用户名: 密码: 验证码:
复杂条件下突发水污染事故应急模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自2005年松花江特大苯污染事故以来,我国对于突发性水污染事故的重视程度日益提高。频繁发生的突发性水污染事故,不仅对天然水体生态系统造成严重破坏,而且威胁事故点下游大中城市供水安全、迫使下游城市关闭水厂;不仅造成重大社会经济损失,而且多引发公众恐慌。在当前突发水污染问题频发的背景下,建立突发水污染事故应急预警模型对水体中污染物输移过程及浓度时空分布变化进行模拟与预警,以提高污染风险防范意识及加强应急能力建设,是突发水污染事故应急管理体系的重要研究方向,对于水环境污染防治和管理具有重要的现实意义和紧迫性。
     根据污染物在水体中输移转化的机理,可将水体中污染物的输移转化过程分成两个部分:一是污染物随水流运动在空间上的物质输运及扩散;另一个是污染物通过在水体中生物化学过程作用造成在时间上的物质浓度衰减。根据复杂条件下突发水污染事故中污染物输移转化过程模拟方法的差异,对突发水污染事故应急模型进行研究,具体内容及结论如下:
     1.根据突发水污染事故发生的特点,通过对事故发生区域水体类型的不确定性、特征污染物的随机性以及应急措施的不固定性等方面的分析讨论,提出了事故模拟中存在的复杂边界、复杂污染物种类以及复杂应急措施等条件,探讨并初步提出了复杂条件下突发水污染事故应急模拟方法体系。
     2.根据深圳河湾的地形、水文及污染负荷等信息,建立并验证了深圳河湾突发水污染应急模型,结果表明本文所建模型能够很好地模拟深圳河湾水体中水动力过程及污染物输移扩散过程。通过对不同水文条件下流场与污染物输移扩散过程的模拟以及余流场的讨论,对深圳河湾水动力及污染物输移规律进行分析与探讨。
     3.通过对同一水污染事故在不同水文条件下,污染物浓度时空变化的模拟,探讨了不同水文条件对突发水污染事故中污染物输移扩散过程的影响。对不同监测断面在不同水文条件下污染物浓度变化的差异进行分析,讨论了径流与潮流对突发水污染事故中污染物Cd浓度时空分布变化的影响。结果表明,在突发水污染事故条件下,深圳河感潮河段内污染物浓度的变化过程主要受到来流径流的影响,改变径流条件,可以很好地控制感潮河段中污染物的浓度变化过程。
     4.通过水体中污染物衰减系数影响因素的分析,讨论了实验室水平内不同措施对特征污染物去除效果,对实验室内相关研究成果进行总结并采用回归分析的方法提出了不同措施下污染物衰减系数变化的动力学方程。同时通过对模型中污染物输移方程离散求解过程的分析,根据不同应急工程措施的作用机理,有针对性地对模型计算代码进行调整修改,将所得的污染物衰减系数变化动力学方程与原污染物输移方程进行耦合求解,得出新的适用于不同应急措施的污染物输移方程组。并对同一起水污染事故进行模拟,通过非参数假设检验的统计学方法,比较了不同监测断面在不同工程应急措施下应急效果的差异。结果表明在本文设定的突发水污染事故条件下,罗湖断面、布吉河口最佳应急措施为引水冲污;福田河口、深圳河口最佳应急措施为PACl混凝;但对于对于整个深圳河湾水域而言,PACl混凝沉淀效果是最优的。
Since the severe Benzene pollution incidents in Songhua River in2005, the degree of attention for Accidental Water Pollution in China has been increasing day by day.
     After these sudden water pollution accidents happened, they have been not only caused destruction to natural aquatic ecological system, but also polluted the water sources of the downstream urban and force the downstream city to turn off the water plant; not only caused significant socio-economic losses, but also caused panic among the public.
     Under current background of frequent occurrence of sudden water pollution, the establishment of sudden water pollution emergency warning model which is used for simulating the contaminant transport process in water and the distribution in space and time of contaminant concentration and early warning, in order to improve the pollution risk prevention awareness and strengthen construction of the emergency response capacity, is an important research direction of sudden water pollution emergency response system.
     According to the mechanism of transportation and transformation of the pollutants in the water, the change of concentration process of pollutants in sudden water pollution accidents can be divided into two parts:one is the contaminants'material transport and diffusion with the flow motion in the space; another one is the decay of the substance concentration in the time by the nature of the pollutants own biochemical processes in the water.
     1. According to the characteristics of sudden water pollution accidents, the complexity conditions in the sudden water pollution accident simulation and alert have been point out. The accident simulations warning the complicated boundary conditions and complex types of pollutants, complex emergency measures, and these complex conditions, simulation method have been put forward by the accident the uncertainty of the regional water body type, the randomness of characteristics of pollutants, the characteristics of accident emergency measures require in the actual situation.
     2. Based on the data of topography, hydrology and pollution load in Shenzhen bay, the sudden water pollution emergency warning model of Shenzhen bay has been developed and validated. The result shows that the model can be well used to simulate water hydrodynamic process and pollutant transport process in Shenzhen Bay. Through the simulation and discussion of contaminant transport and diffusion and flow field in different hydrological conditions, the law of hydrodynamic and pollutant transport in Shenzhen Bay have been analyzed and discussed.
     3. The effect of complex hydrological conditions on the contaminant transport and diffusion process in sudden water pollution accidents has been discussed by the simulation of the temporal and spatial variation of pollutant concentration of a same water pollution accident in different hydrological conditions. The difference of pollutant concentration in different monitoring cross-sections has been analyzed under different hydrological conditions. The effect of runoff and tide for pollutant concentration changes in the spatial and temporal distribution characteristics in sudden water pollution accident has been discussed. The result shows that the pollutant concentration change processes in the tidal reach of Shenzhen River has been mainly influenced by river runoff in the sudden water pollution accident. So pollutants concentration change process in tidal river can be well controlled by changing the condition of Shenzhen River runoff would be a good way to control.
     4. Through the analysis of affecting factors for attenuation coefficient of pollutants in water and the discussion of pollutants removal efficiency by different measures within the laboratory level, the relevant research results in the laboratory have been summarized.The kinetic equation of pollutants attenuation coefficient change in different measures has been proposed by the regression analysis method. And then the equation discrete solution method in the contaminant transport model has been analyzed, the model calculation code has been adjusted according to the different mechanism of emergency engineering measures. The kinetic equation of pollutants attenuation coefficient changes and the equation of pollutant transport have been coupled, and a new pollutant transport equation has been obtained which could be drawing the contaminant transport process in different emergency measures. And the cases have been simulated in a sudden water pollution accident when different emergency measures have been taken. The differences of contaminant concentration in different monitoring sections under different engineering emergency measures have been compared with nonparametric statistical hypothesis test method.It suggests that under the conditions setting in this dissertation, the polluted watercourse flushing is a best emergency measure at Luohu section and Buji section; the best emergency measures at Futian section and Shenzhen river section is PACl coagulation.
引文
[1]A van Mazijk. Modelling the effects of groyne fields on the transport of dissolved matter within the Rhine Alarm-Model[J]. Journal of Hydrology,2002,264,(1-4):213-229.
    [2]Arhonditsis, G. B., Brett, M. T. Eutrophication model for Lake Washington (USA):Part I. Model description and sensitivity analysis[J]. Ecol. Model.,2005,187(2-3):140-178.
    [3]Blumberg, A. F.,Mellor, G. L. A description of a three dimensional coastal ocean circulation model[J]. Three-Dimensional Coastal Ocean Models,1987,4:203-214.
    [4]Cerco, C. F., Cole T. Three-dimensional eutrophication model of Chesapeake Bay[J]. Journal Environmental Engineering,1993,119(6):1006-1025.
    [5]Chapra, S.C., Pelletier, G.J. QUAL2K:A Modeling Framework for Simulating River and Stream Water Quality:Documentation and Users Manual[R]. Civil and Environmental Engineering Dept., Tufts University, Medford, MA.2003.
    [6]Craig A. Stow, Donald Scavia. Modeling hypoxia in the chesapeake bay ensemble estimation using a bayesian hierarchical model[J]. Journal of Marine Systems,2009,76 (1-2):244-250.
    [7]Eva Garnacho, Robin J. Law, Ronny Schallier,et al. Targeting European R&D for accidental marine pollution[J]. Marine Policy,2010,34(5):1068-1075.
    [8]Ezer T. Entrainment,diapycnal mixing and transport in three-dimensional bottom gravity current simulations using the Mellor-Yamada turbulence scheme[J].Ocean Modelling, 2005,9(2):151-168.
    [9]Ezer T. On the seasonal mixed-layer simulated by a basin-scale ocean model and the Mellor-Yamada turbulence scheme[J]. Journal of Geophysical Research,2000,105 (C7):16843-16855.
    [10]Galabov, Vasko, Kortcheva, Anna, Marinski, Jordan. Simulation Of Tanker Accidents in The Bay Of Burgas, Using Hydrodynamic Model [J].Proceedings of the International Multidisciplinary Scientific Ge,2012,3:993.
    [11]Gyorgy G. Pinter. The Danube Accident Emergency Warning System[J]. Water Science and Technology,1999,40(10):27-33.
    [12]H. Md. Azamathulla, Fu-Chun Wu. Support vector machine approach for longitudinal dispersion coefficients in natural streams [J]. Applied Soft Computing,2011,11:2902-2905.
    [13]Hamrick, J. M. A three-dimensional environmental fluid dynamics computer code: theoretical and computational aspect[R]. Special report No.317 in Applied, Marine Science and Ocean Engineering.Virginia Institute of Marine Science, Gloucester Point, VA.1992.
    [14]Hamrick, J. M. Estuarine environmental impact assessment using a three dimensional circulation and transport model [A]. Estuarine and Coastal Modeling[C]. Proceedings of the 2nd International Conference, M. L.Spaulding et al, Eds., American Society of Civil Engineers,New York,1992:292-303.
    [15]Hamrick, J. M., Mills Wm. B. Analysis of temperatures in Conowingo Pond as influenced by the Peach Bottom atomic power plant thermal discharge [J]. Environmental Science and Policy,2001,3(Sl):197-209.
    [16]Hamrick, J. M., Wu, T. S. Computational design and optimization of the EFDC/HEM3D surface water hydrodynamic and eutrophication models[A]. Delic G., Wheeler,M.F., eds.,Next generation environmental models and computational methods[C]. Society for Industrial and Applied Mathematics(SIAM), Philadelphia.1997.
    [17]Hamrick,J. M.. Application of the EFDC hydrodynamic model to Lake Okeechobee, Florida[R]. Contract No.C-7689-0188, Rep. to the South Florida Water Management District, West Palm Beach, Fla.1996.
    [18]Heather P. Sim, Donald H. Burn, and Bryan A. Tolson. Probabilistic design of a riverine early warning source water monitoring system[J]. Canadian Journal of Civil Engineering,2009,36(6):1095-1106.
    [19]Jean-Yves Cabon, Philippe Giamarchi, Stephane Le Floch. A study of marine pollution caused by the release of metals into seawater following acid spills[J]. Marine Pollution Bulletin,2010,60(7):998-1004.
    [20]Ji, Z. G. Hydrodynamics and water quality:modeling rivers, lakes and Estuaries[M]. New Jersey:Wiley-Interscience,2008.
    [21]Ji, Z.-G., M. R. Morton, J. M. Hamrick. Wetting and drying simulation of estuarine processes[J]. Estuarine, Coastal and Shelf Science,2001,53(5):683-700.
    [22]JIA Y F, THOMAS K M. Adsorption of cadmium ions on oxygen surface sites in activated carbon [J]. Langmuir,2000,16(3):1114-1122
    [23]Jin, K. R.,Hamrick. J. M., Tisdale, T. S. Application of a three-dimensional hydrodynamic model for Lake Okeechobee[J]. Journal of Hydraulic Engineering,2000, 126(10):758-772.
    [24]Jorgensen, S. E., Ray. S., Berec, L. Improved calibration of a eutrophication model by use of the size variation due to succession[J]. Eco. Model.,2002,153(3):269-277.
    [25]Kenneth W. Harrison. Test application of bayesian programming adaptive water quality management under uncertainty [J]. Advances in Water Resources,2007,30(3):606-622.
    [26]Kim, D., Wang, Q. R. George, A. A model approach for evaluating effects of remedial actions on mercury speciation and transport in a lake system[J]. Sci. Total Environ.,2004, 327(1-3):1-15.
    [27]Konstantinos G. Zografos, George M. Vasilakis, Loanna M. Giannouli. Methodological framework for developing decision support systems(DSS) for hazardous materials emergency response operations [J]. Journal of Hazardous Materials.2000,71(1-3): 503-521.
    [28]Kyeong Park, Albert Y. Kuo, Jian Shen, et al. A Three-dimensional Hydrodynamic Eutrophication Model (HEM-3D):Description of Water Quality and Sediment Process Submodels[R]. Special Report in Applied Marine Science and Ocean Engineering,1995, 327:8-10,22.
    [29]Legates D. R.,McCabe Jr G. J. Evaluating the use of "goodness-of-fit" measures in hydrologic and hydroclimatic model validation[J]. Water Resources Research,1999, 35(1):233-241.
    [30]LI Ru-zhong, SHIGEKI Masunaga, HONG Tian-qiu, et al. Fuzzy model for TWO-DIMENSIONAL river water quality simulation under sudden pollutants discharged[J]. Journal of Hydrodynamics,2007,19(4):434-441.
    [31]Lindenschmidt K.E., Fleischbein K., Baborowski M. Structural uncertainty in a river water quality modelling system[J]. Ecological Modelling,2007,204(3-4):289-300.
    [32]Malmaeus, J. M., Hakanson, L. Development of a Lake Eutrophication model[J]. Eco. Model.,2004,171(1-2):35-63.
    [33]Manel Grifoll, Gabriel Jorda, Manuel Espino, et al. A management system for accidental water pollution risk in a harbour:The Barcelona case study[J]. Journal of Marine Systems,2011,88(1):60-73.
    [34]Maria C. Palancar, Jose M. Aragon, Fernando Sanchez, et al.The Determination of Longitudinal Dispersion Coefficients in Rivers[J]. Water Environment Research,2003, 75(4):324-35.
    [35]Mellor G. L. User's guide for a three-dimensional primitive equation, numerical ocean model [R]. Princeton University Report,2004.
    [36]Moriasi D., Arnold J., Van Liew M., et al. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations [J]. Transactions of the ASAE.2007, 50(3):885-900.
    [37]Nash J. E.,Sutcliffe J. V. River flow forecasting through conceptual models part Ⅰ--A discussion of principles[J].Journal of Hydrology,1970,10(3):282-290.
    [38]Nikolaos, P. Nikolaidis, Aristomenis P. Karageorgis, Vasilios Kapsimalis. Circulation and nutrient modeling of Thermaikos Gulf, Greece[J]. J. Mar. Syst.,2006,60(1-2):51-62.
    [39]Nina wessberg, Riitta molarius. Governance challenges and the prevention of industrial environmental accidents:the case of Finland[J]. European environment,2008,18(6): 371-386.
    [40]Pandey A., Chowdary V. M., Mal B. C., et al. Runoff and sediment yield modeling from a small agricultural watershed in India using the WEPP model[J]. Journal of Hydrology, 2008,348(3-4):305-319.
    [41]Park K., Jung H. S., Kim H. S.,et al. Three-dimensional hydrodynamic-eutrophication model(HEM-3D):application to Kwang Yang Bay, Korea [J]. Marine Environ-mental Research,2005,60(2):171-193.
    [42]Premysl Soldan. Possible way to substantial improvement of early warning system in the International Odra (Oder) River Basin [J]. Environmental Monitoring and Assessment, 2011,178(1-4):349-359.
    [43]Qiang He, ShuJuan Peng, Jun Zhai, et al. Development and application of a water pollution emergency response system for the Three Gorges Reservoir in the Yangtze River, China[J]. Journal of Environmental Sciences,2011,23(4):595-600.
    [44]Rabindra K. Panda, Niranjan Pramanik, Biplab Bala, Simulation of river stage using artificial neural network and MIKE 11 hydrodynamic model [J]. Computers & Geosciences,2010,36(6):735-745.
    [45]Ribeiro C. H. Mathematical modeling as a management tool for water quality control of the tropical Beberibe estuary, NE Brazil[J]. Hydrobiologia.2002,5(41):229-237.
    [46]Sanchez Polo M., Rivera Utrilla J. Adsorbent-Adsorbate Interactions in the Adsorption of Cd(Ⅱ) and Hg(Ⅱ) on Ozonized Activated Carbons [J]. Environ. Sci.Technol.,2002, 36(17):3850-3854.
    [47]Seyed M. Kashefipour, Roger A. Falconer. Longitudinal dispersion coefficients in natural channels[J]. Water Research,2002,36:1596-1608.
    [48]Tuckey, B. J., M.T. Gibbs, B. R. Knight, et al. Tidal circulation in Tasman and Golden Bays:implications for river plume behavior[J]. New Zealand Journal of Marine and Freshwater Research,2006,40(2):305-324.
    [49]Wei Yang, Jun Nan, Dezhi Sun. An online water quality monitoring and management system developed for the Liming River basin in Daqing, china[J]. Journal of Environmental Management,2008,88(2):318-325.
    [50]Wool, T. A., Ambrose, R. B., Martin, J. L., et al. Water quality analysis simulation program(WASP) version 6.0 draft:user's manual[R]. US Environmental Protection Agency-Region 4, Atlanta, USA,2001.
    [51]Yi YUN, Zhihong ZOU, Wei FENG, et al. Quantificational analysis on progress of river water quality in China[J]. Journal of Environmental Sciences,2009,21(6):770-773.
    [52]Zhen-Gang Ji, Guangdou Hu,Jian Shen, et al. Three-dimensional modeling of hydrodynamic processes in the St. Lucie Estuary[J]. Estuarine, Coastal and Shelf Science,2007,73(1-2):188-200.
    [53]Zhen-Gang Ji, Kang-Ren Jin. Gyres and Seiches in a Large and Shallow Lake[J]. Journal of Great Lakes Research,2006,32(4):764-775.
    [54]Zou, R., Carter, S., Shoemaker, L., Parker, A., et al. Integrated hydrodynamic and water quality modeling system to support nutrient TMDL development for Wissahickon Creek, Pennsylvania[J]. Journal of Environmental Engineering,2006,132(4):555-566.
    [55]安莹,李生才.2012年3-4月国内环境事件[J].安全与环境学报,2012(3):263-268.
    [56]蔡品彦.沙溪中下游有机污染物CODcr综合衰减系数研究[J].水利科技,2007(2):11-13.
    [57]曹永中,周孝德,吴秋平,等.河流水质模型研究概述[J].水利科技与经济.2008(3):197-199,206.
    [58]陈蓓青,谭德宝,程学军,等.三峡水库突发性水污染事件应急系统的开发[J].人民长江,2006,(5):89-91.
    [59]陈芳艳,唐玉斌,陈君.活性炭纤维对水中镉离子的吸附研究[J].抚顺石油学院学报,2000,20(3):26-29.
    [60]陈芳艳,王春玲,王新刚,等.饮用水源地突发苯酚污染的应急处理中试研究[J].水处理技术,2011(8):95-99.
    [61]陈家军,于艳新,李森QUAL2E模型在呼和浩特市水质模拟中的应用[J].水资源保护,2004(3):1-4,25,,69.
    [62]陈丽萍,蒋军成,殷亮.突发性危险化学品水污染扩散过程的模拟[J].水动力学研究与进展(A辑).2007,22(6):761-765.
    [63]陈萍.关于建立黄河流域河口地区突发性水污染事件快速反应机制探讨[J].河南水利与南水北调,2012(6):55-56.
    [64]陈炎,孟西林,袁彩凤,等.淮河流域多闸坝河流COD综合衰减系数测算[J].重庆环境科学,2002(3):83-85.
    [65]陈异晖.基于EFDC模型的滇池水质模拟[J].云南环境科学,2005(4):28-30,46.
    [66]陈轶.九龙江流域漳州河段污染物降解系数测算研究[J].化学工程与装备,2011(11):215-218.
    [67]陈永灿,朱德军.梯形断面明渠中纵向离散系数研究[J].水科学进展,2005,16(4):511-516.
    [68]戴纪翠,高晓薇,倪晋仁,等.深圳河流沉积物中重金属累积特征及污染评价[J].环境科学与技术,2010,33(4):170-175.
    [69]邓志强,褚君达.河流纵向分散系数研究[J].水科学进展,2001,12(2):137-142.
    [70]丁涛,顾妍平,王淑英,等.基于Matlab软件的突发事故水质解析模型与应用[J].安全与环境学报,2012,12(1):111-113.
    [71]丁贤荣,徐健,等.GIS与数模集成的水污染突发事故时空模拟[J].河海大学学报(自然科学版),2003,31(2):203-206.
    [72]窦明,马军霞,谢东瑜,等.北江重金属镉污染事故数值模拟[J].郑州大学学报(工学版),2007,28(2):117-120.
    [73]方圆,赵智杰,孙卫玲,等.深圳湾潮间带湿地沉积物的重金属分布特征[J].应用基础与工程科学学报,2000(4):343-353.
    [74]高中方,周克梅,陈志平,等.镉污染源水的应急处理技术研究[J].中国给水排水,2005,29(11):86-88.
    [75]郭儒,李宇斌,富国.河流中污染物衰减系数影响因素分析[J].气象与环境学报,2008(1):56-59.
    [76]郭羽,贾海峰.水污染预警DSS系统框架下的白河水质预警模型研究[J].环境科学,2010,31(12):2866-2872.
    [77]韩瑾,李星,杨艳玲,等.饮用水源突发镉污染的应急处理技术研究[J].中国给水排水,2012,28(21):1-4.
    [78]韩晓刚,黄廷林.我国突发性水污染事件统计分析[J].水资源保护,2010(1):84-86,90.
    [79]韩志勇,张燕,庞志华,等.除镉最佳混凝剂的筛选及应用条件研究[J].环境科学与管理,2012,37(11):108-112.
    [80]郝向英,宝迪,赵慧,等.黄河水中pH值对镉与沉积物相互作用的影响[J].内蒙古师大学报(自然科学版),2001,30(2):136-138.
    [81]何进朝,李嘉.突发性水污染事故预警应急系统构思[J].水利水电技术,2005(10):93-95,99.
    [82]洪小筠.闽江下游感潮河段水污染特性分析[J].水利科技,2010(3):4-5,16.
    [83]胡锋平,侯娟,罗健文,等.赣江南昌段污染负荷及水环境容量分析[J].环境科学与技术,2010,33(12):192-205.
    [84]胡国建,肖斌,丁涛.基于B/S结构的突发水污染事故模拟平台研究[J].计算机与现代化,2010(10):183-185,188.
    [85]胡越,张戈MATLAB在河流突发性污染事故应急监测布点中的应用[J].中国应急救援,2009(6):36-38.
    [86]黄炳彬,方红卫,刘斌.复杂边界水流数学模型的斜对角笛卡尔方法[J].水动力学研究与进展(A辑),2003(6):679-685.
    [87]黄东,郭玉山,王金良.水环境应急监测体系建设探讨[J].山东水利,2007(7):49-50.
    [88]黄辉金.左江、右江及邕江水污染事故分析与对策[J].水资源保护,2004(4):48-51.
    [89]黄奕龙,王仰麟,岳隽.深圳市河流沉积物重金属污染特征及评价[J].环境污染与防治,2005(9):711-715.
    [90]计红,韩龙喜,刘军英,等.水质预警研究发展探讨[J].水资源保护,2011,27(5):39-42.
    [91]姜伟,黄卫.集中式饮用水水源地环境临近预警体系构建[J].环境监控与预警,2010,2(6):5-7.
    [92]焦杨,傅金祥,周东旭,等.水库受氰化物污染的应急处理措施及经验[J].中国给水排水,2011,27(6):29-31,35.
    [93]井文涌.采取有力措施推进中国水环境保护:水工业与可持续发展.北京:清华大学出版社,1998.
    [94]寇晓梅.汉江上游有机污染物CODCr综合衰减系数的试验确定[J].水资源保护,2005(5):31-33.
    [95]雷晓霞,莫创荣,肖泽云.GIS与水质模型集成的邕江突发性水污染事故模拟[J].重庆理工大学学报(自然科学),2011,25(9):53-57.
    [96]李大鸣,陈海舟,付庆军.海上溢油数学模型的研究与应用[J].哈尔滨工程大学学报,2008(12):1291-1297.
    [97]李冬锋,左其亭,刘子辉,等.闸坝调控下重污染河流污染物迁移规律研究[J].人民黄河,2012,34(5):66-68,72.
    [98]李国颖,刘玉机,金福杰.大辽河(营口段)污染事故自动监控与应急处理系统的构建研究[J].环境保护与循环经济,2009,29(10):39-41.
    [99]李锦秀,廖文根,黄真理.三峡水库整体出维水质数学模拟研究[J].水利学报,2002(12):7-10,17.
    [100]李锦秀,廖文根.水流条件巨大变化对有机污染物降解速率影响研究[J].环境科学研究,2002(3):45-48.
    [101]李林子,钱瑜,张玉超.基于EFDC和WASP模型的突发水污染事故影响的预测预警[J].长江流域资源与环境,2011,20(8):1010-1016.
    [102]李娜.基于WebGIS的一维水体污染扩散模拟的实现[J].现代电子技术,2011,34(11):60-62.
    [103]李子龙,马双枫,王栋,等.活性炭吸附水中金属离子和有机物吸附模式和机理的研究[J].环境科学与管理,2009,34(10):88-92,178.
    [104]林奎,杨大勇,李适宇,等.基于SDSS的水环境决策系统技术研究[J].中国环境监测,2009,25(6):3-6,11.
    [105]刘斌,方红卫,段杰辉.干湿边界的斜对角笛卡尔方法在平面二维水沙数学模型中的应用[J].泥沙研究,2006(2):37-45.
    [106]刘冬华,刘茂.突发水污染事故风险分析与应急管理研究进展[J].中国公共安全(学术版),2009(1):167-170.
    [107]刘洪喜.水污染事故频发的原因与对策[J].环境保护与循环经济,2009,,29(5):55-57.
    [108]刘文新,李向东.深圳湾水域中重金属在不同相间的分布特征[J].环境科学学报,2002(3):305-309.
    [109]刘永伟,毛小苓,孙莉英,等.深圳市工业污染源重金属排放特征分析[J].北京大学学报(自然科学版),2010,46(2):279-285.
    [110]刘韵达,胡勇有,何向明,等.饮用水源突发挥发酚污染应急处理中试研究[J].环境科学学报,2008,28(12):2503-2508.
    [111]龙绍桥,娄安刚,谭海涛,等.海上溢油粒子追踪预测模型中的两种数值方法比较[J].中国海洋大学学报(自然科学版),2006(S1):157-162.
    [112]娄云,水艳,王海青.突发性水污染事故应急管理现状浅析[J].治淮,2010(12):38-39.
    [113]陆曦,梅凯.突发性水污染事故的应急处理[J].中国给水排水,2007(8):14-18.
    [114]吕俊,彭斌,唐奇善.郁江水质预警预报系统建设模式的探讨[J].水资源保护,2006(5):81-83.
    [115]孟伟.如何应对突发性水污染事故[J].世界环境,2009(2):30-31.
    [116]慕金波,韩言柱.实验室法测定南四湖及入湖河流的BOD降解系数[J].江苏环境科技,1996(2):7-9,6.
    [117]穆锦斌,张小峰.数值计算中复杂边界处理研究的一种新方法[J].武汉大学学报(工学版),2006(3):11-15.
    [118]庞翠超,许军平,汪德爟.南京河西水系引江冲污改善水环境方案研究[J].人民长江,2012(5):76-79.
    [119]彭祺,胡春华,郑金秀,等.突发性水污染事故预警应急系统的建立[J].环境科学与技术,2006(11):58-61,118.
    [120]戚纪勋,刘莹.水污染事故监测[J].工业安全与环保,2012,38(2):40-41.
    [121]祁超征,张桂村,刘庆蕾,等.有排污口存在河段估算污染物衰减系数K值方法[J].山东水利,2002(3):38-44.
    [122]饶清华,曾雨,张江山,等.闽江下游突发性水污染事故时空模拟[J].环境科学学报,2011,31(3):554-559.
    [123]饶清华,许丽忠,张江山.闽江流域突发性水污染事故预警应急系统构架初探[J].环境科学导刊,2009(1):167-170.
    [124]任华堂,陶亚,夏建新,等.旱季深圳湾水污染输移扩散特性研究[J].水力发电学报,2010,29(4):132-139.
    [125]任华堂,于良,夏建新,等.黄河内蒙古段水污染事故应急预警模型研究[J].应用基础与工程科学学报,2012,20(S 1):67-76.
    [126]任玉辉,肖羽堂.浅谈突发性水污染事故应急体系的建设[J].环境科学与管理,2007,(12):10-13.
    [127]司鹄,毕海普.数值分析三峡库区突发事故污染物运移特性[J].环境科学,2008(9):2432-2436.
    [128]宋礼波,窦明,姚保垒.突发重金属水污染事故环境风险评价模型研究[J].人民黄河,2012,34(5):69-72.
    [129]孙东迁,周孝德,曹永中.突发性水污染事故及其应急监测[J].水利科技与经济,2008,14(3):200-202.
    [130]孙霞.基于GM(1,1)的黄河(兰州段)水质灰色预测实证分析[J].资源环境,2010,39(2):88-92.
    [131]陶威,刘颖,任怡然.长江宜宾段氨氮降解系数的实验室研究[J].污染防治技术,2009,22(6):8-9,20.
    [132]汪亮,张海欧,解建仓,等.黄河龙门至三门峡河段污染物降解系数动态特征研究[J].西安理工大学学报,2012,28(3):293-297
    [133]汪明娜,汪达.长江水污染事故成因及处理对策探讨[J].水资源保护,2004(1):57-59..
    [134]汪志国,曹勤.浅谈水污染事故的应急监测[J].中国环境监测,2008,24(1):29-31.
    [135]王福进.重大水污染事件预警与应急技术[J].山西建筑,2007(34):191-192.
    [136]王建平,苏保林,贾海峰,等.密云水库及其流域营养物集成模拟的模型体系研究[J].环境科学,2006(7):1286-1291.
    [137]王庆改,赵晓宏,吴文军,等.汉江中下游突发性水污染事故污染物运移扩散模型[J].水科学进展,2008,19(4):500-504.
    [138]王有乐,孙苑菡,周智芳,等.黄河兰州段CODCr降解系数的实验研究[J].甘肃冶金,2006(1):27-29.
    [139]王有乐,周智芳,王立京,等.黄河兰州段氨氮降解系数的测定[J].兰州理工大学学报,2006(5):72-74.
    [140]王越兴,尹魁浩,彭盛华,等.深圳市河流底泥重金属的污染现状及生态风险评价[J].环境与健康杂志,2011,28(10):918-919.
    [141]王征,郭秀锐,程水源,等.三峡库区支流河口水动力及水污染迁移特性[J].北京工业大学学报,2012,38(11):1731-1737.
    [142]韦莲英,陈其名.左江突发性水污染事故分析及对策[J].广西水利水电,2005(2):64-66,71.
    [143]魏民,李环,郑国臣,等.松辽流域水污染事故应急管理体系研究[J].东北水利水电,2012,30(6):29-31.
    [144]翁士创,杨静,廉浩.感潮河网区突发性水污染事故预警预报关键技术探讨[J].水文,2009(S1):137-140.
    [145]吴迪军,孙海燕,黄全义,等.基于GIS的贴体坐标网格自动生成算法研究.测绘学报,2009,38(2):156-161.
    [146]吴纪宏.黄河干流河段污染物降解系数分析研究[J].人民黄河,2006(8):36-37.
    [147]吴建兰,李曦,陈秀梅.实验室率定法测算长江南通段污染物降解系数[J].四川环境,2012,31(5):36-40.
    [148]吴燕林.活性炭纤维处理含镉废水的研究[J].辽宁城乡环境科技,2002.22(5):15-17,34.
    [149]武国正,徐宗学.核电站低放射性废水在封闭水体中的输移规律研究[J].环境科学2012,33(7):2438-2443.
    [150]辛小康,叶闽,尹炜.长江宜昌江段水污染事故的水库调度措施研究[J].水电能源科学2011,29(6):46-48,95.
    [151]徐贵泉,褚君达,吴祖扬,等.感潮河网水环境容量影响因素研究[J].水科学进展,2000(4):375-380.
    [152]徐冉,王梓,程永正,等.突发性水污染事故应急管理体系研究[J].河北工业科技,2009,26(4):218-220,252.
    [153]许剑辉,解新路,付媛洁,等.突发性水污染事故的时空模拟及可视化[J].中国农村水利水电,2012(8):52-55.
    [154]严以新,张素香,李熙.长江口南港化学需氧量动力学模型的应用[J].水道港口,2007(4):278-281.
    [155]于海亮,王彬彬,吴宛青.基于粒子追踪技术的海上溢油三维输运模式[J].中国航海,2008(3):284-288.
    [156]于曰,沈永明,吴修广,等.正交数值网格的生成及平面二维流场的数值模拟[J].计算力学学报,2008,25(1):90-93.
    [157]张波,王桥,李顺,等.基于系统动力学模型的松花江水污染事故水质模拟[J].中国环境 科学,2007(6):811-815.
    [158]张波,王桥,孙强,等.基于SD-GIS的突发水污染事故水质时空模拟[J].武汉大学学报(信息科学版),2009,34(3):348-351.
    [159]张恒军,曾凡棠,房怀阳,等,北江水体镉沉降影响因素及容量计算研究[J].环境科学与技术,2010(8):120-123.
    [160]张鸿星,褚君达.潮汐河口污染带影响因素研究[J].水资源保护,2003(5):35-38,62.
    [161]张杰.河道贴体平面正交曲线网格自动生成技术研究[J].长江科学院院报,2003,20(6):16-18.
    [162]张世坤,张建军,田依林,等.黄河花园口典型污染物自净降解规律研究[J].人民黄河,2006(4):46-47.
    [163]张淑琴,童仕唐.活性炭对重金属离子铅镉铜的吸附研究[J].环境科学与管理,2008,33(4):91-94.
    [164]张旺,万军.国际河流重大突发性水污染事故处理——莱茵河、多瑙河水污染事故处理[J].水利发展研究,2006(3):56-58.
    [165]张晓健.松花江和北江水污染事件中的城市供水应急处理技术[J].给水排水,2006,32(6):6-12.
    [166]张羽,张勇,杨凯.基于时间特征指数的水源地突发性污染事件应急评估方法研究[J].安全与环境学报,2005(5):82-85.
    [167]赵山峰,张学峰,李昊.黄河突发水污染事件应急预案体系分析[J].人民黄河,2009(2):13-14.
    [168]赵越,韩雪,崔崇威.强化混凝沉淀去除水中三种二价重金属离子的试验研究[J].化学工程师,2011,(6):51-53.
    [169]周国胜.老府河水体中有机污染物降解规律研究[J].黄石理工学院学报,2010,26(2):13-14,23.
    [170]周俊,李国斌,梁震,等.引水冲污工程治理东湖磷污染[J].环境科学与技术,2002(4):27-29,49.
    [171]庄巍,李维新,周静,等.长江下游水源地突发性水污染事故预警应急系统研究[J].生态与农村环境学报,2010,26(S1):34-40.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700