illinois atUbana-Chanpaign,2001
    [120] Ghuzlan,Khalid,and S.H.Carpenter.An Energy-Derived Damage-BasedFailure Criteria for Fatigue Testing[J]. Transportation Research RecordNo.1723:131-141
    [121]白曌宇,孟宪红,徐阿玲.确定疲劳极限外推法[J].应用力学学报,2003,20(01):120-122
    [122] Jian-ping ZHU,Xing-hua Fan,Shuang Gao. Study on the Strain FatigueTherehold of Asphalt Mixture for Long-Life Asphalt Pavement[J].ICCTP,2010:3591-3597
    [123]刘红瑛.沥青膜厚对沥青混合料工程性能影响[J].公路交通技术,2002(3):30-34
    [124] Kandhal P S,Chakraborty S.Effect of Asphalt Film Thickness on Short andLong Term Aging of Asphalt Paving Mixture(C)//NCAT Report96-01. Paperpresented at the75th Annual Meeting of the Transporttation Research Boardheld in Washington,DC,1996,33(01):7-11
    [125]陈少幸.沥青路面疲劳性能加速加载试验研究[D].广州:华南理工大学博士学位论文,2005
    [126]周志刚.交通荷载下沥青类路面疲劳损伤开裂研究[D].长沙:中南大学博士学位论文,2003
    [127]李春祥,李薇薇.斜拉索风致动力疲劳损伤的研究[D].振动与冲击,2009,28(11),61-65
    [128]余寿文,冯西桥.损伤力学[M].北京:清华大学出版社,1997
    [129]蔡四维,蔡敏.混凝土的损伤断裂[M].北京:人民交通出版社,2000
    [130]逯彦秋,张肖宁,孟勇军.桥面铺装非线性瞬态温度场分析[J].中外公路,2006,26(6):25-28
    [131]陈仕周.桥面铺装温度场调查与分析[R].重庆:重庆交通科研,2005
    [132]余锦州.马房大桥钢桥面沥青混凝土铺装层设计[J].公路,2004,08(08)47-50
    [133]王育清,谢明.马房大桥钢桥面的沥青混凝土铺装研究[J].交通科技,2005,02(01):43-46
    [134]徐伟.湛江海湾大桥钢桥面材料试验报告[R].华南理工大学,2006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700