用户名: 密码: 验证码:
小型无人直升机鲁棒非线性控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
与其他飞行器相比小型无人直升机具有垂直起降、空中悬停、协调转弯、体积小、重量轻、价格便宜以及隐蔽性强等优点。因而小型无人直升机在军事及民用领域具有广阔的应用潜力。但是,小型无人直升机是一个欠驱动、强耦合、不稳定、时变的高阶非线性系统,对其自主飞行控制的设计仍具有很大的挑战。因此,研究小型无人直升机的自主飞行控制设计问题具有重大科学意义。
     本文主要采用理论分析和数值仿真相结合的方法,对小型无人直升机的简化模型与鲁棒非线性控制器设计进行了研究。
     首先,本文建立了小型无人直升机14阶非线性数学模型,并将其简化成更简单的线性参数可变(LPV)模型和含有组合干扰的非线性模型以满足控制器设计的需要。
     其次,针对线性控制方法的不足,文中利用已建立的小型无人直升机简化LPV模型,提出了一种基于局部H_∞最优LPV速度(LHOV)控制的小型无人直升机LPV控制方法。
     再次,考虑到LPV方法存在轨迹跟踪效果较差的缺点,本文基于含有组合干扰的非线性模型利用自适应反步法设计了飞行控制器,并对其稳定性进行了理论证明和仿真分析;然而,反步法存在的“微分爆炸”问题,本文进一步提出了一种鲁棒积分滤波反步法,极大地简化了计算量。
     最后,针对鲁棒积分滤波反步法中过多地使用滤波器近似求导可能引起测量高频噪声放大的问题,本文为无人直升机提出了一种具有内外环结构的基于干扰补偿的鲁棒非线性控制方法。该方法既减小了滤波器求导的次数从而消弱了放大测量高频噪声的可能,又简化了计算量从而方便了参数调整。
     本文研究工作的主要内容和创新点包括以下几个方面:
     1、介绍了国内外小型无人直升机的研究现状,并重点对小型无人直升机飞行控制技术的研究现状进行了阐述与分析。
     2、分析了小型无人直升机的动力学特性,建立了小型无人直升机14阶全状态非线性数学模型,并结合控制器设计的需要,将其简化成了更简单的LPV模型和含有组合干扰的非线性模型。
     3、第三章利用第二章建立的小型无人直升机简化LPV模型,为水平面飞行设计了一种局部H_∞最优LPV速度控制方法。该方法不仅具有局部H_∞最优功能,即能保证闭环系统进入任意一个固定速度飞行模式后获得H_∞性能最优,还能保证大范围鲁棒稳定。
     4、提出了一种自适应反步控制方法。该方法采用自适应律对组合干扰进行在线估计,并将估计值应用于反步法控制器设计中,从而起到补偿干扰,提高闭环系统的鲁棒性和轨迹跟踪性能的作用。
     5、考虑自适应反步法计算量过大的问题,第五章提出了一种基于鲁棒积分滤波反步法的飞行控制方法。该方法运用滤波器近似求导,极大地简化了计算量。同时,该方法运用积分项和不连续的鲁棒项来提高闭环系统的抗干扰能力,消除轨迹跟踪静态误差,获得了很好的轨迹跟踪性能。
     6、提出一种基于干扰补偿的鲁棒非线性控制方法.该方法运用动态面控制技术,解决了常规反步法计算量过大、参数调整对输出不敏感的问题;采用内外环结构,解决了滤波反步法抗测量干扰能力不足的问题;采用加速度测量信号重构机体坐标下X和Y方向的外力干扰、非线性观测器观测力矩干扰以及误差积分补偿垂向干扰的方式获得了比自适应反步法、鲁棒积分反步法更好的鲁棒性和抗干扰能力。
     本文最后,在总结全文的基础上,提出了有待进一步研究和探索的一些问题。
Compared with other aircrafts, small-scale unmanned helicopters have the advantages ofvertical take-off and landing, hovering, coordinated turn, small size, small weight, low cost,strong concealment and so on, which makes it have widely potential applications in both mil-itary and civil fields. However, the small-scale unmanned helicopters are under-actuated,strongly coupled, unstable and time-varying high order nonlinear systems, which makes theautonomous flight controllers’ design with great challenges still. Therefore, study on the au-tonomous flight controller design for the helicopters is of great scientific significance.
     The dissertation mainly discusses the model simplification and robust nonlinear control-ler design based on theoretical analysis and numerical simulation.
     Firstly, this dissertation establishes for a helicopter a fourteenth-order nonlinear dynamicmodel, which is simplified into a linear parameter varying (LPV) model and a nonlinear mod-el augmented with lumped disturbances to meet the need of the controller design.
     Then, since the shortcomings of linear control methods, a local H_∞optical LPV veloc-ity (LHOV) control method is proposed for the small-scale unmanned helicopter based on thesimplified LPV model.
     After that, to overcome poor trajectory tracking performance of the LHOV control me-thod, an adaptive backstepping-based flight controller is designed based on the simplifiednonlinear model with lumped disturbances. Furthermore, a robust integral filtering backstep-ping method based flight controller is presented to solve the problem of the differential explo-sion in the adaptive backstepping method.
     Lastly, to reduce the probability of amplifying the high-frequency measurement noises inthe robust integral filtering backstepping method for the overuse of filters, for the helicopterthis dissertation proposes a robust nonlinear controller with inner-outer loop structure tocompensate disturbances. This controller not only reduces the number of filters to weaken theeffect of amplifying the high-frequency measurement noises, but also reduces calculationworks, which facilitates the control parameter adjustment.
     In general, the main contents and primary innovations of this dissertation can be summa-rized as follows:
     1. the background of the small-scale unmanned helicopter both domestic and oversea isintroduced, then an emphasis introduction to the development status of the flight control ispresented.
     2. A very specific analysis for the dynamic characteristics of the small-scale unmanned helicopter is given, and a fourteenth order full state nonlinear model is established. Then ac-cording to the need of the control design, the dissertation simplifies it to a simpler LPV modeland a simpler nonlinear model which is augmented with lumped disturbances.
     3. A LHOV control method is presented for horizontal flight of the small-scale un-manned helicopter. This method not only ensures the robust optimization with the function oflocal H_∞optimal performance, but also satisfies the large range robust stability while theclosed-loop system flights to any fixed velocity flight domain, or switches from one fixed ve-locity flight point to others.
     4. Since the LHOV control method has the shortcoming of large trajectory tracking error,a newly adaptive backstepping method is presented to deal with this problem. this methoduses the adaptive law which is used to estimate the disturbances for compensation in back-stepping controller. Therefore, it can improve the robustness and trajectory tracking perfor-mance. Moreover, it is also proved in Chapter4that the closed-loop system is robustly un-iformly ultimately bounded.
     5. Considering the large calculation works that the adaptive backstepping method has, arobust integral filtering backstepping controller is proposed in Chapter5. This controller usescommand filters to compute the time derivatives of the virtual controllers to reduce the calcu-lation works. Moreover, it improves the capability of disturbance rejection and removes thestable-state error of the tracking trajectory by adding an integral term and a discontinuous ro-bust term. evidently, it can obtain very good trajectory tracking performance.
     6. A robust nonlinear control method based on the disturbance compensation is proposed.This method uses dynamic surface control technique to solve the large calculation works; andapplies the inner-outer structure to reduce the use frequencies of the filters to solve the prob-lem of amplifying the high-frequency measurement noises; uses the acceleration measurementvalue to reconstruct the external force disturbances of the X and Y direction in body-fixedframe, and the nonlinear disturbance observer to observe the moment disturbance and errorintegration to compensate the disturbance of the Z direction in the body-fixed frame. As a re-sult, it obtains better robustness and disturbance rejection capability than adaptive backstep-ping method and robust integral filtering backstepping method.
     At last, some problems are proposed for further research and exploration after the sum-mary of this dissertation.
引文
[1]无人驾驶飞机. http://baike.baidu.com/view/4246.htm?fromId=120502,2013
    [2]吴建德.基于频域辨识的微小型无人直升机的建模与控制研究[D].杭州:浙江大学,2007
    [3]周洪波.小型无人直升机的建模与控制器设计[D].广州:华南理工大学,2011
    [4] Valavanis. K. P.. Advances in unmanned aerial vehicles state of the art and the road to au-tonomy, intelligent systems, control and automation: science and engineering [M]. Berlin:Springer-Verlag,2007:73-114
    [5] Bramwell A. R. S., Done G., Balmford D.. Bramwell’s helicopter dynamics [M]. Secondedition. Oxford: Butterworth-Heinemann,2001:77-114
    [6] Internaltional aerial robotics competition (IARC).http://en.wikipedia.org/wiki/International_Aerial_Robotics_Competition,2013
    [7] Johnson E. N., Proctor A. A., Ha J-C, et al. Visual Search Automation for UnmannedAerial Vehicles [J]. IEEE Transactions on Aerospace and Electronic Systems,2005,41(1):219-232
    [8] Wu A. D., Johnson E. N., Proctor A. A. Vision-Aided Inertial Navigation for Flight Con-trol [J]. Journal of Aerospace Computing, Information, and Communication,2005,2(9):348-360
    [9] Johnson E. N., Calise A. J., Watanabe Y., et al. Real-Time Vision-Based Relative AircraftNavigation [J]. Journal of Aerospace Computing, Information and Communication,2007,4(4):707-738
    [10] Chowdhary G., Johnson E. N. Flight test validation of a neural network based long termlearning adaptive flight controller [A]. AIAA Guidance, Navigation, and Control Conferenceand Exhibit [C]. Chicago: AIAA,2009
    [11] Leylek E., Ward M., Costello M. Fight dynamic simulation for multibody aircraft confi-gurations [J]. Journal of Guidance, Control, and Dynamics,2012,(35(6):1828-1842
    [12] Chowdhary G., Sobers J., Michael D., et al. Self-contained autonomous indoor flightwith ranging sensor navigation [J]. Journal of Guidance, Control, and Dynamics,2012,35(6):1843-1854
    [13] GTMax. http://soliton.ae.gatech.edu/people/ejohnson/gtmax3small.jpg,2005
    [14] GTQ. http://controls.ae.gatech.edu/w/images/c/c5/gtq.jpg,2010
    [15] Stanford university autonomous helicopter. http://heli.stanford.edu/.2013
    [16] Ng A. Y, Coates A. Diel M., et al. Autonomous inverted helicopter flight via reinforce-ment learning [J]. International Symposium on Experimental Robotics,2006,21:363-372
    [17] Abbeel P., Coates A., Hunter T., Ng A. Y.. Autonomous autorotation of an RC helicopter[A].11th International Symposium on Experimental Robotics [C]. Athens, GREECE: Expe-rimental Robotics,2008:385-394
    [18] Abbeel P., Coates A., Ng A. Y.. Autonomous helicopter aerobatics through apprenticeshiplearning [J]. International Journal of Robotics Research,2010,29(13):1608-1639
    [19] Coates A., Abbeel P., Ng A. Y.. Learning for control from multiple demonstrations [A].Proceedings of the25th International Conference on Machine Learning [C]. Helsinki, Finland:Association for Computing Machinery,2008:144-151
    [20] Abbeel P., Coates A., Quigly M., et al. An application of reinforcement learning to aero-batic helicopter flight [J]. NIPS,2007:1-8
    [21] Johnson E. N., Debitetto P. A., Trott C. A.. The1996MIT/Boston University/DraptorLaboratory Autonomous Helicopter System [A]. Proceedings of the15th Digital AvionicsSystems Conference [C],1996:381-386
    [22] Mcconley M. W., Piedmonte M. D., Appleby B. D.. Hybrid control for aggressive ma-neuvering of autonomous aerial vehicles [A]. Proceedings of the19th Digital Avionics Sys-tems Conference [C]. Philadelphia: IEEE Piscataway,2000:1-8
    [23] Gavrilets V., Frazzoli E., Mettler B., et al. Aggressive maneuvering of small autonomoushelicopters: a human-centered approach [J]. International Journal of Robotics Research,2001,20(10):795-807
    [24] Gavrilets V., Martinos M., Mettler B., et al. Control logic for automated aerobatic flightof miniature helicopter [A]. Proceedings of the AIAA Guidance, Navigation, and ControlConference [C]. Monterey: AIAA,2002:1-8
    [25] Gavrilets V., Shterenberg A., Martinos I., et al. Avionics system for aggressive maneu-vering [J]. IEEE Aerospace and Electronic Systems Magazine,200116(9):38-43
    [26] Frazzolli E., Dahleh M. A., Feron E.. Real-time motion planning for agile autonomousvehicles [J]. Journal o f Guidance, Control and Dynamics,2002,25(1):116-129
    [27] Frazzoli E., Dahleh M. A., Feron E.. Maneuver-based motion planning for nonlinear sys-tems with symmetries [J]. IEEE Transactions on Robotics,2005,21(6):1077-1091
    [28] Frazzoli. E.. Robust hybrid control for autonomous vehicle motion planning [D]. Boston:MIT,2001
    [29] Gavrilets V.. Autonomous aerobatic maneuvering of miniature helicopter [D]. Boston:MIT,2003
    [30] Bachrach A., Prentice S., He Ruijie, et al. Rang-robust autonomous navigation inGPS-denied environments [J]. Journal of Field Robotics,2011,28(5):644-666
    [31] Musial M., Brandenburg U. W., Hommel G.. Inexpensive system design: The flying ro-bot MARVIN Unmanned Air Vehicle Systems [A]. Proceedings of the Sixteenth InternationalUAVs Conference [C]. Bristol, UK,2001:23.1-23.12
    [32] Musial M., Brandenburg U. W., Hommel G.. Cooperative Autonomous Mission Planningand Execution for the Flying Robot MARVIN [J]. Intelligent Autonomous Systems,2000:636-643
    [33] Musial M., Brandenburg U. W., Hommel G.. MARVIN-Technische University Berlin'sflying robot for the IARC Millennial Event [A]. Proc. Symposium of the Association for Un-manned Vehicle Systems. Orlando, Florida, USA,2000
    [34] Laboratory for autonomous flying robots. http://pdv.cs.tu-berlin.de/lfafr/index.html,2008
    [35] MIT/Draper autonomous helicopter project. http://web.mit.edu/whall/www/heli/if18.gif,1996
    [36] MARVIN MarkII.http://pdv.cs.tu-berlin.de/MARVIN/mark_ii_frameset_introduction.html,2007
    [37] Cai G., Chen B. M., Lee T. H.. Unmanned Rotorcraft Systems [M]. New York: Springer,2011:97-137,184-185
    [38] Dong M., Chen B. M., Cai G., et al. Development of a real-time onboard and ground sta-tion softwaresystem for a UAV helicopter [J]. AIAA Journal of Aerospace Computing, Information, andCommunication,2007,4(8):933–955
    [39] Cai G., Chen B. M., Peng K., et al. Comprehensive modeling and control of the yawchannel of a UAV helicopter [J]. IEEE Transactions on Industrial Electronics,2008,55(9):3426–3434
    [40] Cai G, Lin F, Chen B. M., et al. Systematic design methodology and construction of UAVhelicopters [J]. Mechatronics,2008,18(10):545–558
    [41] Peng K., Cai G., Chen B. M., et al. Design and implementation of an autonomous flightcontrol law for a UAV helicopter [J]. Automatica,2009,45(10):2333–2338
    [42] Cai G., Chen B. M., Lee T. H.. An overview on development of miniature unmanned ro-torcraft systems [J]. Frontiers of Electrical and Electronic Engineering in China,2010,5(1):1–14
    [43] Dong X, Chen B. M., Cai G., et al. A comprehensive real-time software system for flightcoordination and cooperative control of multiple unmanned aerial vehicles [J]. InternationalJournal of Robotics and Automation,2011,26(1):49–63
    [44] Cai G., Chen B. M, Dong X., et al. Design and implementation of a robust and nonlinearflight controlsystem for an unmanned helicopter [J]. Mechatronics,2011,21(5):803–820
    [45] Cai G., Chen B. M., Lee T. H., et al. Comprehensive nonlinear modeling of a miniatureunmanned Helicopter [J]. Journal of the American Helicopter Society,2012,57(1):1–13
    [46] Lin F., Dong X., Chen B. M., et al. A robust real-time embedded vision system on anunmanned rotorcraft for ground target following [J]. IEEE Transactions on Industrial Elec-tronics,2012,59(2):1038–1049
    [47] Cai G., Wang B., Chen B. M., et al. Design and implementation of a flight control systemfor an unmanned rotorcraft using RPT control approach [J]. Asian Journal of Control,2013,15(1):95–119
    [48] Wang F., Phang S. K., Ong J. J., et al. Design and construction methodology of an indoorUAV system with embedded vision [J]. Control and Intelligent Systems,2012,40(1):22–32
    [49] Lion UAV Systems. http://uav.ece.nus.edu.sg/uavfamilies.html#fei,2013
    [50] Shim H., Koo T. J., Hoffmann F., et al. A comprehensive study of control design for anautonomous helicopter [A]. Proceedings of the37th IEEE Conference on Decision and Con-trol [C]. Piscataway, NJ: IEEE,1998:3653-3658
    [51] Shim D.. Hierarchical control system synthesis for rotorcraft-based unmanned aerial ve-hicles [D]. Berkeley: University of California,2000
    [52] Kim H. J., Vidal R., Shim D. H., et al. A hierarchical approach to probabilistic pur-suit-evasion games with unmanned ground and aerial vehicles [A]. Proceedings of the40thIEEE Conference on Decision and Control [C], Orlando: Institute of Electrical and Electron-ics Engineers Inc.,2001:634-639
    [53] Lygeros J., Tomlin C., Sastry S.. Controllers for reachability specifications for hybridsystems [J]. Automation,1999,35(3):16-31
    [54] Shim D. H., Hoam C., Sastry S.. Conflict-free navigation in unknow urban environments[J]. IEEE Robotics&Automation Magazine,2006,13(3):27-33
    [55] Autonomous helicopter project.http://www.cs.cmu.edu/afs/cs/project/chopper/www/history.html,1998
    [56] Amidi O., Mesaki Y., Kanade T., et al. Research on an autonomous vision guided heli-copter [A]. Proceedings of the5th Wordl Conference on Robotics Research [C]. Cambridge:SME,1994:1-12
    [57] Mettler B.. Identification Modeling and characteristics of miniature rotorcraft [M]. Nor-well: Kluwer Academic Publishers,2003
    [58] Bergerman M., Amidi O., Miller J. R., et al. Cascaded position and heading control of arobotic helicopter [A]. IEEE International Conference on Intelligent Robots and Systems [C].San Diego: Institute of Electrical and Electronics Engineers Inc.,2007:135-140
    [59] Gerig M. B.. Modeling, guidance and control of aerobatic maneuvers of an autonomoushelicopter [D]. Zurich: The Swiss Federal Institute of Technology,2008
    [60] So-Ryeok O., Pathak K., Agrawal S. K., et al. Approaches for a Tether Guided Landingof an Autonomous Helicopter [J]. IEEE Transactions on Robotics and Automation,2006,22(3):536-544
    [61] Ahmed B., Pota H. R.. Dynamic Compensation for Control of a Rotary wing UAV usingPositive Position Feedback [J]. Journal of Intelligent&Robotic Systems,2011,61(14):43-56
    [62] Hald U. B.. Nonlinear modeling and optimal autonomous helicopter [D].Denmark: Aal-borg University,2006
    [63] Bisgaard M.. Modeling, estimation and control of helicopter slung load system [D].Denmark: Aalborg University,2007
    [64]中国航空学会.中国航空学会举办国际空中机器人大赛[J].科协论坛,2012,11:12
    [65]王辉,徐锦法.小型无人直升机飞行动力学建模及增稳设计[J].南京航空航天大学学报,2003,35(3):277-282
    [66]王彪.无人驾驶直升机飞行控制系统含实物仿真技术研究[D].南京:南京航空航天大学,2000
    [67]范玉梅,杨一栋,王新华.小型无人直升机稳定杆建模与姿态系统设计[J].南京航空航天大学学报,2005,37(3):292-295
    [68]宋彦国,张呈林.小型无人直升机模糊飞行控制系统设计[J].南京航空航天大学学报,2007,39(1):103-106
    [69]马相林,张呈林,韩景龙.一种小型无人直升机飞控舱减振及飞行验证[J].南京航空航天大学学报,2010,42(5):543-549
    [70]蒋鸿翔.无人直升机视觉导引着陆研究[D].南京:南京航空航天大学,2008
    [71]王小青.无人直升机建模与控制技术研究[D].南京:南京航空航天大学,2009
    [72] Chen M., Ge S. S., Ren B.. Robust attitude control of helicopters with actuator dynamicsusing neural networks [J]. IET Control Theory and Applications,2010,4(12):2837-2854
    [73]杨成顺,杨忠,许德智,等.新型六旋翼飞行器的轨迹跟踪控制[J].系统工程与电子技术,2012,34(10):2098-2015
    [74]盛守照,王道波,姜斌,等.一种无人直升机自动起降控制策略[J].航空学报,2010,31(2):1053-1059
    [75]徐军,张明廉,宋子善.飞行控制系统的非线性鲁棒控制[J].航空学报,1998,19(2):169-172
    [76]代冀旺.基于进化算法的直升机鲁棒飞行控制及故障检测研究[D].北京航空航天大学,2001
    [77]宋子善,沈为群.无人直升机综合飞行控制系统设计[J].北京航空航天大学学报,1999,25(3):280-283
    [78] Lu Xin-lai, Liu Hu, Wang Gang-lin, et al. Helicopter sizing based on genetic algorithmoptimized neural network [J].2006,19(3):212-218
    [79]聂资,陈铭,李仁府.小型共轴式直升机纵横向动力学建模与辨识[J].华中科技大学学报,2012,40(6):44-48
    [80]刘鹏,王强,蒙志君,等.基于飞行品质评估的无人直升机鲁棒控制器设计[J].航空学报,2012,33(9):1587-1597
    [81]杜玉虎,房建成,盛蔚,等.一种小型无人直升机自主起飞控制方法[J].自动化学报,2012,38(8):1385-1393
    [82] Lei Xusheng, Guo Kexin. The model identification for small unmanned aerial rotorcraftbased on adaptive ant conlony algorithm [J]. Journal of Bionic Engineering,2012,9(4):508-514
    [83]陈皓生,陈大融.悬停状态下微型直升机航向模型的系统辨识[J].清华大学学报(自然科学版),2003,43(2):184-187
    [84]苏心怡,朱纪洪,胡金春,等.基于模糊逻辑的直升机终端滑膜控制[J].清华大学学报,2004,44(4):554-557,562
    [85] Yu Y., Zhong Y.. Robust attitude control for a3DOF helicopter with multi-operationpoints [J]. Journal of System Science and Comlexity,2008,19:1-12
    [86] Zheng B., Zhong Y.. Robust attude regulation of a3-dof helicopter benchmark: theoryand experiments [J]. IEEE Transactions on Industrial Electronics,58(2):660-670
    [87] Wang G., Xia H., Yuan X., et al. Modeling the yaw dynamics of an unmanned helicopterthrough modes partition method [J]. Science China Technological Sciences,2012,55(1):182-192
    [88]谭剑锋,王浩文,林长亮.基于升力面自由尾迹的直升机旋翼悬停性能参数影响研究[J].航空学报,2012,33(2):249-257
    [89]周涛.微小型无人直升机简化模型及控制系统研究[D].杭州:浙江大学,2006
    [90]吴建德.基于频域辨识的微小型无人直升机的建模与控制研究[D].杭州:浙江大学,2007
    [91]云昭洁,韩波,申星,等.基于DMC的微小型无人直升机航迹跟踪[J].计算机工程与应用,2012,48(17):215-219
    [92]章卫国,肖顺达.一种近似解耦方法在飞控系统中的应用[J].航空学报,1994,15(2):205-210
    [93]沈毅,于晓敏,李爱军.无人直升机的动态逆模糊集成控制[J].北京航空航天大学学报,2003,29(12):1133-1135
    [94]马动涛.无人直升机控制系统设计及控制方法研究[D].西安:西北工业大学,2005
    [95]卢京潮,陈伟,詹漫漫.直升机纵向系统鲁棒滑膜控制律设计[J].西北工业大学学报,2012,30(2):269-273
    [96]刘利钊,张天华,胡晓京,等.基于混沌与DFT对无人机控制不稳定性的研究[J].哈尔滨工程大学学报,2011,32(1):49-56
    [97]杨铁军,顾仲权,鲁明月.基于误差通道在线辨识的直升机结构振动主动控制研究[J].航空学报,2004,25(1):36-40.
    [98]徐立芳,莫宏伟.直升机智能PID控制研究[J].计算机工程与应用,2010,46(6):26-28,45.
    [99]李振锋,郭西进,彭成时,等.微小型无人直升机组合导航系统数据融合的研究[J].计算机测量与控制,2009,17(2):2532-2534
    [100]齐俊桐,韩建达.旋翼飞行机器人故障诊断与容错控制技术综述[J].智能系统学报,2007,2(2):31-39
    [101]齐俊桐,韩建达.基于MIT规则的自适应Unscented卡尔曼滤波及其在旋翼飞行机器人容错控制的应用[J].机械工程学报,2009,45(4):115-124
    [102] Qi J., Han J.. Application of wavelets transform to fault detection in rotorcraft UAVsensor failure [J]. Journal of Bionic Engineering,4(4):265-270
    [103]王德宇.小型无人直升机飞行控制系统研究[D].长沙:国防科学技术大学,2005
    [104] Song B., Mills J. K., Liu. Y., et al. Nonlinear dynamic modeling and control of asmall-scale helicopter [J]. International Journal of Control, Automation, and Systems,2010,8(3):534-543
    [105]范才智,宋宝泉,刘云辉,等.微小无人直升机自适应视觉伺服[J].自动化学报,2010,36(6):894-900
    [106] He Y., Pei H., Sun T., et al. Modeling, identification and robust H∞Static outputfeedback control of lateral dynamics of a miniature helicopter [A]. IEEE Conference on Ro-botics, Automation and Mechatronics [C]. Qingdao: IEEE Computer Society,2011:310-315
    [107]周洪波,裴海龙,贺跃帮,等.状态受限的小型无人直升机轨迹跟踪控制[J].控制理论与应用,2012,29(6):778-784
    [108]周洪波,裴海龙,贺跃帮,等.基于滤波反步法的无人直升机轨迹跟踪控制[J].控制与决策,2012,27(4):613-617
    [109]贺跃帮,裴海龙,赵运基,等.无人直升机鲁棒积分滤波反步法飞行控制设计[J].华南理工大学学报,2013,41(2):30-36
    [110]贺跃帮,裴海龙,周洪波.小型无人直升机的内外环非线性控制器设计[A].中国控制会议[C].合肥: IEEE Computer Society,2012:1040-1045
    [111]贺跃帮,裴海龙,周洪波.基于H∞扩展静态输出反馈控制的无人直升机结构化H∞控制器设计[A].中国控制会议[C].合肥: IEEE Computer Society,2012:2813-2818
    [112]杜建福.基于预测控制的小型无人直升机自主飞行研究[D].上海:上海交通大学,2008
    [113] Liu S.-Q., Lu J.-G., Jing Z.-L.. Trajectory linearization based output tracking control ofan unmanned tandem helicopter with variance constraints [J]. International Journal of Control,Automatiion, and Systems,2010,8(6):1257-1270
    [114] Kim H.J., Shim D.H.. A flight control system for aerial robots: agorithms and experi-ments [J]. Control Engineering Practice,2003,11(12):1389-1400
    [115] Pounds P. E. I., Bersak D. R., Dollar A. M.. Stability of small-scale UAV helicoptersand quadrotors with added payload mass under PID control [J]. Autonomous Robots,2012,33(1-2):129-142
    [116] Castillo C. C., Alvis W., Castillo-Effen M., et al. Small Scale Helicopter Analysis andController Design for Non-Aggressive Flights [A]. Proceedings, IEEE International Confe-rence on Systems, Man and Cybernetics [C]. Waikoloa: Institute of Electrical and ElectronicsEngineers Inc,2005:3305-3312
    [117] Pan Y., Song P., Li K.. PID Control of miniature unmanned helicopter yaw systembased on RBF neural network [A]. International Conference on Intelligent Computing andInformation Science [C]. Chongqing: Springer-Verlag Berlin,2011:308-313
    [118] Sprague K., Gavrilets V., Dugail D., et al. Design and Applications of an Avionics Sys-tem for a Miniature Acrobatic Helicopter [A],20th Digital Avionics Systems Conference [C].Daytona Beach: Institute of Electrical and Electronics Engineers Inc,2001:3C51-3C510
    [119] Kumar V. M., Prasad S., Omkar S. S., et al. Design of a stability augmentation systemfor a helicopter using LQR control and ADS-33handling qualities specifications [J]. AircraftEngineering and Aerospace Technology,2008,90(2):111-123
    [120] McFarlane D., Glover K.. A loop-shaping design procedure using H∞synthesis [J].IEEE transactions on Automatic Control,1992,37(6):759-769
    [121] Papageorgiou G., Glover K.. H∞loop-shaping: Why is it a sensible procedure for de-signing robust flight controllers [A]. In AIAA Conference on Guidance, Navigation and Con-trol [C]. USA: American Automatic Control Council,1999:4272-4273
    [122] Kim H.-C., Dharmayanda H. R., Kang T., et al. Parameter identification and design of arobust attitude controller using H∞methodology for the Raptor E620small-scale helicopter[J]. International Journal of Control, Automation, and Systems,2012,10(1):88-101
    [123] Gadewadikar J.,Lewis F. L., Subbarao K., et al. Structured H∞command and controlloop design for unmanned helicopters [J]. AIAA Journal of Guidance, Control and Dynamics,2008,31(4):1093–1102
    [124] Gadewadikar J.,Lewis F. L., Subbarao K., et al. H-infinity static output-feedback controlfor rotorcraft [J]. Journal of Intelligent and Robotic Systems,2009,54(4):629–646
    [125] Weilenmann M. F., Christen U., Geering H. P.. Robust helicopter position control athover [A]. Proceeding of the1994American Control Conference. Part1[C]. Baltimore:American Automatic Control Council,1994:2491-2495
    [126] Weilenmann M. F., Hans P.. Test bench for rotorcraft hover control [J]. Journal ofGuidance, Control, and Dynamics,1994,17(4):729-736
    [127] Luo C.-C., Liu R.-F., Yang C.-D., et al. Helicopter H∞control design with robust fly-ing quality [J]. Aerospace Science and Technology,2003,7(2):159-169
    [128] Antequera N., Santos M., De la Cruz J. M.. A helicopter control based on eigenstructureassignment [A].2006IEEE Conference on Emerging Technologies and Factory Automation[C]. Hamburg: Institute of ELECTRICAL AND Electronics Engineers Inc.,2006:719-724
    [129] Garrard W. L., Low E., Prouty S.. Design of attitude and rate command systems forhelicopters using eigenstructure assignment [J]. Journal of Guidance, Control, and Dynamics,1989,12(6):783-791
    [130] Wang N., Pei H., He Y., et al. Robust H2static output feedback tracking controller de-sign of longitudinal dynamics of a miniature helicopter via LMI technique [A]. Proceedingsof the201224th Chinese Control and Decision Conference [C]. Taiyuan: IEE Computer So-ciety,2012:346-350
    [131] Maclay D., Williams S. J.. Use of mu-synthesis in full envelope, helicopter flight con-trol system design [A]. International Conference on CONTROL’91[C]. Edinburgh: IEE,1991:718-723
    [132] Bhandari S., Colgren R..14-Dof linear parameter varying model of a UAV helicopterusing analytical techniques [A]. AIAA Modeling and Simulation Technologies Conferenceand Exhibit [C]. Honolulu, Hawaii: American Automatic Control Council,2008:6523-6541
    [133]宗群,吉月辉,窦立谦,等.无人机侧向系统LPV模型降阶[J].控制与决策,2010,25(6):948-952
    [134] Abdulhamitbilal E., Jafarov E. M., Güvene L.. Gain scheduled LQ optimal control of aparametric light commercial helicopter model at sea level [A]. Proceedings of the9th WSEASInternational conference on Automatic Control, Modeling and Simulation [C]. Istanbul, Tur-key: Word Scientific and Engineering Academy and Society,2007:290-297
    [135] Voorsluijs G. M., Bennani S., Scherer C.. Linear and paremeter-dependent robust con-trol techniques applied to a helicopter UAV [A]. AIAA Guidance, Navigation, and ControlConference and Exhibit [C]. Providence: American Automatic Control Council,2004: DOI:10.2514/6.2004-4909
    [136] Voorsluijs G. M., Mulder J. A.. Parameter-dependent robust control for a rotorcraft UAV[A]. AIAA Guidance, Navigation, and Control Conference and Exhibit [C]. San Francisco:American Automatic Control Council,2005:5597-5607
    [137] Kadmiry B., Driankov D.. A fuzzy gain-scheduler for the attitude control of an un-manned helicopter [J]. IEEE Transactions of Fuzzy Systems,2004,12(4):502-515
    [138] Koo T. J., Sastry S.. Output tracking control design of a helicopter model based on ap-proximate linearization [A]. Proceedings of the37th IEEE Conference on Decision and Con-trol [C]. Tampa: IEEE,1998,4:3635-3640
    [139] Koo T. J., Sastry S.. Differential flatness based full authority helicopter control design[A]. Proceedings of the38th IEEE Conference on Decision and Control [C]. Phoenix: IEEE,1999,2:1982-1987
    [140] Qiu L., Fan G., Yi J., et al. Robust hybrid controller design based on feedback lineariza-tion and μ synthesis for UAV [A].20092nd International Conference on Intelligent Com-puting Technology and Automation [C]. Changsha: IEEE Computer Society,2009:858-861
    [141] Song B., Liu Y., Fan C.. Feedback linearization of the nonlinear model of a small-scalehelicopter [J]. Journal of Control Theory and Applications,2010,8(3):301-308
    [142] Mahony R., Hamel, T.. Robust trajectory tracking for a scale model autonomous heli-copter [J]. Journal of Robust and Nonlinear Control,2004,14(12):1035-1059
    [143] Ahmed B., Pota H. R., Matt G.. Flight control of a rotary wing UAV using backstep-ping[J]. International Journal of Robust and Nonlinear Control,2010,20(6):639-658
    [144] Lee C.-T., Tsai C.-C.. Adaptive backstepping integral control of a small-scale helicopterfor airdrop missions [J]. Asian Journal of Control,2010,12(4):531-541
    [145] Lee C.-T., Tsai C.-C.. Improved nonlinear trajectory tracking using RBFNN for a ro-botic helicopter[J]. International Journal of Robust and Nonlinear Control,2010,20(10):1079-1096
    [146] Fang Z., Gao W., Zhang L.. Robust adaptive integral backstepping control of a3-DOFhelicopter [J]. International Journal of Advanced Robotic Systems,2012,9: DOI:10.5772/50864
    [147]孙秀云,方勇纯,孙宁.小型无人直升机的姿态与高度自适应反步控制[J].控制理论与应用,2012,29(3):381-388
    [148] Zou Z.. Trajectory tracking control design with command-filtered compensation for aquadrotor [J]. IET Control Theory Application,2010,4(11):2343-2355
    [149] Zou Z.. Adaptive trajectory tracking control design with command filtered compensa-tion for a quadrotor [J]. Journal of Vibration and Control,2013,19(1):94-108
    [150] Raffo G. V., Ortega M. G., Rubio F. R.. An integral predictive/nonlinear H∞controlstructure for a quadrotor helicopter [J]. Automatica,2010,46(1):29-39
    [151] Raffo G. V., Ortega M. G., Rubio F. R.. Path tracking of a UAV via an underactuatedH∞control strategy [J]. European Journal of Control,2011,17(2):194-213
    [152] Leonard F., Martini A., Abba G.. Robust nonlinear controls of model-scale helicoptersunder lateral and vertical wind gusts[J]. IEEE Transactions on Control Systems Technology,2012,20(1):154-163
    [153] Yang X., Garratt M., Pota H.. Flight validation of a feedforward gust-attenuation con-troller for an autonomous helicopter [J]. Robotics and Autonomous Systems,2011,59(12):1070-1079
    [154] Liu C., Chen W. H., Andrews J.. Tracking control of small-scale helicopters using ex-plicit nonlinear MPC augmented with disturbance observers [J]. Control Engineering Practice,2012,20(3):258-268
    [155] Cheviron T., Chriette A., Plestan F.. Robust control of an autonomous reduced scalehelicopter in presence of wind gusts [A]. AIAA Guidance, Navigation, and Control Confe-rence and Exhibit [C]. Keystone: American Automatic Control Council,2006:4545-4566
    [156] Ferreira De Loza A., Rios H., Rosales A.. Robust regulation for a3-dof helicopter viasliding-mode observation and identification [J]. Journal of the Franklin Institute,2012,349(2):700-718
    [157] Lin C.-H., Jan S.-S., Hsiao F-B.. Autonomous hovering of an experimental unmannedhelicopter system with proportional-integral sliding model control [J]. Journal of AerospaceEngineering,2011,24(3):338-348
    [158] Król D., Lower M., Szlachetko B.. Selection and setting of an intelligent fuzzy regulatorbased on nonlinear model simulations of a helicopter in hover [J]. New Generation Compu-ting,2009,27(3):215-237
    [159] Erginer B., Altu E. Design and implementation of a hybrid fuzzy logic controller for aquadrotor VTOL vehicle [J]. International Journal of Control, Automation, and Systems,2012,10(1):61-70
    [160] Mohammadzaheri M., Chen L.. Intelligent predictive control of a model helicopter’syaw angle [J]. Asian Journal of Control,2010,12(6):667-679
    [161] Garratt M., Anavatti S.. Non-linear control of heave for an unmanned helicopter using aneural network [J]. Journal of Intelligent and Robotic Systems: Theory and Applications,2012,66(4):495-504
    [162] Suresh S., Sundararajan N.. An on-line learning neural controller for helicopters per-forming highly nonlinear maneuvers [J]. Applied Soft Computing,2012,12(1):360-371
    [163] Lee C.-T., Tsai C.-C.. Nonlinear adaptive aggressive control using recurrent neuralnetworks for a small scale helicopter [J]. Mechatronics,2010,20(4):474-484
    [164] Kumar M. V., Suresh S., Omkar S. N., et al. A direct adaptive neural command control-ler design for an unstable helicopter [J]. Engineering Applications of Artificial Intelligence,2009,22(2):181-191
    [165] MacKunis W., Patre P. M., Kaiser M. K., et al. Asymptotic tracking for aircraft via ro-bust and adaptive dynamic inversion methods [J]. IEEE Transactions on Control SystemsTechnology,2010,18(6):1448-1456
    [166] Dzul A., Lozano R., Castillo P.. Adaptive control for a radio-controlled helicopter in avertical flying stand [J]. International Journal of Adaptive Control and Signal Processing,2004,18(5):473-485
    [167] Padfield G. D.. Helicopter Flight Dynamics: The Theory and Application of FlyingQualities and Simulatin Modeling [M]. Washington: AIAA Education Series,2007:87-296
    [168]约翰逊W..直升机理论[M].孙如林.北京:航空工业出版社,1991:14-24
    [169] Heffley R. K., Mnich M. A.. Minimun-complexity helicopter simulation math model[R]. NASA: NASA Contractor Report,1988
    [170]曹义华.直升机飞行力学[M].北京:北京航空航天大学出版社,2005:92-94
    [171]张谦.卡尔曼滤波在导航系统中的应用[D].广州:华南理工大学,2004
    [172]邹瑜.基于CIFER的小型无人直升机系统频域辨识[D].广州:华南理工大学,2010
    [173] Wang H., Mian A. A., Wang D., et al. Robust multi-mode flight control design for anunmanned helicopter based on multi-loop structure[J]. International Journal of Control, Au-tomation, and Systems.2009,7(5):723-730
    [174] Hencey B., Alleyne A.. A robust controller interpolation design technique[J]. IEEETransactions on Control Systems Technology,2010,18(1):1-10
    [175] Bianchi F. D., Pena R. S.. Interpolation for gain-scheduled control with guarantees[J].Automatica,2011,47(1):239-243
    [176] Hencey B., Alleyne A.. Robust gain-scheduled control[A]. American Control Confe-rence [C]. Baltimore: IEEE Computer Society,2010:3075-3081
    [177] Gao J. Liu Z.. Static output feedback control of the linear system with parameter uncer-tainties [A]. Proceedings of the8thworld congress on intelligent control and automation [C].Jinan: Institute of Electrical and Electronics Engineers Inc.,2010:503-508
    [178] Boyd S., Ghaoui L. E., Feron E., et al. Linear matrix inequalities in system and controltheory [M]. Philadelphia, PA: Society for Industrial and Applied Mathematics,1994:32-33
    [179]俞立.鲁棒控制-线性矩阵不等式处理方法[M].北京:清华大学出版社,2002:31-32
    [180] Hassan K. K.. Nonlinear systems [M].3rded. Upper Saddle River: Prentice Hall,2002:449-459
    [181]高国燊,余文杰.自动控制原理[M].广州:华南理工大学出版社,2003:62-70
    [182] Chen W.-H.. Disturbance observer based control for nonlinear systems [J]. IEEE/ASMETransactions on Mechatronics,2004,9(4):706-710

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700