用户名: 密码: 验证码:
高空无人机载光学遥感器热控技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科学技术的高速发展和近年来世界多次局部战争的推动,高空无人机载光学遥感器作为一种新型、有效的光电载荷,在航空遥感、测绘和军事侦察等领域得到了广泛应用。获得高分辨率、高质量图像是高空无人机载光学遥感器的最终目的。而高空航摄时,温度是影响遥感器成像质量的重要因素。温度变化会使光学系统离焦,并产生附加像差,导致成像质量变差;同时温度变化还会影响CCD器件的性能,影响成像质量。因此,如何利用热控技术稳定高空无人机载光学遥感器的温度水平,消除温度梯度对成像质量的影响是高空无人机载光学遥感器研制中的关键技术之一。
     本文以装载在某型无人侦察机上,采用折射式光学系统的某高分辨率、长焦距航空光学遥感器为研究对象,对遥感器中光学系统、CCD组件及光学窗口的热控技术进行了深入研究。
     论文简要概述了无人侦察机和航空光学遥感器的发展现状及趋势,分析了高空光学遥感器采用热控技术的必要性,结合国内外航空光学遥感器热控技术,总结了高空光学遥感器热控技术的特点。分析了该高空无人机载光学遥感器航摄工作时所处的外部环境及内部环境,建立了遥感器内部热交换模型及遥感器与外部环境热交换模型,对包括热传导、热对流及热辐射等因素进行了研究,确定了热边界条件。对该光学遥感器从由温度变化造成折射率变化对光学系统的离焦量和焦距变化量的影响进行分析,以确定热控指标;对遥感器光学窗口进行热光学分析,以确定最佳玻璃厚度。针对该光学遥感器的结构特点,根据以被动热控为主,主动热控为辅的热设计原则,研究分析了适用于高空低温、低压环境下的隔热材料、相变材料及加热装置等热控措施,完成了高空光学遥感器的热控方案设计。详细计算了遥感器与外界对流换热系数和气动热流密度等外边界条件,建立了高空光学遥感器的有限元热模型,对热控系统进行了热分析;分析结果表明热控方案满足系统要求。依据热平衡方程,对热控系统进行了灵敏度分析;分析结果表明:对流换热、内部热源及构件之间的热阻是影响高空光学遥感器透镜组件温差的主要因素。
     最后进行了模拟高空低温低压环境的热控试验和实际飞行试验,试验结果表明,热控方案正确、有效,满足了热控指标,并获得了稳定、清晰的高质量图像。
With the rapid development of science and technology and the promotion of manylocal wars in the world, altitude optical sensor mounted on unmanned aerial vehicle ismore widely applied in the airborne remote sensing, measurement and detection. It is anew and effective optoelectronic payload. The object of altitude optical sensor is toobtain the high resolution and quality images. Temperature is an important factor whichaffects the imaging quality of optical sensor in altitude complex environment. Thechanges of temperature will make the defocus and generate additional aberration, andhave an influence on the performance of CCD assembly. Therefore, it is one of the keytechnologies during the development of the altitude optical sensor mounted onunmanned aerial vehicle that how to utilize the thermal control technology to stabilizeits temperatures level and eliminate the temperature gradient.
     This research is in the context of the high resolution, long focus and refractivealtitude optical sensor which mounted on the unmanned aerial vehicle. It was mainlyabout the thermal design for the optical system, CCD assembly and optical window.
     This paper shows an overview of the status and development of unmannedreconnaissance aircraft and aerial optical sensor, the necessity of thermal control foraltitude optical sensor, the introduce of thermal control technology for aerial cameras at home and abroad, and the characteristic of thermal control technology for altitudeoptical sensor. Based on the working condition of altitude optical sensor, the inside andoutside thermal environments are analyzed, and the heat-transfer models areestablished. The thermal boundary condition for the altitude optical sensor isdetermined, which includes thermal conduction, convection and radiation. Theinfluence of the refractive index change on defocusing amount and focal lengthvariation of optical system caused by temperature change is analyzed, and the thermalcontrol index of altitude optical sensor is gained. Based on the result of thermal-opticalanalysis for optical window, the optimum thickness of window glass is determined. Inaccordance of the usual thermal design principles, the thermal control measures areresearched, which include thermal insulation material, phase change material andheating system. And the thermal design for altitude optical sensor is done. After that,the convective heat transfer coefficient between the camera and the outside atmosphereand the aerodynamic heat flux are calculated in detail, and the finite element thermalmodel is established for thermal analysis, the analysis result shows that the thermaldesign is correct. Based on the heat balance equations, the sensitivity of thermal designparameters is analyzed, the results show that heat transfer, internal heat source andthermal resistance are main factors which would influence the temperature differenceof optical lens component.
     Finally, the thermal control test in simulated low temperature and low pressureenvironment and the actual flight test are carried out to validate the thermal design. Theresults show that the thermal control design is feasible and correct, and the stable anddistinct image is obtained.
引文
[1]梁德文.外军无人侦察机系统的发展现状和趋势[J].电讯技术.2001,(5):117-120
    [2]房建成,陶冶,于歌.空战新兵:无人机与战争[M].广州:花城出版社,2010:2-10
    [3]冯云松,董世友.国外无人侦察机的现状及其发展[J].机器人技术与应用.2004,(4):15-21
    [4]王小平.国外无人侦察机的现状及其发展[J].航空科学技术,2005,(2):24-27
    [5] Greg S. Loege ring. The Global Hawk/BAMS navigation system; an update to theodyssey [J]. The Journal of Navigation.2011,(64):15-27
    [6] K. James Held,Brendan H. Robinson. TIER I1Plus Airborne EO Sensor LOSControl and Image Geolocation [J]. Proc.IEEE.1997,2:377-405
    [7]李大光.追赶世界一流的中国无人机[J].国防科技工业.2011,(10):70-72
    [8]周建军,王智.无人侦察机光电载荷发展研究[J].视频应用与工程,2011,35(21):141-144
    [9]王光.KS-146长焦距航空照相机[M].北京:中国人民解放军空军司令部情报部,1989
    [10] Mrinal Iyengar,Davis Lange. The Goodrich3rdgeneration DB-110system:operational on tactical and unmanned aircraft [J]. Proc.SPIE.2006,6209:1-13
    [11] Andre G. Lareau, Andrew J. Partynski. Dual-band framing cameras: technologyand status [J]. SPIE.2000,4127:148-156
    [12](美)Paul R. Yoder, Jr.光机系统设计[M].北京:机械工业出版社,2008:725-750
    [13]陈立恒,李延春,罗志涛,等.空间相机大功率CCD器件的热设计与热试验[J].光学精密工程,2011,19(9):2117-2122
    [14]郭亮,吴清文,颜昌翔,等.光谱成像仪CCD组件的稳态/瞬态热分析与验证[J].光学精密工程,2010,18(11):2375-2382
    [15]黎明.测绘相机精密热控制技术研究[D].[博士学位论文].北京:中国科学院研究生院,2010
    [16] David G. Gilmore. Spacecraft thermal control handbook [M]. California:The Aerospace Press,2002
    [17] J.P.霍尔曼.传热学[M].北京:机械工业出版社,2005
    [18]戴锅生.传热学[M].北京:高等教育出版社,1998
    [19] LAMBERT M A,FLETCHER L S.Thermal contact conductance of sphericalrough metals[J].Transactions of the ASME.1997,(119):684—689
    [20]张平,宣益民,李强.界面接触热阻的研究进展[J].化工学报,2012,63(2):335-349
    [21]龚钊,杨春芯.接触热阻理论模型的简化[J].工程热物理学报,2007,28(5):850-852
    [22]赵宏林,黄玉美,徐洁兰,等.常用接合面接触热阻特性的试验研究[J].西安理工大学学报,1999,15(3):26-29
    [23]黄涛,吴清文,梁九生,等.空间相机接触热阻的计算[J].中国光学与应用光学,2009,2(4):334-339
    [24]钟明,程曙霞,孙承纬等.接触热阻的蒙特卡罗法模拟[J].高压物理学报.2002,16(4):305-308
    [25] Majid Bahrami, M.Michael Yovanovich, J.Richard Culham. Thermal contactresistance at low contact pressure: Effect of elastic deformation [J]. InternationalJournal of Heat and Mass Transfer.2005,(48):3284–3293
    [26] Chaudhary A B,Bathe K J.A solution method for static and dynamic analysisof three-dimensional contact problems with friction [J]. Computers andStructures.1986,24(6):855-873
    [27] MCWAID T, MARSCHALI E. Thermal contact resistance acllross pressed metalcontact in a vacuum environment[J]. Int. J. Heat Mass Transfer.1992,35(11):2911-2920
    [28]吴雪峰.临近空间可见光相机热控制技术研究[D].[博士学位论文].北京:中国科学院研究生院,2010
    [29]陈长征.TMA空间光学遥感器光机热集成仿真技术研究[D].[博士学位论文].北京:中国科学院研究生院,2007
    [30]美国国家海洋和大气局,国家航宇局和美国空军部.任现淼,钱志民译.标准大气[M].北京:科学出版社,1982
    [31]钱翼稷.空气动力学[M].北京:北京航空航天大学出版社,2009
    [32] Anderson J D. Hypersonicand High Temperature Gas Dynamics[M]. NewYork:Mc Graw-Hill Book Company,1988.
    [33]邓丽君.一种临近空间浮空器热控系统的研究[D].[博士学位论文].南京:南京理工大学,2009
    [34]闵桂荣,郭舜.航天器热控制(第二版)[M],北京:科学出版社,1998.
    [35]徐向华,程雪涛,梁新刚.平流层副空气的热数值分析[J].清华大学学报(自然科学版),2009,49(11):1848-1851
    [36]沈志宝,文军.沙漠地区春季的大气浑浊度及沙尘大气对地面辐射平衡的影响[J].高原气象,1994,13(3):330-337
    [37]陈渭民,高庆先,洪刚.由GMS卫星资料获取我国夏季地表辐射收支[J].大气科学,1997,21(2):238-245
    [38]王可丽,钟强.辐射传输模式中地表参数对大气长波辐射的影响[J].大气科学,1995,19(5):606-613
    [39]赵立新.空间相机光学窗口的热光学评价[J].光学学报,1998,18(10):1440-1444
    [40]黎明,吴清文,余飞.基于热光学分析的光学窗口玻璃厚度的优化[J].光学学报,2010,30(1):210-213
    [41]石进峰,吴清文,张建萍.高空高速航空相机光学窗口的热光学分析[J].光学学报,2012,32(4):0422004
    [42]傅丹鹰,乌崇德,殷纯永.空间遥感器热光学分析的研究与应用[J].中国空间科学技术,1999,(4):34-40
    [43]陈荣利,马臻,杨文刚.空间相机热光学分析与试验验证[J].光子学报,2010,39(11):2068-2071
    [44] Cullimore B, Panczak T, Baumann J, et al. Integrated Analysis of thermalstructural-optical-systems[Z]. Society of Automotive Enginneers,2002
    [45]陈恩涛,贾宏,李劲东,等.空间光学遥感器光-机-热集成分析方法研究[J].宇航学报,2005,26(1):66-70
    [46]廖靖宇,高晓东,蓝公仆.航空相机物镜动态光机热分析与设计[J].光电工程,2010,37(7):36-39
    [47]罗传伟,焦明印.光学系统折射率温度效应的模拟计算[J].应用光学,2008,29(2):234-238
    [48]范志刚,张亚萍,裴扬威.气动热环境下高速飞行器光学窗口光传输数值仿真研究[J].红外与毫米波学报,2007,26(5):396-400
    [49]李延伟,杨洪波,程志峰,等.航空遥感器光学窗口光机热一体化设计[J].红外与激光工程,2012,41(8):2102-2106
    [50] BARNES W P, Jr. Some Effects of Aerospace Thermal Environments onHigh-acuity Optical Systems [J]Applied Optics,1966,5(5):671-675
    [51]巩盾.温度对遥感器光学系统成像质量的影响[D].[博士学位论文].北京:中国科学院研究生院,2010
    [52] Gregory B.Johnson. Thermal management for CCD performance on the AdvancedCamera for Surveys(ASC)[J]. Proc.SPIE.1998, Vol.3356:283-291
    [53]韩冬,吴清文,卢鄂,等.多姿态变化相机中CCD焦面组件的热设计[J].光学精密工程,2009,17(11):2665-2670
    [54]訾克明,吴清文,郭疆,等.空间光学遥感器CCD焦面组件热设计[J].光学技术,2008,34(3):401-403
    [55]陈恩涛,卢锷.空间遥感器CCD组件热设计[J].光学精密工程,2000,3(6):522-524
    [56]罗志涛,徐抒岩,陈立恒.大功率焦平面期间的热控制[J].光学精密工程,2008,16(11):2187-2191
    [57]张黎,刘国栋,王贵兵.光学窗口外形对启动光学效应的影响[J].强激光与例子束,2010,22(12):2834-2838
    [58] Pond J E,Sutton G W.Aero-optic performance of an aircraft,forward-facingoptical turret[J].Journal of Aircraft,2006,43(3):600-608
    [59]韩炜,赵跃进,胡新奇.超高声速飞行器光学窗口启动光学效应分析[J].光学技术,2010,36(4):622-626
    [60] R. Boukhanouf,A.Haddad,M.T.North.et al.Experimental investigation of a flatplate heat pipe performance using IR thermal imaging camera[J].Applied ThermalEngineering2006,(26)2148–2156
    [61] E.K.J.Jaekel,ESA-ESTEC,Noordwijk,et al.The Thermal Control System of theFaint Object Camera (FOC)[J].AIAA-80-1501
    [62]王领华,吴清文,郭亮,等.高分辨率可见光航空相机的热设计及热分析[J].红外与激光工程,2012,41(5):1236-1243
    [63]吴雪峰,丁亚林,吴清文.临近空间光学遥感器热设计[J].光学精密工程,2010,18(5):1159-1165
    [64]杨献伟,吴清文,李书胜,等.空间光学遥感器热设计[J].中国光学,2011,4(2):139-145
    [65] GIESEN P, FOLGERING E. Design guidelines for thermal stability inopto-mechanical instruments[C]. SPIE,2003,5176:126-134
    [66] Theodore D. Swanson, Gajanana C.Birur. NASA thermal control technologies forrobotic spacecraft[J]. Applied Thermal Engineering2003,(23):1055–1065
    [67]杨文刚,余雷,陈荣利.高分辨率空间相继精密热控设计及验证[J].光子学报,2009,38(9):2364-2367
    [68]王芳,邬志敏,刘颖.低温试验箱隔热层传热特性的实验研究[J].低温工程,2007,(155):59-64
    [69]王补宣.工程传热传质学(上册).北京:科学出版社,1982
    [70]付芸,徐长吉,丁亚林.航空遥感相机扫描反射镜支撑技术[J].光学精密工程,2003,(6):550-554
    [71]周祥发,肖汉宁,冯坚.航天器热控材料的应用和发展[J].宇航材料工艺,2007,37(6):7-10
    [72]陈爱英,王学英,曹学增.相变储能材料的研究进展与应用[J].材料导报,2003,17(5):42-45
    [73] Cosentino Ant hony P. Thermal Management of Telecommunications Batteriesusing Phase Change Materials (PCM) J ack2et TM [J].2000IEEE,14(1):237-244
    [74] Pal D, Joshi Y K. Application of Phase Change Materials to Thermal Control ofElectronic Modules: A Computational Study [J]. Journal of Electronic Packaging,1997,119:40-50
    [75] ABHAT A. Investigation of Phase Change Material (PCM) Devices for ThermalControl Purposes in Satellites [R]. AIAA,1974:742-728
    [76]张洋,李月锋,李明广.相变储能材料循环热稳定性及与容器相容性研究概况[J].材料导报,2011,25(10):18-23
    [77]周伟,张芳,王小群.相变温控在电子设备上的应用研究进展[J].电子器件,2007,30(1):343-348
    [78]张芳,王小群,杜善义.相变温控在电子设备上的应用研究[J].电子器件,2007,30(5):1939-1942
    [79]金实,胡君,曹小涛.航天相机主动热控测试系统设计[J].中国光学与应用光学,2010,3(2):126-132
    [80]黎明,吴清文,江帆.三线阵立体测绘相机热控系统的设计[J].光学精密工程,2010,18(6):1367-1373
    [81]陈立恒,吴清文,罗志涛.空间相机电子设备热控系统设计[J].光学精密工程,2009,17(9):2145-2152
    [82] FI. EISCHER A S,WEINSTEIN R D,KHOBRA GADE S A.Forced convectivecooling of electro-optical components maintained at different temperatures on avertically oriented printed circuit board[J].IEEE Transactions on Components andPackaging Technology,2004,27(2):296-304
    [83]惠兆峰,白泽生.新型数字温度传感器DS18B20U原理及其应用研究[J].延安大学学报(自然科学版),2010,29(1):59-61
    [84]马田华,陈东,蒋国平.可编程单总线数字式温度传感器DS18B20的原理与应用[J].电子测量,2004,(7):25-30
    [85]许东晟,陈汝东.除霜和除霜控制研究[J].流体机械,2006,34(1):69-73
    [86]李延伟,张洪文,詹磊,等.高空环境对航空遥感器光学窗口的影响[J].激光与红外,2012,42(9):1035-1039
    [87]魏颖,黄巧林.高分辨率详查相机窗口热门、防护门的发展概况[J].航天返回与遥感,2005,26(3):38-42
    [88]张雷,姚劲松,贾学志,等.同轴空间相机碳纤维复合材料桁架结构的研制[J].光学精密工程,2012,20(9):1967-1973
    [89]沈亮.空间小型CCD相机的热分析研究[D].[硕士学位论文].苏州:苏州大学,2008
    [90]牛晓明,卢锷,赵鹏.空间光学系统的热分析[J].光学精密工程,1996,4(6):54-59
    [91] Jacob Miller,Marcus Hatch,Kenneth Green. Predicting performance of opticalsystems undergoing thermal/mechanicalloadings using integratedthermal/structural optical numerical methods [J]. Proc of SPIE(S0277-786X),1987,(770):303-310
    [92]陶文铨.传热学[M].西安:西北工业大学出版社,2006
    [93]叶宏,焦冬生,徐斌等. IDEAS热分析实用教程[M].合肥:中国科学技术大学出版社,2003.
    [94]杨贤荣.辐射换热角系数手册[M].北京:国防工业出版社.1982.
    [95]訾克明,吴清文,李泽学.空间光学遥感器的热设计实例及仿真分析[J].计算机仿真,2008,25(12):77-80
    [96]刘伟毅.高分辨率航空相机光机结构的热设计及热分析[D].[博士学位论文].北京:中国科学院研究生院,2012
    [97]李劲东,邵东兵.航天器密封舱微重力对流换热的数值分析[J].工程热物理学报,2002,23(3):333-335
    [98]李德富,夏新林,戴贵龙.超高空低速飞行器的热环境特性[J].哈尔滨工业大学学报,2009,41(7):60-63
    [99]范志刚,肖昊苏,高豫强.气动热环境下高速飞行器光学头罩特性分析[J].应用光学,2009,30(3):361-365
    [100] Edward M Silverman. Space Environmental Effects on Spacecraft: LEOMaterials Selection Guide[R]. NASA Contractor Report4661,1995.
    [101]余建祖,陈延民,苏楠.电子设备吊舱瞬态热载荷分析与计算[J].北京航空航天大学学报,2000,26(1):70-74
    [102]范含林,文耀普.航天器热平衡试验技术评书[J].航天器环境工程,2007,24(0):63-68
    [103]曹东晶,项卫国.CBERS-1卫星CCD相机热控系统的研制[J].航天返回与遥感,2003,24(1):24-28
    [104] Mark Williamson.Spacecraft thermal design[J]. Phys Techno.1987,120-128
    [105]刘巨.轻型航天光学遥感器热设计/分析与热控制技术研究[D].[博士学位论文].北京:中国科学院研究生院,2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700