用户名: 密码: 验证码:
谐波传动式电动舵机多级滑模控制及非线性补偿研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电动舵机系统是一个高精度宽频带的角位置跟踪伺服系统,其性能直接决定着飞行器控制的动态品质。摩擦和间隙是影响电动舵机系统静动态性能的重要因素,其非线性特性会导致系统的跟踪误差增大、驱动延时、低速“爬行”或极限环振荡等,严重制约了电动舵机系统伺服控制性能的提高。因此,必须采取适当的补偿控制方法,来消除或减小摩擦和间隙所带来的不利影响,以提高系统的跟踪精度。本文在系统总结相关领域研究现状的基础上,针对某飞行器论证了一套满足总体技术指标要求的谐波传动式电动舵机方案,并对该系统的多级滑模控制及非线性补偿等关键技术展开了深入研究,通过仿真分析和测试实验对比验证了该方案的有效性。
     论文首先确定了电动舵机系统的总体方案,包括采用谐波齿轮-圆锥齿轮相结合的机械传动方案和采用位置-速度双闭环的系统控制方案。对电动舵机系统进行了详细的参数化设计,包括负载分析、负载特性分析和负载匹配分析,确定了系统的最优传动比,并着重介绍了伺服电机的参数设计和选型以及谐波传动减速装置的参数设计。在此基础上,对电动舵机系统进行了详细的结构设计和结构改进设计,并对关键结构部分进行了动态仿真分析,结果满足设计要求。
     为解决因摩擦和间隙非线性影响而导致系统跟踪精度不高等问题,论文对电动舵机系统中摩擦和间隙非线性进行了辨识及补偿研究。针对位置-速度双闭环PI控制的电动舵机系统,建立了基于LuGre摩擦和迟滞间隙的数学模型;依据模型采用前馈补偿方法对系统中的摩擦进行补偿,同时采用逆模型方法对系统中的间隙进行补偿控制。实验结果表明,补偿后系统的最大位置跟踪误差由原来的0.166°减小到了0.096°,最大速度跟踪误差由原来的2.723rpm减小到了0.393rpm。本文提出的辨识测试方法能够精确地获得摩擦和间隙模型,基于该模型的补偿能够有效地提高电动舵机系统的跟踪精度。
     为进一步提高系统的跟踪精度,论文对电动舵机系统的多级滑模控制策略进行了研究。建立了谐波传动式电动舵机多级串联系统的数学模型,针对该模型设计了多级滑模控制器,并采用RBF神经网络对系统内的摩擦和间隙进行了在线自适应逼近,解决了传统滑模控制中必然存在的“抖振”问题,并利用该多级滑模控制方法与PI控制非线性补偿方法进行了数值仿真对比。结果表明,采用该多级滑模控制方法时,系统的位置和速度跟踪稳态误差均接近于0,这说明了该控制方法能够对系统中的非线性因素起到更好的抑制作用,从而可使电动舵机系统的伺服控制性能得到进一步提高。
     最后,论文基于RecurDyn与Matlab/Simulink软件对刚柔耦合谐波传动式电动舵机系统进行了机械动力学-控制系统的联合仿真。建立了位置-速度双闭环控制框图,采用非线性控制设计模块NCD与优化函数相结合的方法,实现了PI控制器参数的整定和优化,并对电动舵机虚拟样机进行了仿真测试,结果满足总体指标要求。通过利用在Matlab/xPC环境下建立的半实物仿真实验平台,对谐波传动式电动舵机的各项技术指标进行了实验测试。由实验结果可知,系统的最大舵面偏转角可达到±20°,最大舵面偏转角速度大于150°/s,最大输出铰链力矩可达到15N·m,系统带宽不小于25Hz,跟踪误差不超过0.1°,这说明所研制的谐波传动式电动舵机的各项性能指标都达到了总体技术指标要求。
     研究表明,所提出的谐波传动式电动舵机方案是可行的,论文研究成果对今后谐波传动式电动舵机的研究和研制工作都具有一定的借鉴作用。
Electro-Mechanical Actuator (EMA) system is an angular position trackingservo system with high precious and high bandwidth, and its static and dynamicperformances play a critical influence on tracking performance of aircraft. Frictionand backlash are two important factors that affect the EMA system performances,and their nonlinear characteristics can bring about some problems of tracking errorincrease, driving delay, dithering at a low speed or the limit cycle response, whichbadly restrict the improvement of the EMA system performances. Therefore, somemeasures must be taken to eliminate or reduce the adverse effects brought by thenonlinear factors. By generalizing the present studies in this field, a kind of EMAwith harmonic gear drive scheme was demonstrated in paper, and the in-depth studyon its key techniques such as multiple sliding mode control and nonlinearcompensation etc. were performed. It was proved that the proposed scheme isavailable by comparison the simulation and experimental results.
     Firstly, the genreal scheme of the EMA system was determined, including thetransmission scheme with harmonic gear and bevel gear, as well as the controlscheme with position loop and speed loop. Then, the parametric design of the EMAsystem was discussed, and the optimum gear ratio was determined. Also, theparameters design and selection of servo motor and harmonic drive trismission were introduced emphatically. In addition, the structure and its improved structure of theEMA system was designed. Among them, the dynamic simulation of the keystructural parts was implemented, and the anlysis results indicate that the designmeets the design requirements.
     To resolve the problems caused by friction and backlash, the methods of frictionand backlash identification and compensation were put forword. For the PI controlsystem with position loop and speed loop, the mathematical models based on LuGrefriction and hysteresis backlash were built; According to the identified nonlinearitymodels, the friction was compensated though feed-forward compensation, and thebacklash was done simultaneously though inverse model compensation as well. Theexperimental results show that the maximum position tracking error of the EMAsystem after compensation decreases from0.166°to0.096°, and the maximum speedtracking error decreases from2.723rpm to0.393rpm. It’s concluded that the frictionand backlash models can be accurately obtained by the proposed identificationmethods, and the tracking accuracy of the EMA system can be improved throughnonlinearity compensation on the basis of the proposed models.
     In order to improve further tracking precision, Multiple Sliding Mode Control(MSMC) strategy for the EMA system was studied. The mathematical model of theEMA multistage series systems was established, according to the model the MSMCcontroller was designed, and the RBF neural network was used to adaptive approachthe nonlinear factors, which overcame the dithering problem inevitably existed intraditional sliding mode control. By comparing the simulation results of the MSMCmethod and the method of PI control with compensation, it can be found that thenonlinear factors can be suppressed better by the MSMC method, and the EMAsystem performances can be further improved.
     Finally, a co-simulation between mechanism and control was carried out for theEMA system with rigid-flexible coupling based on RecurDyn and Matlab/Simulink.The control block diagram was established, and the PI controller parameters were setand optimized by using NCD module combined with optimization function. Then the simulation test for the EMA virtual prototype was executed, and the co-simulationresults satisfied the system requirements. Moreover, the semi-physical simulationplatform of the EMA system was built under the environment of Matlab/xPC. Theexperimental results reveal that, the maximum deflection angle of rudder can be upto±20°, the maximum angular velocity is greater than150°/s, the maximum outputhinge moment can reach15N·m, and the system bandwidth is not less than25Hz, thetracking error is not more than0.1°, which indicates that all the specifications of thedeveloped EMA have reached the general requirements of specifications.
     Studies show that the proposed scheme of EMA with harmonic gear drive isfeasible, and the thesis research results has a certain reference value to the furtherstudy and development of EMA with harmonic gear drive in the future work.
引文
[1]王鳿.战术导弹舵系统发展[J].战术导弹控制技术,2011,28(1):30-39
    [2]杨军.现代导弹制导控制系统设计[M].北京:航空工业出版社,2005
    [3]苏享,桂成兵,周亚军.制导弹药舵机研究现状及其关键技术分析[J].飞航导弹,2008(11):48-50
    [4]葛明. RSSR空间连杆四轴联动电动舵机研究[D]:[博士学位论文].长春:中国科学院长春光学精密机械与物理研究所,2012
    [5] K. Williams, D. Brown. Electrically powered actuator design [J].NASA/USAF/Navy,1997
    [6]刘彬.舵机用无刷直流电机控制系统研究[D]:[硕士学位论文].西安:西北工业大学,2004
    [7]杨燕.舵用无位置传感器无刷直流电机控制器研究[D]:[硕士学位论文].西安:西北工业大学,2006
    [8] S. A. Vaculik. A framework for electromechanical actuator design [D]:
    [Dissertation Applying for Doctor Degree]. The University of Texas at Austin,2008
    [9]李永锋.电动舵机控制器的研究[D]:[硕士学位论文].北京:北京理工大学,2006
    [10]汪军林,谢付强,刘玉浩.导弹电动舵机的研究现状及发展趋势[J].飞航导弹,2008(3):42-46
    [11]李友年,陈星阳.舵机间隙环节对控制系统的影响分析[J].航空兵器,2012(1):25-33
    [12]黄立梅,吴成富,马松辉.抑制飞控系统舵机间隙影响的非线性补偿器设计[J].飞行力学,2012,30(2):132-138
    [13]刘强,尔联洁,刘金琨.摩擦非线性环节的特性、建模与控制补偿综述[J].系统工程与电子技术,2002,24(11):45-52
    [14]赵国峰,樊卫华,陈庆伟,等.齿隙非线性研究进展[J].兵工学报,2006,27(6):1072-1080
    [15]骆光照.电动舵机的鲁棒控制研究[D]:[博士学位论文].西安:西北工业大学,2003
    [16] S. Habibi, J. Roach, G. Luecke. Inner-loop control for electromechanical (EMA)flight surface actuation systems [J]. Journal of dynamic systems, measurement,and control,2008,130:051002/1-051002/13
    [17]鲍文亮.联合直接攻击炸弹(JDAM)电动舵机控制系统的设计[D]:[硕士学位论文].哈尔滨:哈尔滨工业大学,2006
    [18]徐伊岑.滑翔增程弹飞行控制及电动舵机性能分析[D]:[硕士学位论文].南京:南京理工大学,2006
    [19]胡勇.三位置继电式舵机的工作原理研究[J].航空兵器,2002(4):7-9
    [20]云文在.继电式舵机非线性控制条件下的导弹倾斜稳定回路设计[J].内蒙古大学学报(自然科学版),2011,42(1):87-89
    [21]魏欣.电动比例舵机的控制系统设计与分析[D]:[硕士学位论文].南京:南京理工大学,2007
    [22]景蓉,彭舒钰.小型电动比例舵机研究[J].航空兵器,2002(3):18-20
    [23] R. Hewson. Air–to-air missiles beyond visual range, United States AIM-120AMRAAM [C]. Jane’s Air Launched Weapons,2005
    [24]郭鹏.基于DSP的全数字无刷直流电机控制器的设计与研究[D]:[硕士学位论文].西安:西北工业大学,2004
    [25]王兴松.精密机械运动控制系统[M].北京:科学出版社,2009.113-132
    [26]郑吉,王学普.无刷直流电机控制技术综述[J].微特电机,2002(3):11-13
    [27]陈新荣.无刷直流电机无位置传感器控制系统的设计与研究[D]:[硕士学位论文].南京:南京航空航天大学,2007
    [28]赵谦.某型电动舵机减速器的研究设计[D]:[硕士学位论文].哈尔滨:哈尔滨工业大学,2011
    [29]韩雪峰.含间隙刚柔耦合电动舵机关键技术研究[D]:[博士学位论文].长春:中国科学院长春光学精密机械与物理研究所,2011
    [30]白会彦.一种舵系统的结构优化设计[J].战术导弹控制技术,2003(2):41-43
    [31]林忠万.基于DSP的导弹舵机伺服系统的研究[D]:[硕士学位论文].西安:西北工业大学,2004
    [32]秦文甫.基于DSP的数字化舵机系统设计与实现[D]:[硕士学位论文].北京:清华大学,2004
    [33]李赛辉,雷金奎.基于DSP的数字舵机控制系统的设计与实现[J].计算机测量与控制,2009,17(9):484-486
    [34]张元.基于DSP的小型电动舵机伺服控制系统研究[J]:[硕士学位论文].南京:南京理工大学,2011
    [35]刘金琨.先进PID控制MATLAB仿真[M].北京:电子工业出版社,2012
    [36]李国勇.智能预测控制机器MATLAB实现[M]:第2版.北京:电子工业出版社,2010
    [37]韩正之,陈彭年,陈树中.自适应控制[M].北京:清华大学出版社,2011
    [38]韩京清.自抗扰控制技术[M].北京:国防工业出版社,2008
    [39] S. Hodel, C. E. Hall. Variable-structure PID control to prevent integrator windup[J]. IEEE Transactions on Industrial Electronics,2001,48(2):442-451
    [40] S. Arimoto, S. Kawamura, F. Miyazaki. Bettering operation of robotics bylearning [J]. Journal of Robotic System,1984,1(2):123-140
    [41] Kebairi, M. Becherif, M. E. Bagdouri, et al. Modeling and backstepping-basedcontrol of an electromechanical actuator [C]. IEEE International Conference onIndustrial Technology (ICIT),2011,82-87
    [42] L. Xu, B. Yao. Adaptive robust control of mechanical systems with non-lineardynamic friction compensation [J]. International Journal of Control,2008,81(2):167-176
    [43]李剑峰,汪建兵,林建军,等.机电系统联合仿真与集成优化案例分析[M].北京:电子工业出版社,2010
    [44]航天部导弹总体专业情报网.世界导弹大全[M].北京:军事科学出版社,1987
    [45]《俄罗斯新兵器手册》编辑部.俄罗斯新兵器手册[M].北京:兵器工业出版社,1998
    [46] S. C. Jensen. Flight test experience with an electromechanical actuator on F-18systems research aircraft [C]. Digital Avionics Systems Conference (DASC),2000.2E3/1-2E3/10
    [47]周凤岐,陈瑜.一种新型的伺服系统-变结构谐波传动电动伺服系统[J].导弹与航天运载技术,2001(2):48-50
    [48][苏] M.H.伊万诺夫.谐波齿轮传动[M]:沈允文,李克美译.北京:国防工业出版社,1987
    [49]李华敏,李瑰贤,等.齿轮机构设计与应用[M].北京:机械工业出版社,2007
    [50]沈允文,叶庆泰.谐波齿轮传动的理论和设计[M].北京:机械工业出版社,1985
    [51]周晖,温庆平,张伟文.谐波减速器在空间飞行器中的应用[J].真空与低温,2004,10(4):187-192
    [52] Ueura, Keigi, Slatter. Development of harmonic drive gear for space applications
    [C]. European Space Mechanisms and Tribology Symposium,8th, Toulouse,France,1999.259-264
    [53]王建军,杨宏源,白会彦.谐波齿轮传动在伺服机构中的应用与计算[J].战术导弹控制技术,2003,1(40):42-53
    [54]张丽敏,张斌,杨飞,等.主动光学系统力促动器的设计和测试[J].光学精密工程,2012,20(1):38-43
    [55]董惠敏.基于柔轮变形函数的谐波齿轮传动运动几何学及其啮合性能研究
    [D]:[博士学位论文].大连:大连理工大学,2008
    [56]肖前进,贾宏光.齿啮式谐波传动中短环型柔轮变形及应力[J].塑性工程学报,2012,19(6):28-34
    [57] H. M. Dong, D. L. Wang. Elastic Deformation Characteristic of the Flex-spline inHarmonic Drive [C]. ASME/IFToMM International Conference onReconfigurable Mechanisms and Robots,2010.363-368
    [58]刘文芝,张乃仁.谐波齿轮传动中杯形柔轮的有限元计算与分析[J].机械工程学报,2006,42(4):52-57
    [59]阳培.谐波齿轮传动装置及其短筒柔轮分析研究[D]:[博士学位论文].北京:机械科学研究总院,2006
    [60] Q. J. Xiao, H. G. Jia, X. F. Han. Dynamic Optimum Design and Analysis of CamWave Generator for Harmonic Gear Drive [C]. IEEE International Conference onInformation and Automation&International Symposium on IntegrationTechnology (ICIA&ISIT),2011.315-319
    [61]郭惠昕.基于混合遗传算法的谐波齿轮传动优化设计[J].农业机械学报,2006,37(7):121-124
    [62][苏] Д.П.沃尔阔夫,А.Ф.克拉伊聂夫.谐波齿轮传动[M]:项其权等译.北京:电子工业出版社,1985
    [63][苏] Е.Г.金茨勃格.谐波齿轮传动—原理、设计与工艺[M]:汪福敏等译.北京:国防工业出版社,1982
    [64]王宝琳.新型传动技术驰骋航天领域—我谐波传动减速器成功用于“神舟”
    [N].科技日报,2003-12-04
    [65]刘胜,彭侠夫,叶瑰昀.现代伺服系统设计[M].哈尔滨:哈尔滨工程大学出版社,2001.247-254
    [66] K. H. Han, G. O. Koh, J. M. Sung, et al. Adaptive control approach for improvingcontrol systems with unknown backlash [J]. IEEE International Conference onControl, Automation and Systems,2011.1919-1923
    [67]史建伟,史永丽.基于自抗扰控制的伺服系统输出间隙补偿研究[J].电力学报,2009,24(2):105-108
    [68] H. Daiki, K. Norihiro, I. Jun. Friction compensation using time variantdisturbance observer based on the LuGre model [C]. The12thIEEE InternationalWorkshop on Advanced Motion Control,2012
    [69] J. O. Jang, P. G. Lee, H. T. Chung, et al. Output backlash compensation ofsystems using fuzzy logic [C]. Proceeding of the American Control Conference,2003.2489-2490
    [70]刘国平.机械系统中的摩擦模型及仿真[D]:[硕士学位论文].西安:西安理工大学,2007
    [71]刘丽兰,刘宏昭,吴子英,等.机械系统中摩擦模型的研究进展[J].力学进展,2008,38(2):201-213
    [72]文浩.试验转台设计及摩擦补偿研究[D]:[硕士学位论文].哈尔滨:哈尔滨工程大学,2011
    [73]郑耿峰.动态目标仿真转台控制及摩擦补偿研究[D]:[博士学位论文].长春:中国科学院长春光学精密机械与物理研究所,2011
    [74]张剑.含摩擦伺服系统的建模与控制研究[D]:[硕士学位论文].合肥:中国科学技术大学,2011
    [75]谭文斌.伺服系统摩擦与温度变化干扰的建模及补偿研究[D]:[博士学位论文].天津:天津大学,2011
    [76]彭书华,李华德,苏中.非线性摩擦干扰下的电动舵机滑模变结构控制[J].信息与控制,2008,37(5):637-640
    [77] Z. Y. Shao, D. Y. Fang, X. D. Zhang. Adaptive high precision position control ofservo actuator with friction compensation using LuGre model [J]. Journal ofBeijing Institute of Technology,2011,20(1):105-110
    [78] Schling, B. Orlik. Control of a nonlinear two-mass system with uncertainparameters and unknown states [C]. IAS-IEEE,2000.1096-1103
    [79] G. Tao, P. V. Kokotovic. Adaptive control of systems with unknown outputbacklash [C]. IEEE Transactions on Automatic Control,1995,40(2):326-330
    [80] J. C. Gerdes, V. Kumar. An impact model of mechanical backlash for controlsystem analysis [C]. Proceedings of the American Control Conference,1995,5:3311-3315
    [81]陈涛,陈娟,蒋凤华.伺服系统两种低速非线性补偿方法的对比[J].光学精密工程,2003,11(1):94-97
    [82]向红标,裘祖荣,李醒飞,等.精密实验平台的非线性摩擦建模与补偿[J].光学精密工程,2010,18(5):1119-1127
    [83] Canuda, H. Olsson, K. J. Astrom, et al. A new model for control of systems withfriction [C]. IEEE Transaction on Automatic Control,1995,40(3):419-425
    [84]于伟,马佳光,李锦英,等.基于LuGre模型实现精密伺服转台摩擦参数辨识及补偿[J].光学精密工程,2011,19(11):2736-2743
    [85]刘柏希.基于改进链码法的LuGre摩擦模型动态参数辨识[J].计算力学学报,2012,29(2):279-283
    [86]谭文斌,李醒飞,向红标,等.应用稳态误差分析辨识LuGre模型参数[J].光学精密工程,2011,19(3):664-671
    [87]刘丽兰,刘宏昭,吴子英,等.考虑摩擦和间隙影响的机床进给伺服系统建模与分析[J].农业机械学报,2010,41(11):212-218
    [88]高新绪.电动伺服机构设计的负载匹配问题[J].航空兵器,1994(4):21-25
    [89] S. X. Yang, P. Zhong. Study on the Parametric Design of ElectromechanicalAcuators [J]. Journal of Beijing Institute of Technology,1997,6(2):138-144
    [90]曾漫,熊小丽,丁文革,等.一种典型数字无刷电动舵机的设计[J].中北大学学报(自然科学版),2011,32(6):751-757
    [91]李朝富.电动舵机直流伺服电机选用方法[J].战术导弹控制技术,2008(1):38-55
    [92]王莉,贾建芳.基于自适应遗传算法的舵机传递函数辨识[J].电子测试,2012(3):12-15
    [93]章家保.导弹滚转回路高精度宽频带电动舵机关键技术研究[D]:[博士学位论文].长春:中国科学院长春光学精密机械与物理研究所,2010
    [94]范又功,曹炳和.谐波齿轮传动技术手册[M].北京:国防工业出版社,1995
    [95]童克文,张兴.滑模变结构控制及应用[J].电气应用,2007,26(3):6-1
    [96]黄元峰,王海峰.基于滑模变结构控制算法的无刷直流电机力矩平衡控制系统研究[J].电机与控制应用,2012,39(2):9-11
    [97]袁东,马晓军,李立宇,等.等效扰动的炮控系统非线性自适应补偿控制方法[J].火力与指挥控制,2011,36(6):70-73
    [98]袁东,马晓军,冯亮.坦克炮控系统非线性补偿方法[J].系统仿真学报,2009,21(23):7564-7568
    [99] Kuljaca, N. Swamy, F. L. Lewis, et al. Design and implementation of industrialneural network controller using backstepping [J]. IEEE Transations on IndustrialElectronics,2003,50(1):193-201
    [100] J. Soltani, R. Yazdanpanah. Robust backstepping control of induction motordrives using artificial neural networks [C]. IEEE Power Electronics and MotionControl Conference (IPEMC),2006.1-5
    [101] M. Kwan, F. L. Lewis. Robust backstepping control of industrial motors usingneural networks [J]. IEEE Transactions on Neural Networks,2000,11(5):1178-1187
    [102]白寒,王庆九,徐振,等.阀控非对称系统多级滑模鲁棒自适应控制[J].农业机械学报,2009,40(10):193-198
    [103]焦小娟,张偕渭,彭斌彬. RecurDyn多体系统优化仿真技术[M].北京:清华大学出版社,2010
    [104]王建锋,张天宏.基于Matlab/xPC的直流电机参数辨识及双闭环控制研究[J].测控技术,2011,30(12):32-36

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700