用户名: 密码: 验证码:
含化学热沉的气膜冷却流动与换热研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了提升燃气轮机性能,需要进一步提高涡轮入口温度,但在现有技术条件下,涡轮入口温度受到涡轮叶片材料的限制。采用高效冷却技术可以使涡轮叶片承受更高的入口温度,增加涡轮叶片的安全性和持久性,对提升燃气轮机性能,延长整机使用寿命有至关重要的作用。然而,现有以气膜冷却为主的空气冷却技术的提升空间逐渐变小,冷气流量也不可能无限增长,所以涡轮叶片冷却温降很难继续增加。研究冷却新概念和新的高效冷却方式,已成为发展高性能燃气轮机的支撑技术之一。
     为了推进气膜冷却技术阶跃式发展,以满足当代及未来大推力高性能航空发动机涡轮叶片冷却的需求,在国家自然科学基金项目《含化学热沉的气膜冷却流动与换热特性研究》(No.50976118)的资助下,本研究突破传统气膜冷却技术单一工质的局限,在传热强化概念的理论框架下,提出了一种含化学热沉的气膜冷却新方法。该方法的基本模型为:在冷却气中含有某种可遇热发生吸热化学反应的气态物质,在冷却气形成气膜后与主流换热,该物质在达到吸热化学反应发生所需的温度条件后可发生分解反应,分解产物为气态,这一过程可通过产生内热汇、体积变化和吸收辐射等多方面因素对气膜冷却效率产生影响。论文中,采用简化的理想化学热沉模型,建立对流换热模型;将反应前后体积变化归纳为修正项,对对流换热模型进行修正;采用修正后的标准k-ε湍流模型,对含化学热沉的气膜冷却新方法进行数值模拟。结果表明,化学反应吸热量越多,反应速率越快,气膜冷却效率提高得越多。新方法与传统方法有显著区别,不仅在主流流动方向上提高了气膜冷却效率,而且扩大了气膜侧向覆盖面积。同时,冷却工质反应前后体积变化对冷却效率的提高有积极作用。
     进一步,提出NH3是实现含化学热沉气膜冷却新方法最理想的冷却工质。NH3热分解反应产生的化学热沉用于气膜冷却有几大优势:(1)产物为N2和H2,不会像碳氢化合物那样产生严重积碳问题;(2)分解温度与涡轮叶片材料蠕变温度接近,在没有催化剂存在的条件下,NH3快速分解反应的温度区间为1100~1300℃;(3)分解时吸热量较大,标准状态下的焓变为+46.4kJ/mol。本文对NH3高温热解用于涡轮叶片气膜冷却进行详细数值模拟研究。结果表明,NH3热分解时吸收主流热量产生化学热沉,使冷却效率维持较高水平,在吹风比为0.5时,气膜孔下游的冷却效率一直高于0.78;在吹风比为1.5时,相对传统气膜冷却方法,新方法使壁面平均冷却效率在X/D=30处提高73.78%;NH3发生化学反应后体积膨胀,对主流的排斥作用较强烈,对提高气膜冷却效率,保护叶片表面有很大帮助;研究考虑了NH3的辐射吸收特性对冷却效率的贡献。
     NH3分解反应时所需的活化能较高,导致在非催化和低温的情况下转化率很低,所以含NH3分解热沉的气膜冷却很难通过实验进行研究。为此,选择草酸作为模拟工质来比拟。草酸在低温下能够发生吸热反应,反应产物为CO、H20(g)和CO2,适合作为冷却工质用于含化学热沉的气膜冷却实验,而且所得的实验数据完全能够模化NH3分解反应。实验以传统空气气膜冷却为参考,探讨吹风比、雷诺数、密度比以及草酸冷却工质分解吸热产生的化学热沉等因素对气膜冷却效率的影响。结果表明,吹风比为1.0时,在0     另外,在上述研究的基础上,对叶片前缘含化学热沉的“冲击+气膜”复合冷却进行数值研究。相对传统复合冷却方法,含化学热沉的复合冷却使冷却效率得到较大提高,且在叶片前缘下游区域提高得更多;化学热沉的存在使冷却效率随温度比的增大而提高。
Increased turbine inlet temperature further is much need in order to improve the performance of gas turbines. However, so high operating temperature is far above the permissible metal temperature of turbine blades under current technical conditions. Therefore, cooling methods are employed for turbine blades to bear high turbine inlet temperature, and increase the components' safety and durability. It has significant implications for improving the performance of gas turbines and prolonging their service lives. Nevertheless, the benefits by using the conventional methods are likely to approach their limits, and cooling stream is not likely to be supplied infinitely, so temperature drop for turbine blade cooling is hard to continue to be improved. At present, the developments of advanced cooling methods with high efficiency have become one of the main supporting technologies in high-performance gas turbines.
     In order to promote a jump-over development of the film cooling technology, and satisfy the need of turbine blade cooling for aero-engines, an efficient cooling scheme is proposed based on the concept of heat transfer enhancement breaking through the limitation of a single cooling medium in the traditional film cooling method. This project is under the support of the item of National Natural Science Foundation of China "Investigation on Flow and Heat Transfer Characteristics of Film Cooling with Chemical Heat Sink"(No.50976118). The basic model of this method is that cooling stream contains some kind of gaseous substance that can absorb heat and decompose. When cooling stream ejects through discrete holes on the blades' exterior surfaces forming a protective layer, once the conditions, such as temperature et al., are satisfied, the endothermic chemical reaction will take place inside the protective film boundary layer, and the reaction products are gaseous substances. It has great effect on film cooling effectiveness through internal heat sink, volume changes and radiation absorption in this process.
     In this paper, a simple ideal model with heat sink was adopted, and the convective heat transfer model was set up. The volume changes were summed up to the corrected term before and after the chemical reaction, and the convective heat transfer model was corrected. The novel film cooling with chemical heat sink was simulated by using the corrected standard k-ε turbulent model. The results showed that the more reaction heat is, the more film cooling effectiveness is improved. The faster reaction rate is, the more film cooling effectiveness is improved. The proposed method not only has the higher cooling effectiveness in the stream wise direction, but also has the wider film coverage in the spanwise direction, which is significantly different from the conventional one.
     Further, it was proposed that NH3is the best cooling stream for realizing film cooling with chemical heat sink. There are some advantages for film cooling with chemical heat sink produced by the decomposition of NH3:(1) Reaction products N2and H2don't have carbon deposition problem, but hydrocarbons have.(2) The decomposition temperature is close to blade materials creep one, and fast decomposition temperature range of NH3with no catalyst is between1100~1300℃.(3) It can absorb more heat during the chemical reaction process, and enthalpy change is+46.4kJ/mol in the standard condition. The process of the high temperature decomposition of NH3used for cooling enhancement was simulated in detail. The results showed that the film cooling effectiveness is maintained at a high level due to the existence of chemical heat sink produced by the decomposition of NH3. When the blowing ratio is0.5, the film cooling effectiveness is higher than0.78downstream of the film hole. Compared with the conventional film cooling, the average cooling effectiveness at X/D=30is improved by73.78%for this novel method when the blowing ratio is1.5. Volume expansion occurs after the chemical reaction of NH3, and the repulsive forces from cooling stream to mainstream are much stronger, which is helpful for improving the cooling effectiveness and protecting the blade surface. The property of radiation absorption of NH3contributing to cooling effectiveness was also considered.
     The activation energy of the decomposition reaction of NH3is so high that the conversion rate is very low under the condition of no catalyst and low temperature. Therefore, it is hard to experimentally research film cooling using the endothermic reaction of NH3as heat sink. For this reason, oxalic acid is chosen as a model to match. The endothermic reaction of oxalic acid can take place under low temperature, and the products are CO, H2O, and CO2. This substance is suitable for film cooling with chemical heat sink, and the experimental data obtained are fully capable of modeling the decomposition of NH3. The conventional film cooling using air as cooling stream was adopted in the experiment as reference, and the effect of chemical heat sink produced by the decomposition of oxalic acid on film cooling effectiveness was investigated under different blowing ratios, different Reynolds numbers, and different density ratios. The results showed that in the area of0     In addition, the impingement/effusion compound cooling with chemical heat sink on the leading edge of turbine blade was simulated based on the above-mentioned research. Compared to the conventional one, the cooling effectiveness is highly improved, and is improved more downstream of the leading edge than in the other regions. It also demonstrated that compound cooling effectiveness is improved with the increase of temperature ratio due to the existence of chemical heat sink.
引文
[1]沈邱农.重型燃气轮机产业的发展与自主化[J].发电设备,2007,21(2):93-97
    [2]http://en.wikipedia.org/wiki/Brayton cycle
    [3]韩介勤,桑地普·杜达,斯瑞纳斯·艾卡德.燃气轮机传热和冷却技术[M].程代京,谢永慧,译.西安:西安交通大学出版社,2005
    [4]曹玉璋.航空发动机传热学[M].北京:北京航天航空大学出版社,2005
    [5]颜鸣皋,吴学仁,朱知寿.航空材料技术的发展现状与展望[J].航空制造工程,2003,12:19-25
    [6]林宏镇,汪火光,蒋章焰.高性能航空发动机传热技术[M].北京:国防工业出版社,2005
    [7]葛绍岩,刘登瀛,徐靖中等.气膜冷却[M].北京:科学出版社,1985
    [8]Goldstein R J. Film cooling [M]. New York:Academic Press,1971
    [9]Wieghard K. Hot-air discharge for de-icing [C]. AAF Translation, FTS-919-Re,1946
    [10]Nasir H, Ekkad S V, Acharva S. Effect of compound angle injection on flat surface film cooling with large streamwise injection angle [J]. Experimental Thermal and Fluid Science,2001,25(1-2):23-29
    [11]刘婕,韩振兴,蒋洪德等.不同复合角对平板气膜冷却特性影响的实验研究[J].工程热物理学报,2008,29(8):1311-1315
    [12]Taslim M E, Khanicheh A. Film effectiveness downstream of a row of compound angle film holes [J]. Journal of Heat Transfer,2005,127(4):434-440
    [13]杨卫华,马国锋,张靖周.突片作用下气膜冷却对流传热特性的试验研究[J].航空动力学报,2006,21(6):978-983
    [14]李永康,张靖周,姚玉.利用三角形突片改善气膜冷却效率的数值研究[J].航空动力学报,2006,21(1):83-87
    [15]杨卫华,李永康,张靖周等.突片作用下气膜冷却效率的试验研究[J].航空动力学报,2007,22(3):380-383
    [16]杨成凤,张靖周.利用楔形突体结构改善气膜冷却效率的数值研究[J].燃气涡轮试验与研究,2007,20(2):32-36
    [17]杨成凤,张靖周,陈利强等.前缘突脊倾斜气膜冷却效果的实验[J].工程热物理学 报,2008,29(7):1174-1176
    [18]陈利强,杨卫华,杨成凤等.梯形突片气膜冷却特性的实验[J].航空动力学报,2008,23(9):1660-1665
    [19]李建华,杨卫华,陈伟等.椭圆形突片气膜冷却效率的试验研究[J].动力工程,2008,28(4):528-584
    [20]章大海,陈秋炀,曾敏等.不同横槽结构对气膜冷却效率影响的数值研究[J].航空动力学报,2008,23(4):611-616
    [21]于锦禄,何立明,蒋永健等.带横向槽的气膜冷却结构冷却性能数值研究[J].机械设计与制造,2008,3(3):128-130
    [22]左红,王鹏,武卫等.横向槽深度对气膜孔冷却性能影响数值研究[J].机械科学与技术,2008,27(9):1252-1260
    [23]陈鑫,何立明,于锦禄等.利用横向槽改善气膜冷却效率的实验[J].航空动力学报,2010,25(2):291-294
    [24]蒋永健,何立明,于锦禄等.利用横向槽改善气膜冷却效率的数值研究[J].推进技术,2008,29(3):286-305
    [25]戴萍,林枫.横向槽结构对气膜冷却效果影响的数值研究[J].推进技术,2011,32(2):253-260
    [26]Na S, Shih T I. Increasing adiabatic film-cooling effectiveness by using an upstream ramp [J]. Journal of Heat Transfer,2007,129(4):464-471
    [27]Chen S P, Chyu M K, Shih T I. Effect of upstream ramp on the performance of film cooling [J]. International Journal of Thermal Science,2011,50(6):1085-1094
    [28]Somawardhana R P, Bogard D G Effects of obstructions and surface roughness on film cooling effectiveness with and without a transverse trench [J]. Journal of Turbomachinery, 2009,131:011010
    [29]Somawardhana R P, Bogard D G Study on obstruction geometry, obstruction location, and varying surface roughness on adiabatic effectiveness [C]. ASME Paper, GT2007-28004
    [30]Bogard D G, Snook D, Kohli A. Rough surface effects on film cooling of the suction side surface of a turbine vane [C]. ASME Paper, IMECE2003-42061
    [31]Demling P, Bogard D G The effects of obstructions on film cooling effectiveness on the suction side of a gas turbine vane [C]. ASME Paper, GT2006-90577
    [32]Yu Y, Yen C H, Shih T I, et al.. Film cooling effectiveness and heat transfer coefficient distributions around diffusion shaped holes [J]. Journal of Heat Transfer,2002,124(5): 820-827
    [33]Nguyen C Q, Johnson P L, Bernier B C, et al.. Comparison of film effectiveness and cooling uniformity of conical and cylindrical-shaped film hole with coolant-exit temperature correction [J]. Journal of Thermal Science and Engineering Application,2011, 3(3):031011
    [34]Asghar F H, Hyder M J. Computational study of film cooling from single and two staggered rows of novel semi-circular cooling holes including coolant plenum [J]. Energy Conversion and Management,2011,52(1):329-334
    [35]Lee K D, Kim K Y. Surrogate based optimization of a laidback fan-shaped hole for film-cooling [J]. International Journal of Heat and Fluid Flow,2011,32(1):226-238
    [36]Lee K D, Kim K Y. Shaped optimization of a fan-shaped hole to enhance film-cooling effectiveness [J]. International Journal of Heat and Mass Transfer,2010,53(15-16): 2996-3005
    [37]Sargison J E, Guo S M, Oldfield M L G, et al.. A converging slot-hole film-cooling geometry-part 1:low-speed flat-plate heat transfer and loss [J]. Journal of Turbomachinery,2002,124(3):453-460
    [38]Heidmann J D. A novel anti-vortex turbine film cooling hole concept [C]. ASME Paper, GT2007-27528
    [39]Dhungel A, Lu Y, Phillips W. Film cooling from a row of holes supplemented with antivortex holes [J]. Journal of Turbomachinery,2009,131(2):021007
    [40]Ghorab M G, Hassan I G. An experimental investigation of a new hybrid film cooling scheme [J]. International Journal of Heat and Mass Transfer,2010,53(21-22):4994-5007
    [41]Ghorab M G. Cooling performance and flow-field analysis of a hybrid scheme with different outlet configurations [J]. Applied Thermal Engineering (in press)
    [42]Ghorab M G. Adiabatic and conjugate cooling effectiveness analysis of a new hybrid scheme [J]. International Journal of Thermal Sciences,2011,50(6):965-983
    [43]朱惠人,许都纯,刘松龄.气膜孔形状对排孔下游冷却效率的影响[J].航空学报,2002,23(1):75-78
    [44]Li G C, Zhu H R, Fan H M. Influences of hole shape on film cooling characteristics with CO2 injection [J]. Chinese Journal of Aeronautics,2008,21(5):393-401
    [45]刘存良,朱惠人,白江涛.收缩-扩张形气膜孔提高气膜冷却效率的机理研究[J].航 空动力学报,2008,23(4):598-604
    [46]廖乃冰,朱惠人,李广超等.双扇形孔气膜冷却效率的研究[J].航空动力学报,2008,23(11):2082-2087
    [47]李永红,刘存良,朱惠人.出口-入口面积比对收缩扩张形孔气膜冷却特性影响的机理研究[J].航空工程进展,2011,2(1):115-121
    [48]Liu C L, Zhu H R, Bai J T, et al.. Film cooling performance of converging-slot holes with different exit-entry area ratios [J]. Journal of Turbomachinery,2011,133(1):011020
    [49]Liu C L, Zhu H R, Bai J T, et al.. Experimental and numerical investigation on the film cooling of waist-shaped slot holes [J]. Journal of Turbomachinery,2012,134(1):011021
    [50]姚玉,张靖周,周楠.Console形气膜孔改善冷却效率的数值研究[J].航空动力学报,2008,23(10):1772-1777
    [51]杨成凤,张靖周,陈利强等.扩展型面排孔气膜冷却的实验[J].航空动力学报,2008,23(10):1765-1771
    [52]徐虹艳,张靖周,姚玉.涡轮叶片非对称扇形气膜孔冷却特性数值研究[J].机械工程学报,2011,47(18):152-157
    [53]李少华,宋东辉,刘建红等.不同孔型平板气膜冷却的数值模拟[J].中国电机工程学报,2006,26(17):112-116
    [54]王文三,唐菲,赵庆军等.新型双射流冷却孔对气膜冷却效率影响的研究[J].工程热物理学报,2011,32(8):1291-1294
    [55]Schwarz S G, Goldstein R J. The two-dimensional behavior of film cooling jets on concave surfaces [J]. Journal of Turbomachinery,1989,111(2):124-130
    [56]Goldstein R J, Stone L D. Row-of-holes film cooling of a convex and a concave wall at low injection angles [J]. Journal of Turbomachinery,1997,119(3):574-579
    [57]Schwarz S G, Goldstein R J, Eckert ERG. The influence of curvature on film cooling performance [J]. Journal of Turbomachinery,1991,113(3):472-480
    [58]Koc I, Parmaksizoglu C, Cakan M. Numerical investigation of film cooling effectiveness on the curved surface [J]. Energy Conversion and Management,2006,47(9-10): 1231-1246
    [59]Miao J M, Ching H K. Numerical simulation of film-cooling concave plate as coolant jet passes through two rows of holes with various orientations of coolant flow [J]. International Journal of Heat and Mass Transfer,2006,49(3-4):557-574
    [60]Mehendale A B, Han J C. Influence of high mainstream turbulence on leading edge film cooling heat transfer:effect of film hole spacing [J]. International Journal of Heat and Mass Transfer,1992,35(10):2593-2604
    [61]Mehendale A B, Han J C. Influence of high mainstream turbulence on leading edge film cooling heat transfer [J]. Journal of Turbomachinery,1992,114(4):707-715
    [62]York W D, Leylek J H. Leading-edge film-cooling physics:part Ⅰ—adiabatic effectiveness [C]. ASME paper, GT2002-30166
    [63]York W D, Leylek J H. Leading-edge film-cooling physics:part Ⅱ—heat transfer coefficient [C]. ASME paper, GT2002-30167
    [64]Ou S, Rivir R B. Leading edge films cooling heat transfer with high free stream turbulence using a transient liquid crystal image method [J]. International Journal of Heat and Fluid Flow,2001,22(6):614-623
    [65]刘婕,安柏涛,蒋红德等.静叶前缘气膜冷却特性的数值模拟及改进[J].航空动力学报,2009,24(2):331-339
    [66]李广超,朱惠人,廖乃兵等.带单排气膜孔的叶片前缘气膜冷却换热实验[J].推进技术,2008,29(3):290-294
    [67]朱惠人,廖乃兵,许都纯等.带单排气膜孔导向叶片前缘气膜冷却实验研究[J].西北工业大学学报,2008,26(3):353-356
    [68]Gritsch M, Schulz A, Wittig S. Effect of internal coolant crossflow on the effectiveness of shaped film-cooling holes [J]. Journal of Turbomachinery,2003,125(3):547-554
    [69]Gritsch M, Schulz A, Witting S. Film-cooling holes with expanded exits:near-hole heat transfer coefficients [J]. International Journal of Heat and Fluid Flow,2000,21(2): 146-155
    [70]Wright L M, McClain S T, Clemenson M D. Effect of density ratio on flat plate film cooling with shaped holes using PSP [C]. ASME Paper, GT2010-23053
    [71]Maiteh B Y, Jubran B A. Effect of pressure gradient on film cooling effectiveness from two rows of simple and compoud angle holes in combination [J]. Energy Conversion and Management,2004,45(9-10):1457-1469
    [72]Heneka C, Schulz A, Bauer H J, et al.. Film cooling performance of sharp-edged diffuser holes with lateral inclination [C]. ASME Paper, GT2010-23090
    [73]Bell C M, Hamakawa H, Ligrani P M. Film cooling from shaped holes [J]. Journal of Heat Transfer,2000,122(2):224-232
    [74]Sinha A K, Bogard D G, Crawford M E. Film-cooling effectiveness downstream of a single row of holes with variable density ratio [J]. Journal of Turbomachinery,1991, 113(3):442-449
    [75]Pietrzyk J R, Bogard D G, Crawford M E. Effects of density ratio on the hydrodynamics of film cooling [J]. Journal of Turbomachinery,1990,112(3):437-443
    [76]Liu C L, Zhu H R, Bai J T. Effect of turbulent Prandtl number on the computation of film-cooling effectiveness [J]. International Journal of Heat and Mass Transfer,2008, 51(25-26):6208-6218
    [77]Mayhew J E, Baughn J W, Byerley A R. The effect of freestream turbulence on film cooling adiabatic effectiveness [J]. International Journal of Heat and Fluid Flow,2003, 24(5):669-679
    [78]Kohli A B, Dogard G Turbulent transport in film cooling flows [J]. Journal of Heat Transfer,2005,127(2):513-520
    [79]韩振兴,刘石,刘建军等.吹风比对燃气轮机平板气膜冷却特性影响的实验研究[J].中国电机工程学报,2005,25(18):91-96
    [80]Bernsdorf S, Rose M G, Abhari R S. Experimental validation of quasisteady assumption in modeling of unsteady film-cooling [J]. Journal of Turbomachinery,2008,130(1): 011022
    [81]Muldoon F, Acharya S. DNS study of pulsed film cooling for enhanced cooling effectiveness [J]. International Journal of Heat and Mass Ttransfer,2009,52(13-14): 3118-3127
    [82]Graf L, Kleiser L. Large-eddy simulation of double-row compound-angle film cooling: setup and validation [J]. Computer and Fluids,2011,43(1):58-67
    [83]Renze P, Schroder W, Meinke M. Large-eddy simulation of film cooling flows at density gradients [J]. International Journal of Heat and Fluid Flow,2008,29(1):18-34
    [84]刘宁,孙纪宁.不同来流条件下旋转对气膜冷却的影响[J].推进技术,2011,32(5):706-712
    [85]彭威,姜培学.冷却流通道内流动对气膜冷却影响的大涡模拟研究[J].工程热物理学报,2010,31(8):1359-1362
    [86]张玲,李少华,郭婷婷.不同孔型气膜冷却流场的大涡模拟[J].华北电力大学学报,2010,37(2):79-84
    [87]王扬平,姜培学.圆孔与侧扩孔气膜冷却的大涡模拟[J].工程热物理学报,2007,28(6):1016-1018
    [88]Zhang X Z, Hassan I. Film cooling effectiveness of an advanced-louver cooling scheme for gas turbine [J]. Journal of Thermophysics and Heat Transfer,2006,20(4):754-763
    [89]Zhang C X Z, Hassan I. Computational study of the effects of shock waves on film cooling effectiveness [J]. Journal of Engineering for Gas Turbine and Power,2009,131(3): 031901
    [90]Silieti M, Kassab A J, Divo E. Film cooling effectiveness:comparison of adiabatic and conjugate heat transfer CFD models [J]. International Journal of Thermal Science,2009, 48:2237-2248
    [91]Pederson D R, Eckert E R G, Goldstein R J. Film cooling with large density differences between the mainstream and the secondary fluid measured by the heat-mass transfer analogy [J]. Journal of Heat Transfer,1977,99(4):620-627
    [92]Goldstein R J, Spores R A. Turbulent transport on the endwall in the region between adjacent turbine blades [J]. Journal of Heat Transfer,1988,110(4):862-869
    [93]Goldstein R J, Wang H P, Jabbari M Y. The influence of secondary flows near the endwall and boundary layer disturbance on convective transport from a turbine blade [J]. Journal of Turbomachinery,1995,117(4):657-665
    [94]Jabbari M Y, Marston K C, Eckert E R G, et al.. Film cooling of the gas turbine endwall by discrete-hole injection [J]. Journal of Turbomachinery,1996,118(2):278-284
    [95]Wang H P, Olson S J, Goldstein R J, et al.. Flow visualization in a Linear Turbine cascade of high performance turbine blades [J]. Journal of Turbomachinery,1997,119(1):1-8
    [96]Han J C, Zhang L, Ou S. Influence of unsteady wake on heat transfer coefficient from a gas turbine blade [J]. Journal of Heat Transfer,1993,115(4):904-911
    [97]Ahn J, Mhetras S, Han J C. Film-cooling effectiveness on a gas turbine blade tip using pressure-sensitive paint [J]. Journal of Heat Transfer,2005,127:521-530
    [98]Gao Z H, Narzary P N, Han J C. Film-cooling on a gas turbine blade pressure side or suction side with compound angle shaped holes [J]. Journal of Turbomachinery,2009, 131(1):011019
    [99]Gao Z H, Narzary P Z, Han J C. Film cooling on a gas turbine blade pressure side or suction side with axial shaped holes [J]. International Journal of Heat and Mass Transfer, 2008,51:2139-2152
    [100]Wright L M, Blake S A, Han J C. Film cooling effectiveness distributions on a turbine blade cascade platform with stator-rotor purge and discrete film hole flows [J]. Journal of Turbomachinery,2008,130(3):031015
    [101]Witteveld V C, Polanka M D, Bogard D G. Film cooling effectiveness in the showerhead region of a gas turbine vane part Ⅰ:stagnation region and near-suction side [C]. ASME Paper,99-GT-48
    [102]Kohli A, Bogard D G. Turbulent transport in film cooling flows [J]. Journal of Heat Transfer,2005,127:513-520
    [103]Kohli A, Bogard D G. Adiabatic effectiveness, thermal fields, and velocity fields for film cooling with large angle injection [J]. Journal of Turbomachinery,1997,119(2):352-358
    [104]Waye S K, Bogard D K. High-resolution film cooling effectiveness comparison of axial and compound angle holes on the suction side of a turbine vane [J]. Journal of Turbomachinery,2007,129(2):202-211
    [105]Schmidt D L, Sen B, Bogard D G. Film cooling with compound angle holes:adiabatic effectiveness [J]. Journal of Turbomachinery,1996,118(4):807-813
    [106]Sen B, Schmidt D L, Bogard D G. Film cooling with compound angled holes:heat transfer [J]. Journal of Turbomachinery,1996,118(4):800-806
    [107]Ethridge M I,Cutbirth J M, Bogard D G. Scaling of performance for varying density ratio coolants on an airfoil with strong curvature and pressure gradient effects [J]. Journal of Turbomachinery,2001,123(2):231-237
    [108]Pietryzk J R, Bogard D G, Crawford M E. Effect of density ratio on the hydrodynamics of film cooling [J]. Journal of Turbomachinery,1990,112(3):437-450
    [109]Pietrzyk J R, Bogard D G, Crawford M E. Hydrodynamic measurements of jets in crossflow for gas turbine film cooling applications [J]. Journal of Turbomachinery,1989, 111(2):139-145
    [110]Cutbirth J M, Bogard D G. Effects of coolant density ratio on film cooling performance on a vane [C]. ASME Paper, GT2003-38582
    [111]Polanka M D, Cutbirth J M, Bogard D G. Three component velocity field measurements in the stagnation region of a film cooled turbine vane [J]. Journal of Turbomachinery, 2002,124(3):445-452
    [112]Baldauf S, Schulz A, Wittig A. High-resolution measurements of local heat transfer coefficients from discrete hole film cooling [J]. Journal of Turbomachinery,2001,123(4): 749-757
    [113]Laveau B, Abhari R S. Influence of flow structure on shaped hole film cooling performance [C]. ASME Paper, GT2010-23032
    [114]Shi H H, Kenji K, Motoyuki I. Effect of diffusively shaped holes on the turbulent flow field of a film cooling plate [J]. Chinese Journal of Aeronautics,2002,15(1):6-11
    [115]Ahn J, Jung I S, Lee J S. Film cooling from two rows of holes with opposite orientation angles:injectant behavior and adiabatic film cooling effectiveness [J]. International Journal of Heat and Fluid Flow,2003,24(1):91-99
    [116]白江涛,朱惠人,张宗卫等.流量比对气膜冷却叶片表面换热系数的影响[J].西安交通大学学报,2011,45(7):95-99
    [117]李佳,任静,蒋洪德.密度比和吹风比对透平静叶气膜冷却的影响[J].工程热物理学报,2011,32(8):1295-1298
    [118]Ghorab M G, Hassan I G, Lucas T. An experimental investigation of film cooling performance of louver scheme [J]. International Journal of Heat and Mass Transfer,2001, 54(7-8):1387-1399
    [119]Ghorab M G. Film cooling effectiveness and net heat flux reduction of advanced cooling schemes using thermochromic liquid crystal [J]. Applied Thermal Engineering,2011, 31(1):77-92
    [120]梁世强,雷兢,淮秀兰.一种航空发动机涡轮叶片气膜冷却方法:中国,200910079776.6[P].2010-9-15
    [121]过增元,黄素逸.场协同原理与强化传热新技术[M].北京:中国电力出版社,2004
    [122]Secretary of the Air Force. Turbine blade cooling with endothermic fuel:USA, US 5125793 [P].1991-7-8
    [123]United Technologies Corporation. Method of cooling with endothermic fuel:USA, US 5176814 [P].1991-5-15
    [124]Griffin T. Endothermic cooling of guide vanes and/or moving blades in a gas turbine: USA, US 6357217 [P].2002-3-19
    [125]Reay D A. Gas turbine reactors-chemicals, heat and power [J]. Applied Thermal Engineering,2002,22(6):569-576
    [126]Waye S K, Bogard D G High resolution film cooling effectiveness measurements of axial holes embedded in a transverse trench with various trench configurations [J]. Journal of Turbomachinary,2007,129(2):294-302
    [127]Waghode AN, Hanspal N S, Shigidi I M T A, et al.. Computer modeling and numerical analysis of hydrodynamics and heat transfer in non-porous catalytic reactor for the decomposition of ammonia [J]. Chemical Engineering Science,2005,60(21):5862-5877
    [128]张明.氨分解机理探析[J].昆钢技术,2002,2:53-59
    [129]苌亮.负载型镍基氨分解催化剂的研究[D].天津:天津大学,2008
    [130]雷云涛,林智荣,袁新.不同吹风比下平板气膜冷却数值模拟[J].清华大学学报(自然科学版),2008,48(8):1331-1334
    [131]朱惠人,许都纯,刘松龄.气膜孔形状对孔排下游冷却效率的影响[J].2002,23(1):75-78
    [132]Huber A M, Viskanta R. Effect of jet-jet spacing on convective heat transfer to confined, impinging arrays of axisymmetric air jets [J]. International Journal of Heat and Mass Transfer,1994,37(18):2859-2869
    [133]Cho H, Goldstein R J. Heat (mass) transfer and film cooling effectiveness with injection through discrete holes:part I-within holes and on the back surface [J]. Journal of Turbomachinery,1995,117(3):440-451
    [134]Cho H, Goldstein R J. Heat (mass) transfer and film cooling effectiveness with injection through discrete holes:part Ⅱ-on the exposed surface [J]. Journal of Turbomachinery, 1995,117(3):451-462
    [135]Ekkad S V. Impingement heat transfer on a target plate with film cooling holes [J]. Journal of Thermophysics and Heat Transfer,1999,13(4):522-528
    [136]Cho H H, Rhee D H. Local heat/mass transfer measurement on the effusion plate in impingement/effusion cooling systems [J]. Journal of Turbomachinery,2001,123(3): 601-609
    [137]Rhee D H, Choi J H, Cho H H. Heat (mass) transfer on effusion plate in impingement/effusion cooling systems [J]. Journal of Thermophysics and Heat Transfer, 2003,7(1):95-102
    [138]Cho H H, Rhee D H, Goldstein R J. Effects of hole arrangements on local heat/mass transfer for impingement/effusion cooling with small hole spacing [J]. Journal of Turbomachinery,2008,130(4):041003
    [139]Lee D H, Oh S H, Jung E Y, et al.. Effect of array jet on cooling effectiveness on full-coverage film cooled surface [C]. Heat Transfer Summer Conference collocated with the InterPACK09 and 3rd Energy Sustainability Conferences,2009,565-572
    [140]游良平,陶毓伽,蔡军等.涡轮叶片前缘复合冷却实验[J].航空动力学报,2009,30(9):1618-1623
    [141]Hu Y L, Guo W, Liu Y F, et al.. Cooling effectiveness research on a compound air-cooled HP turbine vane [J]. Gas Turbine Experiment and Research,2004,17(3):26-30

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700