用户名: 密码: 验证码:
汽车轮毂轴承润滑脂研究与试验评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
轮毂轴承作为汽车关键零部件,在承受轴向载荷与径向载荷作用的同时还起着精确导向作用,轮毂轴承一般是在高温、重载、高速等苛刻条件下工作,对润滑剂的要求也较高。汽车轮毂轴承润滑脂对轮毂轴承的使用寿命以及汽车的行驶安全起着非常重要的作用,因此对轮毂轴承润滑进行深入研究对于节省能源、提高行车安全、延长轮毂轴承使用寿命具有重要意义。
     本文的主要研究工作有以下几个部分:
     首先,论文通过理论分析和实验方法,研究了轮毂轴承失效形式和失效机理。通过对1200余套失效轮毂轴承进行统计分析,归纳总结出汽车轮毂轴承典型失效型式。采用红外光谱(FTIR)与MOAII原子发射光谱仪对失效轮毂轴承的润滑脂进行分析,采用扫描电镜(SEM)以及能谱(EDS)分析方法对失效轮毂轴承表面进行分析,研究了轮毂轴承失效机理。通过工况调查与失效机理研究,提出了汽车轮毂轴承润滑脂所需具备的性能参数要求。
     其次,本文设计了一套润滑脂生产工艺,该工艺提出了一种润滑脂在高温炼制阶段的保护方法,有效提高了润滑脂的抗氧化能力与高温使用性能,并对润滑脂调和工艺进行改进,提高了润滑脂调和速度。文章根据润滑脂所需的生产工艺要求,研发了一套集皂化工艺、调和工艺、过滤工艺于一体的润滑脂生产设备,设计了双层夹套反应釜及其釜外循环工艺装置,并采用了预测-积分分离算法对反应釜的温度进行控制。
     再次,本文根据汽车轮毂轴承对润滑脂的性能参数要求,对润滑脂的生产材料进行了分析选择,经过初次筛选,确定了四种轮毂轴承润滑脂配方,采用新设计的生产工艺与设备制备了轮毂轴承润滑脂,并对其进行了相关试验研究。对润滑脂理化指标进行了检测,结果表明,所研制的润滑脂能满足轮毂轴承对润滑脂性能参数的要求;采用FTIR技术研究了轮毂轴承润滑脂稠化剂结构,并给出了其二维与三维分子模型;采用差热分析法(TG-DSC)研究了润滑脂的高温性能,结果表明,所配润滑脂在350℃高温下热失重较小,具有较好的抗蒸发、抗氧化性能。
     另外,为了进一步提高轮毂轴承润滑脂性能,本文选择性的在上述四种润滑脂基础上加入了三种不同粒径的二硫化钨固体添加剂以配制新脂。先采用扫描电镜(SEM)、能谱(EDS)、XRD、激光粒度仪、差热分析仪(TG-DSC)等方法对二硫化钨固体添加剂的微观形貌、组成、粒径以及高温性能进行了分析,结果表明,层状二硫化钨粉末具备良好的高温性能。实验将三种粒径的二硫化钨以不同的质量分数加入到轮毂轴承润滑脂中,研究对轮毂轴承润滑脂的性能改善。通过对润滑脂滴点、极压性能、抗磨性能的检测,结果表明,纳米级固体添加剂能较大幅度改善润滑脂的极压与抗磨性能,对润滑脂滴点影响较小。通过四球长磨试验研究结果表明,固体添加剂的加入,能显著降低润滑脂的摩擦系数与磨斑直径。文章给出了纳米材料在润滑脂中的流动模型,研究了润滑脂的抗磨减摩机理。采用FTIR与TG-DSC研究了纳米材料对轮毂轴承润滑脂稠化剂结构以及高温性能的影响,结果表明,纳米材料的加入对润滑脂稠化剂结构以及高温性能无显著影响。
     最后,本文从研制的润滑脂中选择了综合性能较好的四种轮毂轴承润滑脂(M-15、P-15、H-15、L-15)与壳牌轮毂轴承润滑脂、克努伯轮毂轴承润滑脂以及国内汽车通用锂基润滑脂进行台架试验评价,结果表明,所研制的M-15与P-15轮毂轴承润滑脂的性能优于国内同类产品,并且达到或接近了国际先进产品水平。
As the key parts of automotive, the wheel hub bearing plays a role of bearing the axialload and radial load, also guiding the direction precisely at the same time. Wheel hubbearing usually working in harsh condition, such as high temperature, heavy load and highspeed and so on, so it demands on the properties of lubricant is very high. The bearing lifeand driving safety depends on the grease of wheel hub bearing seriously. Therefore, carryout an in-depth research on the wheel hub bearing lubrication, has an important significancefor save energy, increase driving safety and bearing life.
     The main research works of this paper are the following several parts:
     Firstly, investigate the failure models and mechanisms of wheel hub bearings bytheoretical and experimental methods.1200sets of failure wheel hub bearing are counted,and summarized the typical failure model of wheel hub bearing. The grease of failure wheelhub bearing are analyzed by FITR and MOA II, and the surface of failure wheel hubbearings are analyzed by SEM and EDS, in order to research for the failure mechanism ofwheel hub bearings. Index that the performance parameters for grease of wheel hub bearingby working condition investigation and failure mechanism research.
     Secondly, a set of technology route for grease production is designed, which is aprotection method for grease in refining state of high temperature condition, enhancing theperformance of ant-oxidation and high temperature service for grease effectively, andenhancing the velocity of blending process by improve the blending technology. Accordingto the production process in this paper, a set of saponification, blending and filter process ofproduction equipment for grease is designed, and double jacketed reactor and the externalcirculation process piping are designed too, in addition, the prediction and integralseparation algorithm is used to control the temperature of reactor.
     Thirdly, according to the demands of performance parameters for grease of wheel hubbearings, production materials of grease is analyzed and selected, after an initial screening,four types of grease formula are manufactured. The new designed production process andequipment are used to research the grease of wheel hub bearing by experimental method,the Physical and chemical indicators are tested, the results show that the indicators of greasesatisfy the demand of wheel hub bearing lubrication. The structures of thickener of grease are researched by FTIR technology, and carry out the molecular models in two-dimensionaland three-dimensional space. The high temperature performance of grease is analyzed byTG-DSC, the results show that the thermal weight loss of grease under350°C is low, andhas a nice performance of anti-evaporation and anti-oxidation.
     Besides, in order to improve the performance of grease fatherly, three kinds of size fortungsten disulfide additive are selected to add in the grease, and prepare four types of newgrease. The micro morphology, composition, particle size and high temperature stability oftungsten disulfide additive are analyzed by SEM, EDS, XRD, laser particle size analyzer,TG-DSC technology and so on, the results show that layered tungsten disulfide powder witha good high temperature performance. The different size of tungsten disulfide powder addedto the grease according to the concentration of1%to5%respectively, and the droppingpoint, EP and anti-wear properties are tested. The results show that The EP and anti-wearproperties of grease are improved noticeable by mixed with solid additive of micro scale,but the effect on the dropping point slightly. Through the experiment results of four balltester rig, indicate that the friction coefficient and diameter of scar diameter are decreasednoticeable by add the solid additive into the grease. The flow model of the nano materialstreaming in the grease is carried out in this paper, and the mechanism of anti-wear andfriction reduction for grease is analyzed too. The effect of nano material on the thickenerstructure and high temperature performance are analyze by FTIR and TG-DSC technology,the results show that add the nano material into the grease has a tiny influence on thethickener structure and high temperature performance.
     Finally, comparison the four kinds of new grease (M-15, P-15, H-15, L-15) with theShell and Krupp wheel hub bearing grease, and general lithium grease for domestic motorsby test rig experiments, the results show that the performance of M-15and P-15wheelbearing grease has reached or better than the similar domestic products, and reached ornearly to the international advanced level.
引文
[1]温诗铸,黄平.摩擦学原理[M].北京:清华大学出版社,2008.
    [2]臧新群.汽车滚动轴承应用手册[M].北京:机械工业出版社,1997.
    [3]张雪萍.轿车轮毂轴承失效机理的理论与实验研究[D].上海:上海交通大学,2002.
    [4]肖耘亚,周志雄.轿车轮毂轴承单元的集成与轻量化发展趋势[A].中国轴承论文第四届研讨会论文集[C].洛阳,2006:113-118.
    [5]孙全淑.润滑脂性能及应用[M].北京:烃加工出版社,1989.
    [6]徐桂云,张永忠.润滑脂流变和输送特性研究[M].中国矿业大学出版社,2005.
    [7]黎桂华.轿车轮毂轴承性能分析与实验研究[D].广州:华南理工大学,2006.
    [8] JB/T10238-2001.汽车轮毂轴承单元[S].北京:中国标准出版社,2001.
    [9] Toda K, Ishii T, Kashiwagi S, et al. Development of hub units with shaft clinching forautomotive wheel bearing[J]. KOYO Eng.J.2001,158:21-37.
    [10] Sakamoto J. Trends and new technologies of hub unit bearings[J]. Motion&Control.2005,17(5):2-9.
    [11] Numata T. Technical trends of automotive wheel bearings[J]. KOYO Eng.J.2003,162:32-36.
    [12] Nantua R. Modern concept of grease selection for "greased-for-life"automotive-wheel hub bearings[J]. Lubrication Engineering.1986,42(7):426-434.
    [13] Suzuki H. NSK Products and Technologies Contribute to Energy Conservation[J].Motion&Control.2002,12(4):5-10.
    [14]周近民.轿车轮毂轴承制造新工艺设计[J].洛阳工学院学报.1996,17(4):42-45.
    [15] Mortia K. Trends of production engineering for bearings and unit products[J]. KOYOEng.J.2001,159:31-36.
    [16] Ishida H, Kaneko T. Developments of hub unit bearing with swaging[J]. Motion&Control.2001,10(41):9-14.
    [17]李尚勇,宋丽,邓四二.汽车轴承技术及其发展动向[J].轴承.2009,(7):58-63.
    [18]黄德杰,陈松海,靳阳.第三代轮毂轴承游隙的分析与检测[J].机电工程.2012,29(10):1167-1170.
    [19] Stribick R. Ball bearing for various loads[J]. Transactions of the ASME.1907,29:420-463.
    [20]夏新涛,田小清.市场需求与我国轴承技术的发展[J].轴承.1999,5(35):35-37.
    [21]赵艺奇.轴承行业如何适应汽车工业发展的探讨[J].轴承.2000,2(36):10-13.
    [22]黎桂华,周彦平,龙正英.我国轿车轮毂轴承单元开发关键技术研究进展[J].轴承.2012,(4):57-62.
    [23]彭玉山,李明荣,张建华.滚动轴承振动的监测与诊断技术[J].工业仪表与自动化装置.1999,(4):33-36.
    [24] GB/T24611-2009.滚动轴承损伤和失效术语、特征及原因[S].北京:中国标准出版社,2009.
    [25] Hanson M T. An Analytical Life Prediction Model for the Crack PropagationOccurring in Contact Fatigue Failure[J]. Tribology transactions.1992,35(3):451-461.
    [26] Fan H, Mura L M, Mura T. Near Surface Crack Initiation Under Contact Fatigue[J].Tribology transactions.1992,35(1):121-127.
    [27] Murakami Y. Three-Dimensional Fracture Mechanics Analysis of Pit ormaitonMechanism Under Lubricated Rolling-Sliding Contact Loading[J]. Tribologytransactions.1994,3(3):445-454.
    [28] Cheng W. Longitudinal Crack Initiation Under Pure Rolling Contact Fatigue[J].Tribology transactions.1994,37(4):51-58.
    [29] Mitamura N, Murakami Y. A New Method for Studying Surface-Initiated BearingFailure [J]. SAE TRANSACTIONS.1997,106(2):143-152.
    [30] Chiu Y P. The Mechanism of Bearing Surface Fatigue–Experiments and Theories[J].Tribology transactions.1997,41(2):658-666.
    [31] Bordi V, Dorier C, Villchaise B. A Finite Element Analysis of Crack Initiation andPropagation in a Notched Disk Submitted to Rolling Contact Fatigue[J]. Journal ofTribology.1998,120(3):436-440.
    [32] Hirakawa K, Ikeda N, Okita S, et al. Inner Ring Fracture Characteristics under RollingContact[J]. Motion&Control.1999(7):15-28.
    [33] Wang J, Whitley B W, Cusano C, et al. An experimental study of the effects of surfacelay orientations on initial surface damage in point contacts[J]. Tribology transactions.1992,34(4):583-594.
    [34] Gao N, Beynon J H. Effects of surface defects on rolling contact fatigue of60/40brass[J]. Wear.1999,225(299):983-994.
    [35]邵荷生.摩擦与磨损[M].北京:机械工业出版社,1993.
    [36]李东紫.微动磨损与防护技术[M].陕西:陕西科学技术出版社,1992.
    [37]张雪萍,姚振强,俞亚波,等.轿车后轮轴承早期剥落失效特性与机理研究[J].中国公路学报.2000,13(2):112-115.
    [38]张雪萍,姚振强,俞亚波,等.汽车轮毂轴承的两类剥落失效分析[J].中国矿业大学学报.2000,29(5):532-535.
    [39]张雪萍,姚振强.轿车轮毂轴承微动磨损试验分析[J].机械工程学报.2002,38(10):105-107.
    [40]董建鹏.乘用车前轮毂轴承失效分析[D].华南理工大学,2012.
    [41]陈雪峰.汽车轮毂轴承疲劳失效分析及预防研究[D].苏州:苏州大学,2010.
    [42]叶宏峰. SKF轮毂轴承的安装、检测及失效分析[J].商用汽车.2009,(11):125.
    [43]米红英,陈德友,郭小川,等.高原地区车辆轮毂轴承润滑脂流失失效原因分析[J].石油学报.2011,(S1):24-27.
    [44]郭小川,米红英,陈德友,等.高原地区车辆轮毂轴承润滑脂失效分析及对策[J].后勤工程学院学报.2011,27(4):58-63.
    [45]杨英,雷刚,征小梅.重型汽车驱动桥轮毂轴承配合失效分析[J].科学技术与工程.2012,12(34):9526-9529.
    [46]杨林.汽车轮毂轴承早期失效分析及试验研究[D].广州:华南理工大学,2012.
    [47] Booser R E, Wilcock F D. Minimum oil requirements of ball bearings[J]. LubricationEngineering.1953,9(3):140-143.
    [48] Baker E A. Grease Bleeding-A factor in ball bearing performance[J]. NLGISpokesman.1958,22(9):271-279.
    [49] Cann M P. The influence of temperature on the lubrication behavior of a lithiumhydroxystearate grease [A]. Fifth Annual Euroean Lubricating Grease InstituteConference[C]. Budapest.1994.
    [50] Eriksson P, Wikstrom V, Larsson R. Grease passing through an elastohydrodynamiccontact under pure rolling conditions[J]. Proc Instn Mech Engrs.2000,214(4):309-316.
    [51] Cann M P, Spikes A H. In lubro studies of lubricants in EHD contacts using FTIRabsorption spectroscopy[J]. Tribology transactions.1991,34(2):248-256.
    [52] Halloran O R. Grease flow in shielded bearings[J]. Lubrication Engineering.1958,14:104-108.
    [53] Kauzlarich J J, Greenwood A J. Elastohydrodynamic lubrication withHerschel-Bulkley model greases[J]. ALSE transactions.1972,15(4):269-277.
    [54] Jonkiss E, Krzeminski-Freda H. Pressure distribution and shape of anelastohydrodynamic grease film [J]. Wear.1979,55(1):81-89.
    [55] Cann M P. Starvation and reflow in grease lubricated elastohydrodynamic contacts[J].Tribology transactions.1996,39(3):698-704.
    [56] Boner J C. Soap as lubricant [J]. Petroleum Processing.1948,3:1193-1196.
    [57] Godfrey D. Friction of greases and grease components during boundary lubrication[J].ASLE transactions.1964,7(1):24-31.
    [58] Endo T. Recent development in diurea grease[J]. NLGI Spokesman.1993,57(1):533-541.
    [59] Cann M P. Grease lubrication of rolling element bearings-role of the greasethickener[J]. Lubrication Science.2007,19(3):183-196.
    [60] Cann M P, Spikes A H. The behaviour of greases in elastohydrodynamic contacts[J].Journal of Physics D: Applied Physics.1992,25(1A): A124-A132.
    [61] Astrbm H, Ostenson O J, Hoglund E. Lubrication grease replenishment in anelastohydrodynamic point contact[J]. Journal of tribology.1993,115(3):501-507.
    [62]应自能.润滑脂流变特性及其弹流润滑机理的研究[D].北京:清华大学,1985.
    [63]李刚.苛刻条件下润滑脂成膜机理及润滑特性研究[D].北京:清华大学,2010.
    [64]颜志光,杨正宇.合成润滑剂[M].北京:中国石化出版社,1996.
    [65] Etedrow L, Sayles F S. Field Peribrmance of SynthesizedHydrocarbon(PolyalPhaolefin) Greases[J]. NLGI Spokesman.1984,50(11):395-398.
    [66]张澄清.润滑脂生产[M].北京:中国石化出版社,2003.
    [67] Mclennan L W. Lubricating Composition[P]. US2417428.18March1947.
    [68] Ehrlish M, Musili T G. The Development of Lithium Complex Grease[J]. NLGISpokesman.1980,6(3):87-100.
    [69] Compell L D, Harting G L. A New Generation of Lithium Complex Grease[J]. NLGISpokesman.1976,(6):193-200.
    [70]蒋明俊,郭小川,董浚修.添加剂在复合锂基脂中的应用[J].合成润滑材料.2000,27(3):1-7.
    [71]毛大恒,孙晓亚.提高高温复合锂基润滑脂滴点的机理研究[J].南方金属.2006,(2):21-24.
    [72]孙晓亚.提高超高温润滑脂主要理化性能的实验研究[D].长沙:中南大学,2006.
    [73] Branllen C G, Brimstrum L C, Swaken E A. Substituted Ureas as GreaseThickeners[J]. NLGI Spokesman.1954,18(1):8-13.
    [74]杨玮,姚立丹,郑善伟.聚脲润滑脂的结构及反应机理的研究[J].石油学报.2000,16(4):35-42.
    [75]陈秀云,杜东根,刘文.用脲基聚合物生成聚脲基润滑脂[J].河北化工.1998,(12):18-19.
    [76] Okamura S, Toyota M. Long Life Urea Grease for High Temperature and High SpeedApplication[J]. NLGI Spokesman.1992,56(3):14-19.
    [77] Yang W, Yao L D, Zheng S W. A Study on Structure and Mechanism of DiureaGrease[J]. NLGI Spokesman.2003,67(4):14-20.
    [78] Root J C. A Comparative Study of Polyurea and Lithium Complex GreaseThickeners[J]. NLGI Spokesman.1994,58(9):22-24.
    [79] Dirk D, Kardlnal H. Lifetime Lubrication of Bearings at High Temperature[J]. NLGISpokesman.1999,63(7):12-14.
    [80]池森,俞楠,江家珍.聚脲基脂及其在电机轴承上的应用[J].润滑油.2003,18(3):60-62.
    [81]王世超.冶金设备用润滑脂的现状及发展[J].润滑油.2001,16(6):59-62.
    [82]朱廷彬.润滑脂技术大全[M].北京:中国石化出版社,2005.
    [83] Gupta S K, Srivastava R G, Venkataramani P S. High Temperature Greases Based onPolyurea Grllants [J]. Journal of Synthetie Lubrication.1987,4(3):229-234.
    [84] Xie L S, Li H. Study of Greases Based on Polyureas [J]. Journal of SynthetieLubrication.1991,8(1):39-50.
    [85] Endo T. Current Trends in Diurea Greases in Japan [J]. Eurogrease.1997:25-40.
    [86]刘维民,薛群基.无机硼酸盐润滑油抗磨添加剂的发展现状[J].摩擦学学报.1993,13(4):352-357.
    [87]刘维民,薛群基.有机硼酸酯润滑油减摩抗磨添加剂[J].摩擦学学报.1992,12(3):193-202.
    [88]温诗铸.纳米摩擦学研究进展[J].机械工程学报.2007,43(10):1-8.
    [89] Khonsari M M, Wang H S, Qi L Y. A theory of thermo-elastohydrodynamiclubrication of liquid-solid lubricated cylinders[J]. Journal of Tribology.1990,112(2):259-265.
    [90] Dai F, Khonsari M M. Generalized reynolds equation for solid-liquid lubricatedbearings[J]. ASME Transactions, Journal of Applied Mechanics.1994,61(2):460-466.
    [91] Abhay K, William D R. Particle behavior in two-phased lubrication [J]. Wear.1997,206(1):130-135.
    [92] Kang S Y, Farshid S. Debris effects on EHL contact[J]. Journal of Tribology.2000,122(4):711-720.
    [93] Christian J, Schwartz. Studies on the tribological behavior and transferfilm-counterface bond strength for polyphenylene sulfide filled with nanoscalealumina particles [J]. Wear.2000,237(2):261-273.
    [94] Tatasov S. Study of friction reduction by nanocopper additives to motor oil [J]. Wear.2002,252(1):63-69.
    [95]高永建,张治军,薛群基,等.油酸修饰TiO2纳米微粒水溶液润滑下GCr15钢摩擦磨损性能研究[J].摩擦学学报.2000,20(1):22-25.
    [96] Zhang Z J, Zhang J, Xue Q J. Synthesis and characterization of a molybdenumdisulfide nanocluster[J]. J Phys Chem.1994,98(49):12973-12977.
    [97] Dong J X. A study of anti-wear and friction-reducing properties of the lubricantadditive, nanometer zinc borate[J]. Tribology International.1997,31(5):219-223.
    [98] Dumdum J M, H E A, Bamum E C. Lubricant grade cerium fluoride-a new s olidlubricant additive for grease, paste, and suspensions[J]. NLGI Spokesman.1984,47(4):111-119.
    [99] Tomimoto M. Expermental verification of a particle induced friction model in journalbearings[J]. Wear.2003,254(7):749-762.
    [100] Hosoe. The effect of super fine particles of oxide ceramics on the lubricity oflubricating grease[J]. Material Technology.2000,18(3):71-78.
    [101]王德国,冯大鹏.几种金属纳米粒子作润滑脂添加剂的试验研究[J].机械工程材料.2005,29(4):58-59.
    [102]王李波,刘维民.表面未修饰及修饰纳米SiO2对锂基脂摩擦学性能的影响[J].润滑与密封.2006,(2):46-48.
    [103]宋宝玉,张锋,刘艳玲.纳米二氧化硅对陶瓷球疲劳寿命影响的研究[J].润滑与密封.2006,(7):15-17.
    [104]张培良.固体颗粒在复合钛基脂中的润滑行为研究[D].哈尔滨:哈尔滨工业大学,2010.
    [105]李宝良,李志刚,骆高志,等.几种纳米粒子作为润滑脂修复添加剂的试验研究[J].润滑与密封.2007,32(2):150-152.
    [106]郝俊英,翁立军,孙嘉奕,等.固体-油脂复合润滑Ⅰ:二硫化钼膜在干摩擦及空间用油脂润滑下的摩擦学性能[J].摩擦学学报.2010,30(2):105-110.
    [107]董凌,陈国需,李华峰. SiO2/SnO2复合纳米微粒添加剂的摩擦学性能及其对磨损表面的修复作用研究[J].摩擦学学报.2004,24(6):517-521.
    [108]夏新涛,张勇振,陈士超,等.铜和二氧化锆纳米微粒添加剂对锂基脂摩擦学性能的影响[J].轴承.2010,(6):41-44.
    [109] Liu G, Li X, Qin B, et al. Investigation of the mending effect and mechanism ofcopper nano-particles on a tribologically stressed surface[J]. Tribology letters.2004,17(4):961-966.
    [110]王九,陈波水,侯滨.润滑油中CuS纳米粒子的摩擦学性能研究[J].润滑与密封.2001,42(2):42-43.
    [111]霍玉秋,闫玉涛,翟玉春.纳米SiO2润滑油添加剂的摩擦学性能研究[J].材料导报.2004,4(18):101-103.
    [112]贾华东,柳刚,范荣焕.纳米材料作为润滑添加剂的研究回顾及目前的发展动向与展望[J].润滑与密封.2006,31(3):181-184.
    [113] Gupta B K, Bhushan B. Fullerrene particles as an additive to liquid lubricants andgreases for low friction and wear[J]. Lubrication Engineering.1994,50(7):524-528.
    [114]沈明武,雒建斌,温诗铸.金刚石纳米颗粒对薄膜润滑性能的影响[J].机械工程学报.2001,37(1):14-18.
    [115]刘维民,薛群基,周静芳.纳米颗粒的抗磨作用及作为磨损修复添加剂的应用研究[J].中国表面工程.2001,14(3):21-29.
    [116]胡泽善,王立光,黄令.纳米硼酸铜颗粒的制备及其用作润滑油添加剂的摩擦学性能[J].摩擦学学报.2000,20(4):292-295.
    [117]俸颢. WS2亚微米粒子摩擦学机理研究及高性能高温润滑脂研制[D].长沙:中南大学,2007.
    [118]俸颢,毛大恒,刘巧红,等.二硫化钨超细粉末对高温复合锂基润滑脂性能的影响[J].四川大学学报(工程科学版).2006,3(38):119-123.
    [119]毛大恒,石琛,俸颢.高温润滑脂中WS2亚微米粒子的摩擦学性能研究[J].摩擦学学报.2010,1(30):68-74.
    [120]杨鹤,张正业,李生华,等.金属磨损自修复层的X光电子能谱研究[J].光谱学与光谱分析.2005,25(6):945-948.
    [121]刘谦,徐滨士,许一,等.纳米铜自修复添加剂摩擦学特性研究[J].材料保护.2007,17(7):147-149.
    [122] Wang L B, Wang B, Wang X B, et al. Tribological investigation Of CaF2nanocrystalsas grease additives[J]. Tribology International.2007,40(7):1179-1185.
    [123]王泽爱,陈国需,宗明.超细粒子在润滑脂中的应用及展望[J].润滑油.2006,6(21):12-15.
    [124]刘维民.纳米颗粒及其在润滑油脂中的应用[J].摩擦学学报.2003,4(23):265-267.
    [125]徐云根.高温润滑脂轴承寿命试验方法研究与系统开发[D].杭州:浙江工业大学,2011.
    [126] Harris T. Rolling Bearing Analysis[M]. New York: Talor&Francis,2006.
    [127]王庆日,李元鸿,赵丽.复合锂基润滑脂轴承寿命影响因素探讨[J].石油学报.2011,10(11):11-15.
    [128] Zaretsky E V. STLE Life Factors for Rolling Bearings[M]. Park Ridge, IL: Society ofTribologists and Lubrication Engineers.1992.
    [129]薛进,张九渊,王春涛.红外光谱技术在轴承润滑脂分析上的应用[J].轴承.2003,(7):25-29.
    [130]姚立丹,杨海宁,孙宏伟.复合锂基润滑脂和脲基润滑脂成脂机理的差异[J].石油学报.2010,5(26):748-754.
    [131]刘磊,孙洪伟.复合锂基润滑脂制备反应的密度泛函理论[J].石油学报.2010,4(26):571-575.
    [132]刘显秋,李茂森,王磊.汽车轮毂轴承润滑脂综述[J].石油商技.2006,4(8):42-47.
    [133]钟泰岗,钟淑芳.汽车用润滑脂及添加剂[M].北京:化学工业出版社,2005:73-130.
    [134]姚立丹.复合锂基润滑脂的制备方法[P]. CN200810055794.6,2009.
    [135]刘学君.反应釜温度控制系统的研究[D].天津:燕山大学,2004.
    [136]于玫,黄平.线接触脂润滑热弹性流体动力润滑数值分析[J].润滑与密封.2011,(1):8-12.
    [137]廖钱生.公交车轮毂轴承试验机的关键技术研究[D].广州:华南理工大学,2010.
    [138]陈树林,谢小鹏,杨林,等.车用橡胶材料与润滑油脂的相容性[J].润滑与密封.2011,36(10):107-110.
    [139] Tandon N, Ramakrishna M K, Yadava G S. Condition monitoring of electric motorball bearings for the detection of grease contaminants[J]. Tribology International.2007,40(1):29-36.
    [140]熊文. WS2高温锂基润滑脂的研制及摩擦学性能的研究[D].湖南:中南大学,2004.
    [141]刘志颖,刘庆廉,孙洪伟.基础油对复合锂基润滑脂性能及稠化剂结构的影响[J].石油商技.2008,26(4):46-53.
    [142]姚立丹,杨海宁.2011年中国润滑脂生产情况调查报告[J].石油商技.2012,30(3):36-40.
    [143]王先会.润滑油脂生产原料和设备实用手册[M].北京:中国石化出版社,2009.
    [144] Chen S L, Xie X P, Cong P T. A measurement system based on virtual instrumentationfor field dynamic balancing of rotors[A].2009IEEE International Conference onInformation and Automation[C].2009:768-772.
    [145]黎桂华,黄平.轿车轮毂轴承外部载荷计算方法及其特性[J].润滑与密封.2006,11,(11):17-20.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700