用户名: 密码: 验证码:
脂类食品体系中羧甲基赖氨酸生成机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来在食品中发现有较多的晚期糖基化末端产物(advanced glycation endproducts,AGEs),尤其是脂类加工的食品中AGEs的含量较高。大量动物实验和临床实验表明,食源性AGEs对人体健康具有潜在危害性。为了研究脂类食品中AGEs的生成机理,本论文选取羧甲基赖氨酸(Nε-carboxymethyllysine,CML)作为AGEs的代表,将CML的产生和食品加工过程相关联。按照从微观机理到宏观表象的整体研究思路,以模拟体系作为出发点,逐步将研究体系扩展到真实食品体系。从反应历程、中间产物、自由基和碳源四个角度深入探讨了脂类食品体系中CML的生成机理,为有效控制食品加工过程中潜在化学危害物的产生提供理论依据。
     主要研究内容及成果如下。
     (一)非脂类模拟体系中CML的化学反应动力学
     研究了非脂类模拟体系赖氨酸(lysine,Lys)+葡萄糖(glucose,Glu)中CML的生成规律,为随后研究脂类对CML生成路径的作用机理提供基础。首先,建立Lys+Glu模拟体系,采用高效液相色谱-质谱仪(high performance liquid chromatography-fluorescence,HPLC-MS)结合外标法研究了其在100℃、80℃、60℃和40℃加热不同时间过程中,模拟体系中目标产物CML、中间产物果糖基赖氨酸(fructoselysine,FL)与乙二醛(glyoxal,GO)和原料Lys与Glu含量的生成规律。其次,通过添加邻苯二胺(o-phenylenediamine,OPD)阻断GO生成CML的方法研究了FL路径和GO路径对生成CML的贡献率大小。最后,根据可逆-连串-并行的复合反应机理,理论推导出100℃条件下CML、FL、GO、Lys和Glu的化学反应动力学公式,结合Origin软件的非线性拟合功能对实验数据进行拟合,得到CML各级反应的表观速率常数和表观动力学方程。结果表明,CML在100℃条件下具有热稳定性,能够在食品中积累。FL和GO作为生成食源性CML的重要中间产物,在食品加工过程都存在一个极大值点。100℃条件下FL路径生成CML占主导地位,贡献率为84.7%,而GO路径生成CML占次要地位,贡献率为15.3%。分别建立了100℃条件下FL路径和GO路径生成CML的表观动力学方程。因此,有望通过在食品加工过程中调控加工参数和添加抑制剂等方式来控制食源性CML的产生。
     (二)脂类模拟体系中CML的生成机理
     从自由基和碳源两个角度探讨了脂类模拟体系中CML的生成机理。
     在自由基方面,首先利用Fenton试剂考察了羟基自由基(hydroxyl radical, OH·)对Lys+Glu+Fenton模拟体系和Lys+GO+Fenton模拟体系生成CML路径的作用。在此基础之上,研究了亚油酸(linoleic acid,Lin)、油酸(oleic acid,Ole)、三油酸甘油酯(trioleate,Tri)和甘油(glycerol,Gly)对Lys+Glu+Lipid模拟体系中OH·、CML、FL、GO和Glu含量的影响,以及对Lys+GO+Lipid模拟体系中CML和乙醛酸(glyoxalic acid,GOA)的影响。结果表明,OH·对美拉德反应体系中生成CML的三条路径都具有促进作用。Lin、Ole和Tri能够促使美拉德反应体系产生更多的OH·,这些OH·促进了模拟体系中的FL和GO向CML的转化。Gly对OH·具有清除作用,从而降低了模拟体系中的CML含量。就引发自由基而言,对CML的促进作用按照从大到小排列为:Ole﹥Lin﹥Tri﹥Glu﹥Gly。
     在碳源方面,对模拟体系中的Glu和Gly分别进行13C同位素标记,通过追踪被标记碳原子通过GO路径生成CML的过程,证实油脂生成CML的新反应路径。通过计算CML含量中,通过GO路径分别来自Lin、Ole、Tri和Gly的比例,比较脂氧化和糖氧化对生成CML的贡献率。结果表明,Lin、Ole、Tri和Gly在氧化过程中产生的GO参与了CML的生成。在100℃条件下,相对于Glu对生成GO的贡献率而言,Lin、Ole和Tri对生成GO的贡献率在4.0h处达到极大值,分别为3.53%、3.08%和1.81%,然而,Gly对生成GO的贡献率随着加热时间的延长而逐渐增多,在8.0h处达到最大值99.29%。相对于Glu通过GO路径和FL路径生成CML的贡献率而言,Lin、Ole、Tri通过GO路径对生成CML的贡献率随着加热时间的延长而逐渐增多,在8.0h处达到最大值,分别为7.45%、5.31%和4.10%,Gly通过GO路径对生成CML的贡献率在6.0h处达到极大值10.33%。Lin、Ole、Tri和Gly都能够通过自身氧化断裂生成GO,提供生成CML的碳源。就中间产物而言,对CML的贡献按照从大到小排列为:FL路径(针对Glu)﹥Gly氧化产生GO路径﹥GO路径(针对Glu)﹥Lin氧化产生GO路径﹥Ole氧化产生GO路径﹥Tri氧化产生GO路径。因此,脂类对CML生成的促进作用来源于两个方面:(1)促使美拉德反应模拟体系产生更多OH·,促进CML的产生;(2)不饱和脂肪酸和Gly氧化产生GO,成为生成CML的碳源。
     (三)植物油模拟体系中CML的生成规律
     基于前述的模拟体系中CML生成机理,进一步将研究体系从脂类模拟体系扩展到半真实脂类食品体系——植物油模拟体系,即研究大豆油(soybean oil,Soybean)、玉米油(corn oil,Corn)、橄榄油(olive oil,Olive)、棕榈油(palm oil,Palm)和菜籽油(rape oil,Rape)等五种常用植物油对Lys+Glu+Oil模拟体系中OH·、目标产物CML、中间产物FL与GO含量的影响。结果表明,油脂能够促使美拉德反应模拟体系产生更多的OH·,这些OH·促进了模拟体系中的FL和GO向CML的转化。五种植物油对模拟体系中CML的促进作用按照从高到低排序为Soybean﹥Corn﹥Olive﹥Palm﹥Rape。对五种油脂中主要脂肪酸比例的分析表明,油脂对模拟体系中CML的促进作用和油脂中不饱和脂肪酸含量存在正相关性,即含有较多不饱和脂肪酸的油脂能够在美拉德反应模拟体系中引发较多的OH·,从而促进GO和FL向CML转化。因此,在食品加工过程中,含有较多不饱和脂肪酸的油脂更容易促进CML的产生。
     (四)真实食品体系中CML的生成规律
     将研究体系从半真实脂类食品体系进一步扩展到真实食品体系。选用一种氨基酸饮料作为非脂类真实食品体系的代表,选用牛奶作为脂类真实食品体系的代表。考察了氨基酸饮料在60℃保温箱里储存48h过程中的CML生成规律。在脱脂奶(skim milk,SM)和低乳糖奶(low lactose milk,LLM)中添加天然奶油,比较了3%、6%和9%奶油添加量对牛奶中CML生成的影响。结果表明,随着加热时间的延长,氨基酸饮料中CML含量逐渐增加。而牛奶在100℃条件下加热30min,其CML的含量随着加热时间的延长而逐渐增加,LLM比SM能够产生更多的CML。因此,在食品储藏过程中,食源性CML会随着储藏时间的延长而逐渐积累。在食品加工过程中,脂类食品体系中CML的含量随着油脂含量的增加而逐渐增加。
In recent years, advanced glycation end products (AGEs) are found to exist in commonlyconsumed foods, especially in fat diet. Many animal experiments and clinical experimentsshowed that food-derived AGEs were potentially hazardous to human health. In order to studythe formation mechanism of AGEs in fat diet, Nε-carboxymethyllysine (CML) was chose as arepresentative of AGEs. Its formation was associated with food production process. CMLresearch system was extended from simplest model system to real lipid food system in thispaper. CML formation mechanism was investigated from the aspects of reaction mechanism,intermediates, free radicals and carbon source to offer theory for controlling potentialhazardous materials in food production process. The main results are shown as follow.
     (1) Chemical reaction kinetics of CML in non-lipid model system.
     The formation rule of CML in lysine (Lys)+glucose (Glu) model system wasinvestigated so as to offer basis for mechanism of lipid effect on CML formation.
     Firstly, CML and its key intermediates, fructoselysine (FL) and glyoxal (GO), weredetermined with high performance liquid chromatography-mass spectrum (HPLC-MS) inLys+Glu model system heated at100°C,80°C,60°C and40°C. Secondly, The contributionrates of FL and GO to CML were determined by inhibiting GO with o-phenylenediamine(OPD) method. Finally, according to reversible reaction, consecutive reaction and parallelreactions mechanism, CML, FL, GO, Lys and Glu formation kinetics equations weretheoretically deduced. Combining with non-linear fit function of Origin Software,experimental data were fitted to obtain apparent rate constants and apparent kinetics equations.It indicated that CML content could accumulate in food for its thermal stability. There wereboth FL and GO contents maximum points in their formation process. CML derived from FLplayed a major role with contribution rate of84.7%for CML formation, while CML derivedfrom GO played a minor role with contribution rate of15.3%for CML formation. CMLapparent kinetics equations through FL pathway and GO pathway were obtained respectively.Therefore, it is possible to control food-derived CML through adjusting processing variablesand adding inhibitors.
     (2) Formation mechanism of CML in lipid model system.
     The formation mechanism of CML was discussed in lipid model system from aspects offree radials and carbon resource.
     In free radicals aspect, it was proved that hydroxyl radical (OH·) induced by Fentonreagent could promote CML formation in Lys+Glu+Fenton model system andLys+GO+Fenton model system. On the base of that, the effect of Lin, Ole, Tri and Gly onOH·, CML, FL, GO and Glu content in Lys+Glu+Lipid model system, and the effect of Lin,Ole, Tri and Gly on CML and glyoxalic acid (GOA) content in Lys+GO+Lipid model systemwere determined. It was shown that OH· induced by Fenton reagent could promote threepathways for CML formation in Maillard reaction. Lin, Ole and Tri could induce more OH· inMaillard reaction model system which promoted FL and GO conversion to CML. However,Gly could reduce CML content in model system for its scavenging OH· ability. Thepromoting CML formation abilities of lipids on modeling system were in the order of Ole﹥Lin﹥Tri﹥Glu﹥Gly.
     In carbon resource aspect, Glu and Gly in model system were labeled with13C. Newpathway for CML formation from lipid was proved through tracing13C flow direction.Contribution rates of lipid oxidation and saccharide oxidation for CML formation werecompared through calculating CML content proportion formed from Lin, Ole, Tri and Gly. Itwas found that GO derived from Lin, Ole, Tri and Gly oxidation participated in CMLformation. In100°C heating condition, compared with Glu contribution rate to GO, thecontribution rates of Lin, Ole and Tri to GO reached their maximum value at4.0h with3.53%、3.08%and1.81%respectively. The contribution rate of Gly to GO increased withtime increasing and reached maximum value99.29%at8.0h. Compared with Glucontribution rate to CML, the contribution rates of Lin, Ole and Tri to CML formationincreased with time. They increased to reach their maximum value at8.0h with7.45%,5.31%and4.10%, respectively. The contribution rate of Gly to CML increased with time.They reached maximum value10.33%at6.0h. The promoting effect of Lin, Ole, Tri and Glyon CML formation through oxidation to GO were in the order of FL pathway﹥Gly﹥GOpathway﹥Lin﹥Ole﹥Tri. Therefore, the promoting effect of lipid on CML formationderived from two aspects: Inducing more OH· to promote CML formation; Offering carbonsource for CML formation through oxidation to GO.
     (3) CML formation in vegetable oils model system.
     Based on above mechanism of lipid effect on CML formation in model system, the lipidmodel system was extened from lipid model system to vegetable oils model system. Theeffect of five oils on OH·, CML, FL and GO content in Lys+Glu+Oil model system wasstudied. It was shown that vegetable oils including Soybean oil (Soybean), Corn oil (Corn), Olive oil (Olive), Palm oil (Palm) and Rape oil (Rape)) could induce more OH· in Maillardreaction model system, which promoted FL and GO conversion to CML. The promotioneffect of five oils on CML formation was in the order of Soybean﹥Corn﹥Olive﹥Palm﹥Rape. Fatty acid analysis for five oils showed that the more unsaturated fatty acid the oils had,the more OH· they induced in model system. Therefore, oils with more unsaturated fatty acidin food production process were easier to increase CML formation.
     (4) CML formation in real food system.
     This part extended vegetable oils model system to real lipid food system. An amino acidbeverage was chose as non-lipid food system, and milk was chose as lipid food system. Theamino acid beverage was storaged at60°C for48h to determine CML formation. It indicatedthat CML content in beverage increased with time. Natural cream of3%,6%and9%wasadded to skim milk (SM) and low lactose milk (LLM) to compared CML formation. Itindicated that under the condition of100°C heating for30min, CML increased with time.LLM generated more CML than SM. Therefore, CML could accumulate in food storageprocess and CML content in lipid system increased with oil content increasing in foodproduction process.
引文
[1]金成章,宇陆柏,益张英.食品中Maillard反应伴生化学危害物的形成机制与控制技术研究.中国食品学报,2011,11(9):170-175.
    [2] Zhao Z., Liu J., Shi B., et al. Advanced glycation end product (AGE) modified proteinsin tears of diabetic patients [J]. Molecular Vision,2010,16(167):1576-1584.
    [3] Hartog J.W.L., Voors A. A., Schalkwijk C G, et al. Clinical and prognostic value ofadvanced glycation end-products in chronic heart failure [J]. European Heart Journal,2007,28:2879-2885.
    [4] Kanauchi M., Tsujimoto N. and Hashimoto T.. Diabetes Care. Advanced glycation endproducts in nondiabetic patients with coronary artery disease [J]. Diabetes Care,2001,24(9):1620-1623.
    [5] Schalkwijk C.G., Baidoshvili A., Stehouwer C.D.A., et al. Increased accumulation of theglycoxidation product Nε-carboxymethyllysine in hearts of diabetic patients: generationand characterisation of a monoclonal anti-CML antibody [J]. Biochimica et BiophysicaActa,2004,1636:82–89.
    [6] Matsunaga N., Anan I., Rosenberg P., et al. Advanced glycation end product isimplicated in amyloid-related kidney complications [J]. Scandinavian Journal ofClinical and Laboratory Investigation,2005,65(4):263-271.
    [7] Verzijl N., DeGroot J., Oldehinkel E., et al. Age-related accumulation of Maillardreaction products in human articular cartilage collagen [J]. Biochemical Journal,2000,350:381-387.
    [8] Semba R.D., Najjar S.S., Kai S., et al. Serum carboxymethyllysine, an advancedglycation end product, is associated with increased aortic pulse wave velocity in adults[J]. American Journal of Hypertension,2009,22(1):74-79.
    [9] Momma H., Niu K., Kobayashi Y., et al. Skin advanced glycation end productaccumulation and muscle strength among adult men [J]. European Journal of AppliedPhysiology,2011,111:1545–1552.
    [10] Semba R.D., Bandinelli S., Sun K., et al. Plasma carboxymethyllysine, an advancedglycation end product, and all-cause and cardiovascular disease mortality in oldercommunity-dwelling adults [J]. Journal of the American Geriatrics Society,2009,57(10):1874-1880.
    [11] Gul A., Rahman M.A., Salim A., et al. Advanced glycation end products in senilediabetic and nondiabetic patients with cataract [J]. Journal of Diabetes and itsComplications,2009,23:343-348.
    [12] Nass N., Bartling B., Navarrete S.A., et al. Advanced glycation end products, diabetesand ageing [J]. Zeitschrift Fur Gerontologie und Geriatrie,2007,40:349-356.
    [13] Chen Q., Dong L., Wang L., et al. Advanced glycation end products impair function oflate endothelial progenitor cells through effects on protein kinase Akt andcyclooxygenase-2[J]. Biochemical and Biophysical Research Communications,2009,381:192-197.
    [14] Li Q., Liu H., Du J., et al. Advanced glycation end products induce moesinphosphorylation in murine brain endothelium [J]. Brain Research,2011,1373:1-10.
    [15] Verzijl N., DeGroot J., Zaken C.B., et al. Crosslinking by advanced glycation endproducts increases the stiffness of the collagen network in human articular cartilage apossible mechanism through which age is a risk factor for osteoarthritis [J]. Arthritisand Rheumatism,2002,46(1):114-123.
    [15] Saito M., Marumo and Keishi.. Roles of collagen enzymatic and advanced glycationend products associated crosslinking as a determinant of bone quality [J]. JapaneseJournal of Clinical Medicine,2011,69(7):1189-1197.
    [17] Basta G., Del T.S., Marchi F., et al. Elevated soluble receptor for advanced glycationend product levels in patients with acute coronary syndrome and positive cardiactroponin I [J]. Coronary Artery Disease,2011,22(8):590-594.
    [18] Takeichi O., Hatori K., Kamimoto A., et al. Receptor for advanced glycation endproducts (RAGE)-expressing endothelial cells co-express AGE and S100in humanperiapical granulomas [J]. Journal of Dentistry,2011,39(10):679-685.
    [19] Thornalley P.J.. Glycation free adduct accumulation in renal disease: the new AGE [J].Pediatric Nephrology,2005,20(11):1515-1522.
    [20] Goldberg T., Cai W., Pepp M., et al. Advanced glycoxidation end products incommonly consumed foods [J]. Journal of the American Dietetic Association,2004,104(8):1287-1291.
    [21] Uribarri J., Woodruff S., Goodman S., et al. Advanced glycation end products in foodsand a practical guide to their reduction in the diet[J]. Journal of the American DieteticAssociation,2010,110(6):911-916.
    [22] Koschinsky T., He C.J., Mitsuhashi T., et al. Orally absorbed reactive glycationproducts (glycotoxins): An environmental risk factor in diabetic nephropathy [J].Proceedings of the National Academy of Sciences of the United States of America,1997,94(12):6474-6479.
    [23] Somoza V., Lindenmeier M., Hofmann T., et al. Dietary bread crust advancedglycation end products bind to the receptor for AGEs in HEK-293kidney cells but arerapidly excreted after oral administration to healthy and subtotally nephrectomizedrats [J]. Annals of the New York Academy of Sciences,2005,1043:492-500.
    [24] Sebekova K., Saavedra G., Zumpe C., et al. Plasma concentration and urinary excretionof carboxymethyllysine in breast milk-and formula-fed infants [J]. Annals of the NewYork Academy of Sciences,2008,1126:177-180.
    [25] Bengmark S.. Amplifiers of systemic inflammation-the role advanced glycation andlipoxidation end products in foods [J]. Kuwait Medical Journal,2008,40(1):3-17.
    [26] Henle T.. Dietary advanced glycation end products-a risk to human health? A call foran interdisciplinary debate [J]. Molecular Nutrition and Food Research,2007,51(9):1075-1078.
    [27] Uribarri J., Weijing C., Sandu O., et al. Diet-derived advanced glycation end productsare major contributors to the body's AGE pool and induce inflammation in healthysubjects [J]. Annals of the New York Academy of Sciences,2005,1043(1):461-466.
    [28] Somoza V.. Five years of research on health risks and benefits of Maillard reactionproducts: An update [J]. Molecular Nutrition and Food Research,2005,49(7):663–672.
    [29] Yamagishi S., Matsui T. and Nakamura K.. Possible link of food-derived advancedglycation end products (AGEs) to the development of diabetes [J]. MedicalHypotheses,2008,71(6):876-878.
    [30] Bengmark S. and Kompan L.. The role of food in glycation and lipoxidation of endproducts and-amplifiers of inflammation [J]. Zdravniski Vestnik-Slovenian MedicalJournal,2008,77(4):307-312.
    [31] Sebekova K. and Somoza V.. Dietary advanced glycation endproducts (AGEs) andtheir health effects-PRO [J]. Molecular Nutrition and Food Research,2007,51(9):1079-84.
    [32] Sebekova K., Faist V., Hofmann T., et al. Effects of a diet rich in advanced glycationend products in the rat remnant kidney model [J]. American Journal of KidneyDiseases,2003,41(3): S48-S51.
    [33] Lin R.Y., Reis E.D., Dore A.T., et al. Lowering of dietary advanced glycationendproducts (AGE) reduces neointimal formation after arterial injury in geneticallyhypercholesterolemic mice [J]. Atherosclerosis,2002,163:303-311.
    [34] Zheng F., He C., Cai W., et al. Prevention of diabetic nephropathy in mice by a dietlow in glycoxidation products [J]. Diabetes/Metabolism Research and Reviews,2002,18:224-237.
    [35] Uribarri J., Peppa M., Cai W., et al. Restriction of dietary glycotoxins reducesexcessive advanced glycation end products in renal failure patients [J]. Journal of theAmerican Society of Nephrology,2003,14:728-731.
    [36] Misciagna G., Logroscino G. and De Michele G.. Fructosamine, glycated hemoglobin,and dietary carbohydrates [J]. Clinica Chimica Acta,2004,340:139-147.
    [37] Sell D.R.. Ageing promotes the increase of early glycation Amadori product asassessed by epsilon-N-(2-furoylmethyl)-L-lysine (furosine) levels in rodent skincollagen-The relationship to dietary restriction and glycoxidation [J]. Mechanisms ofAgeing and Development,1997,95:81-99.
    [38] Somoza V., Wenzel E. and Weiss C.. Dose-dependent utilisation of casein-linkedlysinoalanine, Nε-fructoselysine and Nε-carboxymethyllysine in rats [J]. MolecularNutrition and Food Research,2006,50:833-841.
    [39] Arribas-Lorenzo G. and Morales F.J.. Analysis, distribution, and dietary exposure ofglyoxal and methylglyoxal in cookies and their relationship with other heat-inducedcontaminants [J]. Journal of Agricultural and Food Chemistry,2010,58,2966–2972.
    [40] Mahar K.P., Khuhawar M.Y., Kazi T.G., et al. Quantitative analysis of glyoxal, methylglyoxal and dimethyl glyoxal from foods, beverages and wines using HPLC and4-nitro-1,2-phenylenediamine as derivatizing reagent [J]. Asian Journal of Chemistry,2010,22(9):6983-6990.
    [41] Shangari N., Depeint F., Furrer R., et al. A thermolyzed diet increases oxidative stress,plasma α-aldehydes and colonic inflammation in the rat [J]. Chemico-BiologicalInteractions,2007,169:100-109.
    [42] Baynes J.W. and Thorpe S.R.. Glycoxidation and lipoxidation in atherogenesis [J].Free Radical Biology and Medicine,2000,28(12):1708-1716.
    [43] Hayashi C.M., Nagai R., Miyazaki K., et al. Conversion of Amadori products of themaillard reaction to Nε-carboxymethyllysine by short-term heating: possible detectionof artifacts by immunohistochemistry [C]. International Congress Series,2002:409–410.
    [44] Schalkwijk C.G., Baidoshvili A., Stehouwer C.D.A., et al. Increased accumulation ofthe glycoxidation product Nε-carboxymethyllysine in hearts of diabetic patients:generation and characterisation of a monoclonal anti-CML antibody [J]. Biochimica etBiophysica Acta,2004,1636:82-89.
    [45] Dittrich R., Hoffmann I., Stahl P., et al. Concentrations of Nε-carboxymethyllysine inhuman breast milk, infant formulas, and urine of infants [J]. Journal of Agriculturaland Food Chemistry,2006,54(18):6924-8928.
    [46] Van de Merbel N.C., Mentink C.J.A.L., Hendriks G., et al. Liquid chromatographicmethod for the quantitative determination of Nε-carboxymethyllysine in humanplasma proteins [J]. Journal of Chromatography B,2004,808:163–168.
    [47] Friess U., Waldner M., Wahl H.G., et al. Liquid chromatography-based determinationof urinary free and total Nε-carboxymethyllysine excretion in normal and diabeticsubjects [J]. Journal of Chromatography B,2003,794:273–280.
    [48] Schmitt A., Schmitt J., Munch G., et al. Characterization of advanced glycation endproducts for biochemical studies: side chain modifications and fluorescencecharacteristics [J]. Analytical Biochemistry,2005,338:201-215.
    [49] Petrovic R., Futas J., Chandoga J., et al. Rapid and simple method for determination ofNε-carboxymethyllysine and Nε-carboxyethyllysine in urine using gaschromatography/mass spectrometry [J]. Biomedical Chromatography,2005,19:649-654.
    [50] Schettgen T., Tings A., Brodowsky C., et al. Simultaneous determination of theadvanced glycation end product Nε-carboxymethyllysine and its precursor, lysine, inexhaled breath condensate using isotope-dilution–hydrophilic-interaction liquidchromatography coupled to tandem mass spectrometry [J]. Analytical andBioanalytical Chemistry,2007,387:2783-2791.
    [51] Thornalley P.J., Battah S., Ahmed N., et al. Quantitative screening of advancedglycation endproducts in cellular and extracellular proteins by tandem massspectrometry [J]. Biochemical Journal,2003,375(3):581-592.
    [52] Tauer A., Hasenkopf K., Kislinger T., et al. Determination of Nε-carboxymethyllysinein heated milk products by immunochemical methods [J]. European Food Researchand Technology,209(1):72-76.
    [53] Drusch S., Faist V. and Erbersdobler H.F.. Determination of Nε-carboxymethyllysine inmilk products by a modified reversed-phase HPLC method [J]. Food Chemistry,1999,65:547-553.
    [54] Chao P., Hsu C. and Yin M.. Analysis of glycative products in sauces and sauce-treatedfoods [J]. Food Chemistry,2009,113:262-266.
    [55] Charissou A., Ait-Ameur L. and Birlouez-Aragon I.. Evaluation of a gaschromatography/mass spectrometry method for the quantification ofcarboxymethyllysine in food samples [J]. Journal of Chromatography A,2007,1140:189–194.
    [56] Bosch L., Sanz M.L., Montilla A., et al. Simultaneous analysis of lysine,Nε-carboxymethyllysine and lysinoalanine from proteins [J]. Journal ofChromatography B,2007,860:69–77.
    [57] Delatour T., Hegele J., Parisod V., et al. Analysis of advanced glycation endproducts indairy products by isotope dilution liquid chromatography-electrospray tandem massspectrometry. The particular case of carboxymethyllysine [J]. Journal ofChromatography A,2009,1216:2371-2381
    [58] Assar S.H., Moloney C., Lima M., et al. Determination of Nε-carboxymethyllysine infood systems by ultra performance liquid chromatography-mass spectrometry [J].Amino Acids,2009:317–326.
    [59] Ahmed N., Mirshekar-Syahkal B., Kennish L., et al. Assay of advanced glycationendproducts in selected beverages and food by liquid chromatography with tandemmass spectrometric detection [J]. Molecular Nutrition and Food Research,2005,49:691-699.
    [60] Ames J.M.. Determination of Nε-carboxymethyllysine in foods and related systems [J].Annals of the New York Academy of Sciences,2008,1126:20–24.
    [61] Erbersdobler H.F. and Somoza V.. Forty years of furosine-forty years of using Maillardreaction products as indicators of the nutritional quality of foods [J]. MolecularNutrition and Food Research,2007,51(4):423–430.
    [62] Thorpe S.R. and Baynes J.W.. CML: a brief history [C]. International Congress Series,2002,1245:91–99.
    [63] Ferreira A.E.N., Freire A.M.J.P. and Voit E.O.. A quantitative model of the generationof Nε-carboxymethyllysine in the Maillard reaction between collagen and glucose [J].Biochemical Journal,2003,376:109-121.
    [64] Wolff S.P. and Dean R.T.. Glucose autoxidation and protein modification the potentialrole of 'autoxidative glycosylation' in diabetes [J]. Biochemical Journal,1987,245:243-250.
    [65] Glomb M.A. and Monnier V.M.. Mechenism of protein modification by glyoxal andglycoaldehyde, reactive intermediates of the Maillad reaction [J]. Journal of BiologicalChemistry,1995,270(17):10017-10026.
    [66] Ahmed M.U., Thorpe S.R. and Baynes J.W.. Identification of Nε-carboxymethyllysineas a degradation product of fructoselysine in glycated Protein [J]. The Journal ofBiological Chemistry,1986,261(11):4889-4894.
    [67]余双菊.羟基自由基的特性及检测方法比较[J].广东化工,2010,37(9):141-143.
    [68]陈建孟,潘伟伟,刘臣亮.电化学体系中羟基自由基产生机理与检测的研究进展[J].浙江工业大学学报,2008,36(4):416-422.
    [69]杨芬,张瑞萍,贺玖明,等.羟自由基的产生、捕集及检测方法[J].药学学报,2007,42(7):692-697.
    [70] Nagai R., Ikeda K., Higashi T., et al. Hydroxyl radical mediatesNε-carboxymethyllysine formation from Amadori product [J]. Biochemical andBiophysical Research Communications,1997,234(1):167-172.
    [71] Beaulieu L.P., Harris C.S., Saleem A., et al. Inhibitory effect of the cree traditionalmedicine wiishichimanaanh (vaccinium vitis-idaea) on advanced glycation endproductformation: identification of active principles [J]. Phytotherapy Research,2010,24:741-747.
    [72] Tsuji-Naito K., Saeki H. and Hamano M.. Inhibitory effects of Chrysanthemum speciesextracts on formation of advanced glycation end products [J]. Food Chemistry,2009,116:854-859.
    [73] Namiki M. and Tateki H.. Development of novel free radicals during theamino-carbonyl reaction of sugars with amino acids [J]. Journal of Agricultural andFood Chemistry,1975,23(3):487–491.
    [74] Hayashi T., Ohta Y. and Namiki M.. Electron spin resonance spectral study on thestructure of the novel free radical products formed by the reactions of sugars withamino acids or amines [J]. Journal of Agricultural and Food Chemistry,1977,25(6):1282-1287.
    [75] Roberts R.L. and Lloyd R.V.. Free radical formation from secondary amines in theMaillard reaction [J]. Journal of Agricultural and Food Chemistry,1997,45:2413-2418.
    [76] Kikugawa K.. Involvement of free radicals in the formation of heterocyclic amines andprevention by antioxidants [J]. Cancer Letters,1999,143:123-126.
    [77] Yordanov N.D. and Mladenova R.. EPR study of free radicals in bread. SpectrochimicaActa Part A.2004,60:1395-1400.
    [78] Uchida M. and Ono M.. Improvement for oxidative flavor stability of beer-role ofOH-radical in beer oxidation [J]. Journal of the American Society of BrewingChemists,1996,54:198-204.
    [79] Pascual E.C., Goodman B.A. and Yeretzian C.. Characterization of free radicals insoluble coffee by electron paramagnetic resonance spectroscopy. Journal ofAgricultural and Food Chemistry,2002,50:6114-6122.
    [80] Hamilton R.J., Kalu C., Prisk E., et al. Chemistry of free radicals in lipids [J]. FoodChemistry,1997,60(2):193-199.
    [81] Tejero I., Gonzalez-Lafont A., Lluch J.M., et al. Theoretical modeling ofhydroxyl-radical-induced lipid peroxidation reactions [J]. Journal of PhysicalChemistry B,2007,111:5684-5693
    [82] Szori M., Csizmadia I.G. and Viskolcz B.. Nonenzymatic pathway of PUFA oxidation.A first-principles study of the reactions of OH radical with1,4-pentadiene andarachidonic acid [J]. Journal of Chemical Theory and Computation,2008,4:1472-1479.
    [83] Manini P., Camera E., Picardo M., et al. Free radical oxidation of coriolic acid(13-(S)-hydroxy-9Z,11E-octadecadienoic Acid)[J]. Chemistry and Physics of Lipids,2005,134:161–171.
    [84] Manini P., Briganti S., Fabbri C., et al. Free radical oxidation of15-(S)-hydroxyeicosatetraenoic acid with the Fenton reagent: characterization of anepoxy-alcohol and cytotoxic4-hydroxy-2E-nonenal from the heptatrienyl radicalpathway [J]. Chemistry and Physics of Lipids,2006,142:14–22.
    [85]盛亮,杨淑蕙.铁离子对过氧化氢催化分解的影响[J].黑龙江造纸,2006,2:11-12.
    [86] Brillas E., Bastida R.M., Llosa E., et al. Electrochemical destruction of aniline and4-chloroaniline for waste-water treatment using a carbon PTFE O2-FED cathode [J].Journal of The Electrochemical Society,1995,142(6):1733-1741.
    [87] Kishimoto N., Morita Y., Tsuno H., et al. Advanced oxidation effect of ozonationcombined with electrolysis [J]. Water Research,2005,39(19):4661-4672.
    [88]孙德智.环境工程中的高级氧化技术[M].北京:化学工业出版社,2002.
    [89] Quan X., Ruan X.L., Zhao H.M., et al. Photoelectrocatalytic degradation ofpentachlorophenol in aqueous solution using a TiO2nanotube film electrode [J].Environmental Pollution,2007,147:409-414.
    [90]张清,应超燕,余可娜,等.双氧水分解速率和稳定性研究[J].嘉兴学院学报,2010,22(3):51-53.
    [91]刘建伟,杨长河.羟基自由基检测方法的研究进展[J].江西化工,2009,2:15-19.
    [92]张建中,赵保路,张清刚.自旋标记ESR波谱的基本理论和应用[M].北京:科学出版社,1987.
    [93]杨春维,王栋,郭建博,等.水中有机物高级氧化过程中的羟基自由基检测方法比较[J].环境污染治理技术与设备,2006,7(1):136-141.
    [94] Tai C., Zou H. and Gu X.X.. Determination of hydroxyl radical and its scavenging rateby electrochemical method [J]. Journal of Instrumental Analysis,2002,21:30-32.
    [95]袁倬斌,邹洪.电化学方法测定羟自由基反应速度常数[J].中国科学技术大学学报,2002,32(3):288-292.
    [96] Blackburn A.C., Doe W.F. and Buffinton G.D.. Salicylate hydroxylation as an indicator ofhydroxyl radical generation in dextran sulfate-induced colitis [J]. Free Radical Biologyand Medicine,1998,25(3):305-313.
    [97]胡盾,冯亦璞. HPLC检测在体大鼠脑缺血再灌期经自由基的变化及维生素E的影响[J].药学学报,1993,28(5):337-341.
    [98]吴建林,袁莉,毛学锋,等.用水杨酸为捕获剂测定辉光放电等离子体中产生的羟基自由基[J].西北师范大学学报(自然科学版),2007,43(3):53-56.
    [99]文镜,张西,常平.通过检测小鼠体内羟自由基含量评价保健食品的抗氧化功能[J],食品科学,2008,29(1):286-291.
    [100] McCabe D.R., Maher T.J. and Acworth I.N.. Improved method for the estimation ofhydroxyl free radical levels in vivo based on liquid chromatography withelectrochemical detection [J]. Journal of Chromatography B,1997,691:23-32.
    [101] Coudray C. and Favier A.. Determination of salicylate hydroxylation products as an invivo oxidative stress marker [J]. Free Radical Biology and Medicine,2000,29(11):1064-70.
    [102]冯慧萍,李亦聪.羟自由基与水杨酸反应机理的初探[J].光谱实验室,2009,26:931-938.
    [103]毕艳兰.油脂化学[M].化学工业出版社,2005.
    [104] Shibamoto T.. Analytical methods for trace levels of reactive carbonyl compoundsformed in lipid peroxidation systems [J]. Journal of Pharmaceutical and BiomedicalAnalysis,2006,41(1):12-25.
    [105] Fujioka K. and Shibamoto T.. Formation of genotoxic dicarbonyl compounds in dietaryoils upon oxidation [J]. Lipids,39(5):481-486.
    [106] Schieberle P.. The Carbon module labeling (CAMOLA) technique a useful tool foridentifying transient intermediates in the formation of Maillard-type target molecules,Annals New York Academy of Sciences,2005,1043:236-248.
    [107] Milee S., Jo Y.J. and Kim Y.S.. Investigation of the aroma-active compounds formed inthe Maillard reaction between glutathione and reducing sugars. Journal of Agriculturaland Food Chemistry,2012,58,3116-3124.
    [108] Nikolov P.Y. and Yaylayan V.A.. Formation of pent-4-en-1-amine, the counterpart ofacrylamide from lysine and its conversion into piperidine in lysine/glucose reactionmixtures. Journal of Agricultural and Food Chemistry,2010,58,4456-4462.
    [109] Srey C., Hull G.L.J., Connolly L., et al. Effect of inhibitor compounds onNε-carboxymethyllysine (CML) and Nε-carboxyethyllysine (CEL) formation in modelfoods [J]. Journal of agricultural and food chemistry,2010,58(22):12036-12041.
    [110] Lima M., Assar S.H. and Ames J.M.. Formation of Nε-carboxymethyllysine and loss oflsine in casein glucose-fatty acid model systems [J]. Journal of agricultural and foodchemistry,2010,58,1954-1958.
    [111] Baker J.R., Zyzak D.V., Thorpe S.R., et al. Chemistry of the fructosamine assay:D-glucosone is the product of oxidation of Amadori compounds [J]. Clinical Chemistry,1994,40:1950-1955.
    [112] Horvat S. and Jakas A.. Peptide and amino acid glycation: new insights into theMaillard reaction [J]. Journal of Peptide Science,2004,10:119-137.
    [113] Yeboah F.K. and Yaylayan V.A.. Analysis of glycated proteins by mass spectrometrictechniques: qualitative and quantitative aspects [J]. Nahrung/Food,45,2001,3:164-171.
    [114] Lapolla A., Fedele D. and Traldi P.. Diabetes and mass spectrometry [J].Diabetes/Metabolism Research and Reviews,2001,17:99-112.
    [115] Gonzalez-Reche L.M., Kucharczyk A., Musiol A.K., et al. Determination ofNε-carboxymethyllysine in exhaled breath condensate using isotope dilution liquidchromatography/electrospray ionization tandem mass spectrometry [J]. Rapidcommunications in mass spectrometry,2006,20:2747-2752.
    [116] Teerlink T., Barto R., Ten B.H.J., et al. Measurement of Nε-carboxymethyllysine andNε-carboxyethyllysine in human plasma protein by stable-isotope-dilution tandem massspectrometry [J]. Clinical Chemistry,2004,50:1222-1228.
    [117] Randell E.W., Vasdev S. and Gill V.. Measurement of methylglyoxal in rat tissues byelectrospray ionization mass spectrometry and liquid chromatography [J]. Journal ofPharmacological and Toxicological Methods,2005,51:153-157.
    [118] Neng N.R., Cordeiro C.A.A., Freire A.P., et al. Determination of glyoxal andmethylglyoxal in environmental and biological matrices by stir bar sorptive extractionwith in-situ derivatization [J]. Journal of Chromatography A,2007,1169:47-52.
    [119] Odani H., Shinzato T., Matsumoto Y., et al. Increase in three α, β-dicarbonyl compoundlevels in human uremic plasma: specific in vivo determination of intermediates inadvanced Maillard reaction [J]. Biochemical and Biophysical Research Communications,1999,256,89-93.
    [120] Han Y., Randell E., Vasdev S., et al. Plasma methylglyoxal and glyoxal are elevatedand related to early membrane alteration in young, complication-free patients with Type1diabetes [J]. Molecular and Cellular Biochemistry,2007,305:123-131.
    [121] Wang Y. and Ho C.T.. Effects of o-phenylenediamine on methylglyoxal generationfrom monosaccharide: Comment on “correlation of methylglyoxal with acrylamideformation in fructose/asparagine Maillard reaction model system”[J]. Food Chemistry,2008,109:1-3.
    [122] Yuan Y., Zhao G., Chen F., et al. Correlation of methylglyoxal with acrylamideformation in fructose/asparagine Maillard reaction model system [J]. Food Chemistry,2008,108:885-890.
    [123]苏有勇,王华,吴桢芬,等.棕榈油酯交换制备生物柴油的反应动力学[J].化学工程,2010,38(11):39-42.
    [124]李鑫,李伟,胡建东,等.应用Origin求解生物分子相互作用的化学模型参数[J].实验技术与管理,2009,26(7):31-33.
    [125]王毅,乔旭.氯化苄光氯化反应宏观动力学的研究[J].精细化工中间体,2006,36(2):59-66.
    [126]崔咪芬,乔旭,王龙恩,等.乙酸光氯化制备氯乙酸的反应动力学[J].南京工业大学学报,2002,24(2):24-29.
    [127]尹国平.二级连串反应动力学方程的求解[J].渭南师范学院学报,2000,5(55):38-39.
    [128]陈一鸣.可逆一连串反应的动力学分析[J].邵阳高专学报,1995,8(3):236-239.
    [129] Rozhon W., Petutschnig E., Wrzaczek M., et al. Quantification of free and totalsalicylic acid in plants by solid-phase extraction and isocratic high-performanceanion-exchange chromatography [J]. Analytical and Bioanalytical Chemistry,2005,382:1620-1627.
    [130] Tabatabaeia A.R. and Abbott F.S.. LC/MS analysis of hydroxylation products ofsalicylate as an indicator of in vivo oxidative stress [J]. Free Radical Biology&Medicine,1999,26,1054-1058.
    [131] Manini P., Pietra P.L., Panzella L., et al. Glyoxal formation by Fenton-induceddegradation of carbohydrates and related compounds [J]. Carbohydrate Research,2006,341:1828-1833.
    [132] Zhu S., Zhang N., Chen X., et al. The mechanism and kinetics for the selectiveoxidation of glyoxal to produce glyoxalic acid by Fenton’s reagent [J]. ReactionKinetics Mechanisms Catalysis,2010,99:325-333.
    [133] Thornalley P., Wolff S., Crabbe J., et al. The autoxidation of glyceraldehyde and othersimple monosaccharides under physiological conditions catalysed by buffer ions [J].Biochimica et Biophysica Acta,1984,797(2):276-287.
    [134] Thornalley P.J., Wolff S.P, Crabbe M.J., et al. The oxidation of oxyhaemoglobin byglyceraldehyde and other simple monosaccharides [J]. The Biochemical Journal,1984,217(3):615-622.
    [135] Hunt J.V., Dean R.T. and Wolff S.P.. Hydroxyl radical production and autoxidativeglycosylation. Glucose autoxidation as the cause of protein damage in the experimentalglycation model of diabetes mellitus and ageing [J]. The Biochemical Journal,1988,256(1):205-212.
    [136] Bhattacharyya J. and Datta A.G.. Studies on the effects of lipopolysaccharide on lipidperoxidation of erythrocyte and its reversal by mannitol and glycerol [J]. Journal ofPhysiology and Pharmacology,2001,52:145-152.
    [137] Litwinienko G. and Kasprzycka-Guttman T.. Study on the autoxidation kinetics of fatcomponents by differential scanning calorimetry.2. unsaturated fatty acids and theiresters [J]. Industrial&Engineering Chemistry Research,2000,39:13-17.
    [138] Minemoto Y., Kometani T., Piao J., et al. Oxidation of oleoyl residue of its esters withethylene glycol, glycerol and erythritol [J]. LWT-Food Science and Technology,2006,39:1-5.
    [139] Miller J.G. and Fry S.C.. Characteristics of xyloglucan after attack by hydroxyl radicals[J]. Carbohydrate Research,2001,332:389–403.
    [140] Niyati-Shirkhodaee F. and Shibamoto T.. Gas chromatographic analysis of glyoxal andmethylglyoxal formed from lipids and related compounds upon ultraviolet irradiation[J]. Journal of Agricultural and Food Chemistry,1993,41(2):227–230.
    [141]范亚苇,邓泽元,余永红,等.不同脂肪酸甲酯化方法对共轭亚油酸分析的影响[J].中国油脂,2007,32(1):52-55.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700