用户名: 密码: 验证码:
电场对橡木桶陈酿白兰地酒的影响及其作用机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为深受消费者喜爱的白兰地酒需在橡木桶里进行贮藏陈酿,通过橡木与酒之间缓慢的反应为酒添色增香,使酒色泽金黄透明、口味醇厚。但是白兰地一般需在橡木桶中贮藏多年,如特级白兰地(X.O)在橡木桶中至少要存放六年以上,一些著名品牌的特级白兰地存放达15年以上。因此为了提高白兰地橡木桶陈酿速率,节省世界有限的橡木资源,降低生产成本,缩短陈酿周期,提高生产效率,白兰地陈酿方法的研究越来越受到人们的重视。
     目前工业化生产所用橡木桶容积一般为225L或者更大,为了能够在较短时间内探明电场作用于橡木桶对白兰地有无影响及产生影响的好坏,本论文研究选择了容积相对较小的经中度烘烤的5L和2L法国橡木桶进行实验。于橡木桶两端施加50kV的电压,5L橡木桶中白兰地的实际电场强度约为1kV/cm,2L橡木桶中白兰地的实际电场强度约为1.1kV/cm,连续处理15个月,每天电场处理12h,处理室温度控制在15℃20℃,相对湿度控制在65%72%。并自然陈酿的白兰地进行了对比,全面分析了白兰地陈酿15个月过程中各种物质的含量变化,主要涉及多酚类物质、醛类、酸类、酯类、醇类物质,及色度、pH、溶解氧、氧化还原电位等指标,并与工业化生产的225L橡木桶中陈酿的白兰地酒进行了对比。主要研究内容和结果如下:
     各陈酿样在5L及2L橡木桶中白兰地的酚类物质、酯类物质及β苯乙醇含量随贮存时间均呈现递增的趋势,但电场处理样的各物质含量均高于同期同容积的自然陈酿样。例如,陈酿6个月时,在5L橡木桶中,电场处理样的总单宁、缩合单宁、总酚、辛酸乙酯及β苯乙醇含量比自然陈酿样分别提高了31.6%、68.2%、7.5%、6.6%和1.6%;在2L橡木桶中,陈酿6个月时,以上各指标分别提高了43.3%、60.3%、3.1%、10.8%和1.4%。
     橡木桶容积的大小决定了与酒体接触内比表面积的大小,容积越小则内比表面积越大。实验表明,2L橡木桶中白兰地的酚类物质、酯类物质及β苯乙醇含量比同期5L橡木桶的含量要高。例如,自然陈酿6个月时,2L陈酿样的单宁、缩合单宁、总酚、辛酸乙酯及β苯乙醇含量比5L陈酿样的分别高62.8%、83.8%、22.7%、2.6%和1.0%;电场处理6个月时,分别高77.2%、67.6%、17.6%、6.7%和0.4%。
     与工业化生产所用225L橡木桶陈酿白兰地12个月时的酚类物质及酯类物质含量相比,5L电场处理样的单宁、缩合单宁、总酚及辛酸乙酯含量在78个月时超过其值,2L电场处理样则更提前了12个月超过其值。说明了电场处理能够促进橡木桶中酚类物质的溶出,促进酯类物质的合成。
     随着陈酿时间的延长,乙醛、乙缩醛、糠醛含量呈现先降低后升高的趋势;乙酸、辛酸、癸酸均呈现递增的趋势,但是电场处理样的增幅要小于同期同容积的自然陈酿样;甲醇及杂醇油含量均呈逐渐降低的趋势,且电场处理样的甲醇及杂醇油含量要低于同期同容积的自然陈酿样。例如,在5L橡木桶中电场处理样的杂醇油及甲醇含量比自然陈酿样在6个月时分别降低了8.26mg/L和4.34mg/L;2L橡木桶中,分别降低了14.04mg/L和6.97mg/L。
     实验还选取了橡木粉、橡木片、橡木丁及橡木块进行陈酿实验,发现无论自然陈酿样还是电场处理样,白兰地的单宁、总酚及易挥发酚类物质含量随贮存时间的增加均呈现递增的趋势,但是电场处理样的含量均要高于同期对照样,4种橡木制品的酚类物质溶出速率大小为橡木粉>橡木片>橡木丁>橡木块。
     通过对没食子酸、原儿茶酸及香草醛等10种酚类物质,乙酸乙酯和乳酸乙酯等5种酯类物质的含量变化趋势分别进行聚类分析,发现了其在白兰地酒陈酿过程中的内在关联性,酚类物质可聚类分为三大类,酯类物质可聚类分为二大类,其中4甲基愈创木酚及乙酸乙酯都单列一类,且电场处理样的含量明显高于同期同容积的自然陈酿样。例如,在5L橡木桶中,电场处理样的4甲基愈创木酚和乙酸乙酯的含量比自然陈酿样在6月时的含量分别提高了66.7%、16.6%;2L橡木桶中分别提高了75.0%和17.5%。
     通过建立电场对酚类物质作用的数学模型,发现对于每一种酚类物质扩散系数的回归方程,电场强度E的系数均比橡木桶体积V的系数要大,这充分说明电场作用与橡木桶体积大小相比,电场的作用对酚类物质的含量影响要大,同时电场E的系数均为正数,说明电场作用对扩散系数及酚类物质的含量起到积极地促进作用。在外加电场的作用下,白兰地中溶质分子的跃迁频率和激活熵被提高,增大了扩散过程中分子的自由度,加快了分子的扩散过程,同时活化能降低,扩散系数增大,从而促进了白兰地酒对橡木成分的提取。外加电场加速了分子运动速度和化学反应速度,电场提供能量,促使分子的电离,降低了反应所需的活化能,活性提高的同时,处于动态平衡的化学反应都加快,提高了分子间的有效碰撞,加速了酯化反应、缔合反应、氧化还原反应等的进行,同时促进了低沸点物质的挥发。
Brandy should be stored in oak barrel for many years in order to obtain attractive color,complex aroma as well as harmonious and comfortable mouth feel by slow reactions betweenoak and wine. For example, special brandy (X.O) should be stored in oak barrels for at leastsix years, some famous brandy were stored for more than15years. Natural aging processnormally takes a long time (over many years), resulting in the low production efficiency andhigh cost. In order to shorten the aging time, save the limited oak resources, reduceproduction costs, speed up the turnover ratio, and improve economic benefit, research shouldbe conducted to accelerate the aging process.
     In the brandy industry, the most common used oak barrel is225L, which is far largerthan the5L and2L barrels used in the current research. The reason of using smaller barrelsis to firstly test and verify the concept and effectiveness of using electric field to acceleratethe aging process of brandy. Once the feasibility of the technique is confirmed, furtherexperiments can then be conducted for larger barrels. When a voltage of50kV is applied, thereal electric field strength in the brandy is about1kV/cm in5L oak barrels, and it is a about1.1kV/cm in2L oak barrels. A voltage of50kV was applied between two electrodes insideof the cellar every12hours (normally treatment time was from8AM to8PM everyday) forcontinuously15months. The cellar temperature was controlled at15℃20℃, and the relativehumidity was controlled at65%72%.The influence of applying an electric field treatment onbrandy stored in oak barrels to simulate the industry application during15months wasinvestigated.The compositions in the EF treated and control brandy samples including phenols,aldehydes, acids, alcoholics, esters, chroma, pH, dissolved oxygen as well as oxidationreduction potential were analyzed. It was demonstrated that the application of electric fieldtreatment directly on oak barrel is a promising and feasible technology to accelerate brandymaturation. The main contents and results were as follows:
     The content of phenolic compounds, esters and β phenethyl alcohol in both barrelsincreased gradually with aging time. Meanwhile, the EF treatment significantly enhanced theincrement of the compounds. For example, concentration of tannins, condensed tannins, totalphenols, ethyl caprylate as well as β phenethyl alcohol in brandy treated by EF was31.6%,68.2%,7.5%,6.6%,1.6%higher than those of the control brandy after6months ofmaturation in5L oak barrels, and43.3%,60.3%,3.1%,10.8%,1.4%higher than those of thecontrol brandy in2L oak barrels, respectively.
     The specific surface area was determined by the volume of oak barrel, the smallervolume the larger specific surface area. Results showed that the concentration of phenoliccompounds, esters and β phenethyl alcohol of brandy stored in2L oak barrels were higherthan stored in5L oak barrels. For example, concentration of tannins, condensed tannins, totalphenols, ethyl caprylate as well as β phenethyl alcohol of brandy stored in2L oak barrelswere62.8%,83.8%,22.7%,2.6%,1.0%higher than stored in5L oak barrels after6monthsof natural maturation, and77.2%,67.6%,17.6%,6.7%,0.4%higher than those treated by EF,respectively.
     Compared with the industrial production value of brandy in225L oak barrels duringaged for12months, the concentration of tannins, condensed tannins, total phenols as well asethyl caprylate in brandy were exceeded after78months stored in5L oak barrels treated byEF, and were exceeded even more12months stored in2L oak barrels treated by EF,respectively. Results showed that after being treated by EF, more beneficial phenols wereextracted from oak barrel. On the other hand, the synthesis of esters was promoted.
     It was observed that the content of the acetaldehyde, acetal and furfural first decreasedand then increased with aging time. Movever, the content of acetic acid, caprylic acid andcapric acid in both barrels increased gradually with aging time, and the content of thosecompounds in brandy stored in oak barrels treated by EF were lower than the natural agedones. The content of methanol and fusel oils in both barrels decreased gradually with agingtime, and the content of those compounds in brandy stored in oak barrels treated by EF waslower than the natural aged ones. For example, the concentration of fusel oils and methanol inbrandy treated by EF was8.26mg/L,4.34mg/L lower than control ones after6monthsmaturation in5L oak barrels, and14.04mg/L,6.97mg/L lower than those in2L oak barrels,respectively.
     The effect of electric field treatment on brandy by adding oak powder, oak chip, oak bit,oak block were also studied in this paper. Results showed that the content of tannins, totalphenols and volatile compounds in all brandy samples increased gradually with aging time.Meanwhile, the EF treatment significantly enhanced the increment of these benificialcompounds. Take phenols for examples, the extraction efficiency under EF fits the followingorder: oak powder, oak chip, oak bit, oak block, respectively.
     The internal relevance of10kinds of phenols and5kinds of esters was revealed bycluster analysis. The phenols and esters was divided into3,2groups, respectively. Meanwhile,the EF treatment significantly enhanced the increment of the compounds. For example,concentration of4methyl guaiacol and ethyl acetate in brandy treated by EF was66.7%, 16.6%higher than those of the control brandy after6months of maturation in5L oak barrels,and75.0%,17.5%higher than those in2L oak barrels, respectively.
     It was indicated that the electric field strength coefficient was larger than the volumecoefficient by regression equation of mathematical model. This implies that the effect of EF ismore significant than the volume of oak barrels. Meanwhile, it was explored that the electricfield strength coefficient was positive which implied the effect is positive. When it wastreated by EF, transition frequency and activation entropy of the solute molecule wereelevated, degree of freedom of molecules diffusion was improved, meanwhile, the activationenergy was reduced, molecular diffusion coefficient depends on the activation energy ofsolvent, less activation energy, greater diffusion coefficient, under the condition of constanttemperature, the molecular diffusion processes was accelerated, so the chemicals extractionfrom the wood was promoted. The speed of molecular motion and reaction speed wasaccelerated by EF, as the electric field power, the ionization of molecules was promoted, thereaction activation energy was reduced, the dynamic equilibrium of chemical reactions wasspeeded up, and effective collision between molecules was also increased. So theesterification reactions, associative reactions, as well as oxidation reduction reaction wereaccelerated, while the volatilizing of low boiling substances was also strengthened.
引文
[1]翟衡.科涅克白兰地酒生产工艺分析[J].酿酒科技1994:63(3):126.
    [2]王恭堂.白兰地工艺学[M].北京:中国轻工业出版社,2002:1240.
    [3]姜忠军.白兰地酿造工艺及质量评价指标研究[D].江南大学,2006.
    [4]赵玉平,李记明,徐岩,等.张裕XO白兰地挥发性成分的初步研究[J].食品与发酵工业,2007,33(10):144147.
    [5]赵玉平,徐岩,李记明,等.白兰地主要香气物质感官分析[J].食品工业科技,2008,29(3):113116.
    [6]刘帅帅,王旻,刘云国.白兰地中香气成分的研究进展[J].粮食科技与经济,2010,35(6):5356.
    [7] Lorenzo C., Pardo F., Zalacain A., et al. Complementary effect of Cabernet Sauvignonon Monastrell wines [J]. Journal of food composition and analysis,2008,21:5461.
    [8] Simon B.F.D., Cadahia E., Jalocha J. Volatile Compounds in a Spanish Red Wine Agedin Barrels Made of Spanish French and American Oak Wood [J]. Agricultural and FoodChemistry,2003,51:76717678.
    [9] Spillman P. J., Iland P. G., Sefton M. A. Accumulation of volatile oak compounds in amodel wine stored in American and Limousin oak barrels [J]. Australian Journal of Grape andWine Research,1998,4(2):6773.
    [10] Mosedale J.R., Puech J.L., Feuillat F. The influence on wine flavor of the oak speciesand natural variation of heart wood components [J]. American Journal of Enology andViticulture,1999,50(4):503512.
    [11] Ancín C., Garde T., Torrea D., et al. Extraction of volatile compounds in model winefrom different oak woods [J]. Food Research International,2004,37(4):375383.
    [12] Chatonnet P., Dubourdieu D. Comparative study of the characteristics of Americanwhite oak (Quercus alba) and European oak (Quercus petraea and Quercus robur) forproduction of barrels used in barrel aging of wines [J]. American Journal of Enology andViticulture,1998,49(1):7985.
    [13] Waterhouse A.L., Towey J.P. Oak lactone isomer ratio distinguishes between winesfermented in American and French oak barrels[J].Journal of Agriculture and FoodChemistry.1994(42):19711974.
    [14]李记明,李华.橡木桶与葡萄酒陈酿[J].食品与发酵工业,1998,24(6):5557.
    [15]黄玉军,孙长花,张翠英.加速白兰地陈化的研究[J].食品科技,2006,35(12):126129.
    [16] Mosedale J.R., Puech J.L. Wood maturation of distilled beverages [J]. Food Scienceand Technology,1998,9:95101.
    [17] Bronze M.R., Boas L.F.V., Belchior A.P. Analysis of old brandy and oak extracts bycapillary electrophoresis [J]. Journal of Chromatography A,1997,768:143152.
    [18] Elperin T.,Fominykh A. Orenbakh Z. Heat and mass transfer during bubble growth inan alternating electric field [J]. Int. Comm. Heat Mass Transfer,2004,31:10471056.
    [19] Garde Cerdán T., Lorenzo C., Alonso G.L., et al. Employment of near infraredspectroscopy to determine oak volatile compounds and ethylphenols in aged red wines [J].Food Chemietry,2010,119:823828.
    [20] Monedero L., Olalla M., Villalón M., et al. Standardisation of the chromaticcharacteristics of sobretablas wine macerates obtained by an accelerated ageing techniqueusing heating and oak shavings [J]. Food Chemistry,2000,69(1):4754.
    [21] Mosedale J.R., Puech J.L., Feuillat F. The influence on wine flavor of the oak speciesand natural variation of heartwood components [J]. Am. J. Enol. Vitic,1999,50:503512.
    [22]董晓宇.法国白兰地[J].酿酒,2011,38(30):8081.
    [23]桂祖发.法国干邑白兰地及苏格兰威士忌概况[J].食品工业,1995,(4):1011.
    [24]董晓宇.法国白兰地[J].酿酒,2011,38(3):8081.
    [25]王霞,王晓红.白兰地的蒸馏理论[J].酿酒科技,2001,47(4):38
    [26]王恭堂.白兰地及其发展概论[J].中外葡萄与葡萄酒,2000(3):1517.
    [27] Hahn H.D., Dong N.T., Okitsu, K., et al. Biodiesel production by esterification of oleicacid with short chain alcohols under ultrasonic irradiation condition [J]. Renew Energy,2009,34:766768.
    [28] Chang A.C. Study of ultrasonic wave treatments for accelerating the aging process in arice alcoholic beverage [J]. Food Chemistry,2005,92:337342.
    [29] Chang A.C. The effects of gamma irradiation on rice wine maturation [J]. FoodChemistry,2003,83:323327.
    [30] Chang A.C., Chen F.C. The application of20kHz ultrasonic waves to accelerate theaging of different wines [J]. Food Chemistry,2002,79:501506.
    [31] Chang A.C. The effects of different accelerating techniques on maize wine maturation[J]. Food Chemistry,2004,86:61–68.
    [32] Elles C.G., Shkrob I.A., Crowell R.A. Excited state dynamics of liquid water: insightfrom the dissociation reaction following two photon excitation [J]. Journal of ChemicalPhysics,2007,126(16):164503.
    [33] Borriello A., Nicolais L., Fang X., et al. Synthesis of poly(amide ester)s bymicrowave methods [J]. Journal of Applied Polymer Science,2007,103:19521958.
    [34]李绍峰,段旭昌,刘树文,等.超高压处理对新鲜干红葡萄酒物理特性的影响[J].酿酒科技,2005,134(8):6164.
    [35]姜慧明,李翠荣,王宏钧.沉缸酒老熟化的机理研究[J].大连民族学院学报,2005,7(3):4950.
    [36]潘忠汉.人工加速酒老熟的探讨[J].酿酒,1985,12(5):613.
    [37]李增胜.用激光老熟清香型名白酒的实验[J].酿酒科技,1985,12(4):1113.
    [38]殷涌光,赫桂丹,石晶.高电压脉冲电场催陈白酒的试验研究[J].酿酒科技,2005,138(12):4750.
    [39]李翠荣,姜波,王宏钧.加速酒老熟化的电催陈方法[J].大连民族学院学报,2005,7(1):5557.
    [40]曾新安,扶雄,李国基,等.电场催陈米酒核磁共振分析[J].光谱学与光谱分析2004,24(6):748751.
    [41]赵怀杰.白酒催陈中的可逆现象[J].酿酒科技,1995,67(1):2829.
    [42]赵怀杰,赵丽媛,赵丽川.浅谈白酒催陈的效果问题[J].山西食品工业,1995,12(3):3436.
    [43]陈木兰.浅谈白酒的老熟[J].酿酒科技,1992,54(6):4244.
    [44]付立新,孟丽芬.辐射加速白酒陈化研究[J].吉林农业大学学报.1994,16(3):6770.
    [45]付立新,孟丽芬,许德春等.辐照白酒对其理化指标影响的研究[J].激光生物学.1996,5(3):900902.
    [46]董华强,钟希琼,曹君.超声波用于杨桃强化酒催陈[J].食品工业科技.1999,20(3):1819.
    [47]向英,丘泰球.低频超声对豉香型白酒催陈效果研究[J].酿酒.2005,32(5):3032.
    [48] Suslick K.S. The chemical effects of ultrasound [J].Scientific American.1989,2:8086.
    [49]黄洪才,马中取,应成仁.激光陈化绍兴加饭酒技术[J].应用激光.1994,14(5):221223.
    [50]殷涌光,赫桂丹,石晶.高电压脉冲电场催陈白酒的试验研究[J].酿酒科技.2005,138(12):4750.
    [51]李翠荣,姜波,王宏钧.加速酒老熟化的电催陈方法[J].大连民族学院学报.2005,7(1):5557.
    [52]吴晖,高孔荣.微波白酒陈化的机理研究[J].食品工业科技.1997,12(3):7374.
    [53]刘乾文,何正军.红外线人工催陈雪山红景天酒[J].酿酒.2000,136(1):8889.
    [54]杨华峰,曾新安,陈勇,等.新鲜葡萄酒高强电磁场人工催陈研究[J].酿酒,2003,30(3):4042.
    [55]肖利民,曾新安,陈勇,等.电磁场催陈新鲜干红葡萄酒红外光谱分析[J].食品科学,2004,25(1):152155.
    [56]李绍峰,段旭昌,刘树文,等.超高压处理对新鲜干红葡萄酒物理特性的影响[J].酿酒科技,2005,134(8):6164.
    [57]陈朝晖,张岭.介绍一种白酒催陈的新方法[J].酿酒.2001,28(3):43.
    [58]孙景庄,薛蕙茹.化学法催陈白酒的研究[J].食品科学.1994,180(12):3941.
    [59]李宏涛,王冰,李次力.臭氧对蒸馏白酒的催陈、除浊效果的研究[J].酿酒.2004,31(2):7577.
    [60]杨文领,王群.强氧对白酒的催陈除浊机理研究[J].酿酒科技.2000(5):5254.
    [1]曾新安,陈勇,高文宏.脉冲电场非热灭菌技术[M].北京:中国轻工业出版社,2005:1228.
    [2]韩光泽,李珺,郭平生,等.能量传递和转换的动力学分解关系[J].广西师范大学学报,2006,24(2):1921.
    [3]韩光泽,华贲,陈清林,等.能量的普遍化表达式与能态公设[J].华南理工大学学报:自然科学版,2001,29(7):4850.
    [4]李景德,沈韩,陈敏.电介质理论[M].北京:科学出版社,2003.
    [5] Han Z., Zeng XA., Yu SJ., et al. Effects of pulsed electric fields (PEF) treatment on theproperties of corn starch [J]. Journal of Food Engineering,2009,93:318323.
    [6] Luo W.B., Han Z., Zeng X.A., et al. Study on the degradation of chitosan by pulsedelectric fields treatment [J]. Innovative Food Science and Emerging Technologies,2010,11(4):587591.
    [7] Puértolas E., Saldna G., Condon S., et al. Evolution of polyphenolic compounds in redwine from Cabernet Sauvignon grapes processed by pulsed electric fields during aging inbottle[J]. Food Chemistry,2010,119(3):10631070.
    [8] López N, Puértolas E, Hernández Orte P, et al. Effect of a pulsed electric field treatmenton the anthocyanins composition and other quality parameters of Cabernet Sauvignonfreshly fermented model wines obtained after different maceration times [J]. LWT FoodScience and Technology,2009,42(7):12251231.
    [9] Han Z., Zeng XA., Yu SJ., et al. Effects of pulsed electric field (PEF) treatment onphysicochemical properties of potato starch [J]. Innovative Food Science and EmergingTechnologies,2009,10(4):481485.
    [10]韩光泽,郭平生,李绍新,等.热力学及其普遍化表达式的动力学特征[J].热能动力工程,2007,22(4):409413.
    [11]韩光泽,李珺,郭平生,等.能量传递和转换的动力学分解关系[J].广西师范大学学报(自然科学版),2006,24(2):1923.
    [12] Puétrolas E., López N., Condón S., et al. Potential applications of PEF to improve redwine quality [J]. Trends in Food Science&Technology,2010,21(5):247255.
    [13] Min S., Jin ZT., Zhang QH. Commercial scale pulsed electric field processing of tomatojuice. Agricultural and food chemistry.2003,51:33383344.
    [14] Wang J., Guan YG., Yu SJ., et al. Study on the maillard reaction enhanced by pulsedelectric field in a glycin glucose model system[J]. Food and bioprocess technology,2011,4(3):469474.
    [15] Ortega Rivas E. Critical issues pertaining to application of pulsed electric fields inmicrobial control and quality of processed fruit juices[J]. Food and BioprocessTechnology,2011,4:631645.
    [16]Puértolas E., López N., Condón S., et al. Pulsed electric fields inactivation of winespoilage yeast and bacteria [J]. International Journal of Food Microbiology,2009,130:4955.
    [17]Garde Cerdán T., Marsellés Fontanet AR., Arias Gil M., et al. Effect of storageconditions on the volatile composition of wines obtained from must stabilized by PEFduring ageing without SO2[J]. Innovative Food Science and Emerging Technologies,2008,9:469–476.
    [18]曾新安,刘燕燕.脉冲电场对大豆分离蛋白溶液表面性质的影响[J].华南理工大学学报:自然科学版,2009,37(4):116119.
    [19]曾新安,高大维,张志航,等.高压电场处理对酱油氨基酸的影响[J].华南理工大学学报:自然科学版,2000,28(11):7881.
    [20]López N., Puértolas E., Condón S., et al. Effects of pulsed electric fields on the extractionof phenolic compounds during the fermentation of must of Tempranillo grapes [J].Innovative Food Science and Emerging Technologies,2008,9:477–482.
    [21]Shukla M.K. Leszczynski J. Guanine in water solution: comprehensive study of hydrationcage versus continuum solvation model [J]. International Journal of Quantum Chemistry,2010,110(15):30273039.
    [22]Zeng X.A., Yu S.J., Zhang L., et al. The effects of AC electric field on wine maturation[J]. Innovative Food Science and Emerging Technologies,2008,9:463468.
    [1]王恭堂.白兰地工艺学[M].北京:中国轻工业出版社,2002:187194.
    [2] Puech J.L. Phenolic Compounds in Oak Wood Extracts Used in the Ageing of Brandies[J]. Journal of the Science of Food and Agriculture,1998,42,165172.
    [3] Mosedale J.R., Puech J.L. Wood maturation of distilled beverages [J]. Food Science andTechnology,1998,9(3):95101.
    [4] Ortega Heras M., González Huerta C., Herrera P., et al. Changes in wine volatilecompounds of varietal wines during ageing in wood barrels [J]. Analytica Chimica Acta,2004,513(1):341350.
    [5] Pérez Prieto L.J., López Roca J.M., Martínez Cutillas A., et al. Extraction and formationdynamic of oak related volatile compounds from different volume barrels to wine and theirbehavior during bottle storage [J]. Agricultural and Food Chemistry,2003,51:54445449.
    [6] Mosedale J.R., Puech J.L. Wood maturation of distilled beverages [J]. Food Science andTechnology,1998,9:95101.
    [7] Diaz Maroto M.C., Sanchez Palomo E., Perez Coello M.S. Fast Screening Method forVolatile Compounds of Oak Wood Used for Aging Wines by Headspace SPME GC MS [J].Agricultural and Food Chemistry,2004,52:68576861.
    [8] Chassagne D., Guilloux Benatier M., Alexandre H., et al. Sorption of wine volatilephenols by yeast lees [J]. Food Chemistry,2005,91(1):3944.
    [9] Chatonnet P., Dubourdieu D., Boidron J. N., et al. The origin of ethylphenols in wines[J]. Journal of the Science of Food and Agriculture,1992,60(2):165178.
    [10] Puech J.L. Extraction of phenolic compounds from oak wood in model solutions andevolution of aromatic aldehydes in wines aged in oak barrels [J]. American Journal ofEnology and Viticulture,1987,38(3):236238.
    [11] Ortega Heras M., González Huerta C., Herrera P., et al. Changes in wine volatilecompounds of varietal wines during ageing in wood barrels [J]. Analytica Chimica Acta,2004,.513(1):341350.
    [12] Jarauta I., Cacho J., Ferreira V. Concurrent phenomena contributing to the formation ofthe aroma of wine during aging in oak wood: An analytical study [J]. Journal of Agriculturaland Food Chemistry,2005,53(10):41664177.
    [13] Bronze M.R., Boas L.F.V., Belchior A.P. Analysis of old brandy and oak extracts bycapillary electrophoresis [J]. Journal of Chromatography A,1997,768:143152.
    [14] Clarke R.J., Bakker J. Wine Flavour Chemistry [M]. Oxford: Blackwell Publishing Ltd,2004:120142.
    [15] Ortega Heras M., González Huerta C., Herrera P., et al. Changes in wine volatilecompounds of varietal wines during ageing in wood barrels [J]. Analytica Chimica Acta,2004,513:341350.
    [16] Sanz M.L., Del Castillo M.D., Corzo N., et al.2Furoylmethyl amino acids andhydroxymethyl furfural as indicators of honey quality [J]. Journal of agriculture and FoodChemistry,2003,51(15):42784283.
    [17] Singleton V.L. Oxygen with phenols and related reactions in musts, wines and modelsystems: observations and practical impli cations [J]. American Journal of Enology andViticulture,1987,38:6977.
    [18] Spillman P.J., Pollnitz A.P., Liacopoulos D., et al. Formation and degradation of furfurylalcohol,5Methylfurfuryl alcohol, vanillyl alcohol, and their ethyl ethers in barrel aged wines[J]. Journal of Agricultural and Food Chemistry,1998,46:657663.
    [19] Stefano R. The volatile compounds of wood aged wines [J]. Vinid'Italia,1988,30:918.
    [20]李艳,崔彦志,随子华.橡木桶陈酿干红葡萄酒过程中聚合单宁的变化[J].酿酒科技,2009,177(3):4850.
    [21]尹卓容.白兰地酒中酚类物质的特性比例与酒的质量等级的关系[J].酿酒科技,1996,77(5):4445.
    [22]李春阳,许时婴,王璋.低浓度香草醛盐酸法测定葡萄籽、梗中原花青素含量的研究[J].食品工业科技,2004,25(4):128130.
    [23]中野准三著.高洁,等译.木质素的化学[M].北京:轻工业出版社,1988:2076.
    [24]李记明,李华.橡木桶与葡萄酒陈酿[J].食品与发酵工业,1998,24(6):5557.
    [25] Ho P., Hogg T.A., Silva M.C.M. Application of a liquid chromatographic method for thedetermination of phenolic compounds and furans in fortified wines [J]. Food Chemistry,1999,64:115122.
    [26]陈磊,黄雪松.高效液相色谱法同时检测黄酒中的5羟甲基糠醛和9种多酚[J].分析化学,2010,38(1):133137.
    [27]孙海峰,吕海涛,周莎莎,等. HPLC法测定苹果浓缩汁中的多酚类物质[J].食品科学,2008,29(4):314317.
    [28]孙承锋,姜竹茂,杨建荣.反相高效液相色谱法测定苹果多酚的含量[J].食品工业科技,2006,27(4):185191.
    [29]吴燕华,刘文力,阎红,等.高效液相色谱法测定苹果中的酚类物质[J].分析化学,2002,30(7):826828.
    [30]易湘茜,韦保耀,腾建文,等.高效液相色谱法测定菠萝中多酚类化合物[J].食品与发酵工业,2006,32(2):99101.
    [31] Puértolas E., Saldna G., álvarez I., et al. Experimental design approach for the evaluationof anthocyanin contentof rose wines obtained by pulsed electric fields.Influence oftemperatureand time of maceration. Food Chemistry,2011,126:1482–1487.
    [32] López N, Puértolas E, Hernández Orte P, et al. Effect of a pulsed electric field treatmenton the anthocyanins composition and other quality parameters of Cabernet Sauvignon freshlyfermented model wines obtained after different maceration times [J]. LWT Food Science andTechnology,2009,42(7):12251231.
    [33] De Vito F., Ferrari G., Lebovka N. I., et al. Pulse duration and efficiency of soft cellulartissue disintegration by pulsed electric fields [J]. Food and Bioprocess Technology,2008,1:307313.
    [34]姜忠军,李记明,徐岩,等.聚类分析在白兰地酒龄鉴定中的应用[J].酿酒科技,2006,146(8):112115.
    [35]徐春龙,林书玉,王成会,等.超生提取中草药成分的动力学模型[J].陕西师范大学学报,2009,37(2):3337.
    [36]陈勇,蔡铭,翟海滨,等.基于圆柱形结构的中草药提取动力学模型[J].浙江大学学报,2006,40(9):16001603.
    [37]李有润,郑青.中草药提取过程的数学模拟与优化[J].中草药,1997,2(7):399401.
    [38]邓韵,毕小玲,张千元,等.超生辅助提取中草药有效成分的动力学研究[J].广东化工,2007,34(6):2831.
    [39]韩泳平,向永臣,王曙宾,等.挥发油提取过程动力学数学模型研究[J].中成药,2001,23(1):1113.
    [40]卢中明,张宿义,吴卫宇.白酒质量控制数学模型的研究与应用[J].2009,179(5):2123.
    [41]杨星,曾新安,樊荣.白酒模拟体系氢键缔合时效性核磁共振研究[J].食品工业科技,2011,32(7):112118.
    [42]陈娟,吕新生.电场活化聚合物材料特性的数学建模研究与分析[J].安徽工业大学学报,2007,24(1):5054.
    [43]丘泰球,李月花.花粉细胞超生破壁技术的研究[J].应用声学,1992,11(2):1013.
    [44]戴干策,任德呈,范自晖.传递现象导论[M].北京:化学工业出版社,1996:3439.
    [45]张东翔,李安妹,徐曦,等.静电场与表面活性剂对液液体系相间传质动力学特性的影响[J].北京理工大学学报,2008,28(3):267270.
    [46]胡熙恩.电场强化液液萃取[J].有色金属,1998,50(3):6570.
    [47]韩光泽,李珺,郭平生,等.能量传递和转换的动力学分解关系[J].广西师范大学学报,2006,24(2):1921.
    [48] Elperin T.,Fominykh A.,Orenbakh Z. Heat and mass transfer during bubble growth inan alternating electric field [J]. Int. Comm. Heat Mass Transfer,2004,31:10471056.
    [1] Clarke R.J., Bakker J. Wine Flavour Chemistry. Oxford: Blackwell Publishing Ltd,2004:6699.
    [2] Mosedale J R, Puech J L. Wood maturation of distilled beverages[J]. Food Science andTechnology,1998,9(3):95101.
    [3] Boulton R B, Singleton V L, Bisson L F.葡萄酒酿造学原理及应用[M].赵光鳌,尹卓容,张继民,等,译.北京:中国轻工业出版社,2001:120185.
    [4] Bronze M R, Boas L F V, Belchior A P. Analysis of old brandy and oak extracts bycapillary electrophoresis [J]. Journal of Chromatography A,1997,768(1):143152.
    [5]游义琳,战吉窚,黄卫东.不同等级白兰地(VSOP、XO、EXTRA)香气成分的分析与评价[J].酿酒科技,2009,175(1):114117.
    [6]游义琳,王秀芹,战吉宬,等.HS SPME GC/MS方法在白兰地香气成分分析中的应用研究[J].中外葡萄与葡萄酒,2008,6:813.
    [7]刘学军,殷涌光,范松梅等.高压脉冲电场催陈葡萄酒香气成分变化的GC MS分析[J].食品科学,2006,27(12):654657
    [8]钱敏,刘坚真,白卫东,等.气质联用仪在食品工业中的应用[J].中国调味品,2009,34(9):101108
    [9]潘祖亭,李步海,李春涯.分析化学[M].北京:科学出版社,2010:385387.
    [10]张燕,卫晓红.GC/MS GC法定性定量测定白兰地芳香性成分[J].酿酒科技,2010,194(8):9295.
    [11]林万福,李福玉,李振林.谈乙醛、乙缩醛在白酒中的含量及其量比关系[J].酿酒,2002,29(3):2021.
    [12]黄跃勇,孙国强,孙靖茹.新蒸馏白酒贮存过程中乙醛和乙缩醛的变化[J].酿酒,2009,36(3):2526.
    [13]陈勇,曾新安,董新平,等.电场催陈对干红葡萄酒游离氨基酸的影响[J].酿酒科技,2004,124(4):8081.
    [14]曾新安,陈勇,郝冬曙.电场作用下葡萄酒香气成分变化气质联用分析[J].酿酒,2004,31(3):4547.
    [15] Zeng X.A., Yu S.J., Zhang L., et al. The effects of AC electric field on wine maturation[J].Innovative Food Science and Emerging Technologies,2008,9(4):463468.
    [16]赖登,罗德志,赵文玲.乙醛、乙缩醛与白酒质量关系的研究[J].酿酒,2001,28(4):5355.
    [17]王恭堂.白兰地工艺学[M].北京:中国轻工业出版社,2002:197286.
    [18]许汉英,赵晓君.分光光度法测定白酒中的糠醛[J].应用化学,1997,12(3):8486.
    [19]康春莉,唐晓剑,郭平,等.UV/O3法降解乙酸的影响因素[J].吉林大学学报(理学版),2008,46(1):162165.
    [20]刘克斌,李曙轩.辛酸和PP333对海桐的化学修剪和生理效应[J].园艺学报,1989,12(1):5156.
    [21]吴庆银.杂多酸催化合成癸酸异戊酯[J].化学与黏合,2000,12(1):2123.
    [22]姜忠军,李记明,徐岩,等.聚类分析在白兰地酒龄鉴定中的应用[J].酿酒科技,2006,146(8):112115.
    [23]黄祖耀,吴维骏,张国泰. β苯乙醇的制备方法[J].江苏化工,1989,7(1):1011.
    [24]卢中明,张宿义,吴卫宇.白酒质量控制数学模型的研究与应用[J].2009,179(5):2123.
    [25]陈娟,吕新生.电场活化聚合物材料特性的数学建模研究与分析[J].安徽工业大学学报,2007,24(1):5054.
    [26]丘泰球,李月花.花粉细胞超生破壁技术的研究[J].应用声学,1992,11(2):1013.
    [27]戴干策,任德呈,范自晖.传递现象导论[M].北京:化学工业出版社,1996:3439.
    [28]张东翔,李安妹,徐曦,等.静电场与表面活性剂对液液体系相间传质动力学特性的影响[J].北京理工大学学报,2008,28(3):267270.
    [29]胡熙恩.电场强化液液萃取[J].有色金属,1998,50(3):6570.
    [30]韩光泽,李珺,郭平生,等.能量传递和转换的动力学分解关系[J].广西师范大学学报,2006,24(2):1921.
    [31]周丽亚,高静,黄志红.由乳酸合成乳酸乙酯反应动力学的研究[J].化学研究与应用,2008,20(12):16051608.
    [32]赵天涛,张丽杰,高静等.脂肪酶催化乳酸与乙醇合成乳酸乙酯的反应动力学[J].催化学报,2008,29(2):141144.
    [33]韩光泽,华贲,陈清林,等.能量的普遍化表达式与能态公设[J].华南理工大学学报:自然科学版,2001,29(7):4850.
    [34]钟方丽,曹宏斌,李鑫钢.外电场作用下的生物膜传质模型[J].吉林化工学院学报,2003,20(4):5961.
    [35]唐洪波,张敏卿.电场中相平衡热力学模型的研究[J].沈阳工业大学学报,2001,23(6),538540.
    [36]郑飞云,姜甜,董建军等.酒类主要风味物质对乙醇水体系中氢键的影响[J].食品科学,2010,31(9):106112.
    [37] Burikov S., Dolenko T., Patsaeva S. et al. Raman and IR spectroscopy research onhydrogen bonding in water ethanol systems[J].Molecular physica,2010,108(18):24272436
    [38]杨星.酒类陈酿过程中分子缔合及电化学参数变化研究[D].广州:华南理工大学,2011.
    [39]张有明,曹成,林奇,等.L天冬氨酸中的氢键作用研究[J].化学研究与应用,2006,18(8):952954.
    [40] Aparicio S., Alcalde R. The green solvent ethyl lactate: an experimental and theoreticalcharacterization [J]. Green chemistry,2009,11(1):6578.
    [41] Delgado P., Sanz M.T., Beltrán S. Kinetic study for esterification of lactic acid withethanol and hydrolysis of ethyl lactate using an ion exchange resin catalyst [J]. ChemicalEngineering Journal,2007,126:111118.
    [42] Carla S.M.P., Viviana M.T.M.S., Simao P.P., et al. Bath and continuous studies for ethyllactate synthesis in a pervaporation membrane reactor [J]. Journal of membrane science,2010,361:4355.
    [43] Puétrolas.E., López.N., Condón S., et al. Potential applications of PEF to improve redwine quality [J]. Trends in Food Science&Technology,2010,21(5):247255.
    [44] Min S., Jin Z.T., Zhang Q.H. Commercial scale pulsed electric field processing oftomato juice. Agricultural and food chemistry.2003,51:33383344.
    [45] Fincan M., Devito F., Dejmek P. Pulsed electric field treatment for solid liquidextraction of red beetroot pigment [J].Food Engineering,2004,64(2):229236.
    [46] De Vito F., Ferrari G., Lebovka N. I., et al. Pulse duration and efficiency of soft cellulartissue disintegration by pulsed electric fields [J]. Food and Bioprocess Technology,2008,1:307313.
    [47] Hayashi M. Organophosphine syntheses via activation of the phosphorus silicon bond ofsilylphosphines [J]. Chemical record,2009,9(4):236245.
    [48] Jia Q.H., Ren S.G. Influence of acids content, esters content, alcohols content on Chineseliquor [J]. Food Engineering,2008,4:1213.
    [49] Kraai G.N., Winkelmana J.G.M., Vriesb de J.G., et al. Kinetic studies on theRhizomucor miehei lipase catalyzed esterifcation reaction of oleic acid with1butanol in abiphasic system [J]. Biochemical Engineering Journal,2008,41:87–94.
    [50] Beata M., Monika J., Iwona L. Kinetic study on catalytic methane esterification in oleumcatalyzed by iodine [J]. Chemical Engineering Journal.2009,154:156161.
    [51] Dames E., Sirjean B., Wang H. Weakly Bound Carbon Carbon Bonds in AcenaphtheneDerivatives and Hexaphenylethane [J]. Journal of Physical Chemistry A,2010,114(2):11611168.
    [52] Ma M.Z., Xu G.L., Xie A.D., et al. The molecular structure and excited states fordimethyl siloxane under the strong electric field [J]. Chinese Journal of Chemical Physics,2005,1:2325.
    [53] Nielsen C.B., Sauer S.P.A., Mikkelsen K.V. Response theory in the multipole reactionfield model for equilibrium and nonequilibrium solvation: Exact theory and the second orderpolarization propagator approximation [J]. Journal of Chemistry Physics,2003,119(7):38493870.
    [54] Ortega Rivas E. Critical issues pertaining to application of pulsed electric fields inmicrobial control and quality of processed fruit juices [J]. Food and Bioprocess Technology,2009, DOI:10.1007/s119470090231x, in press.
    [55] Pavel I., Nuno M.M.M., Carlos A.M.A. et al. Enhanced esterifcation conversion in aroom temperature ionic liquid by integrated water removal with pervaporation [J]. Separationand Purifcation Technology,2005,41:141–145.
    [56] Park J.Y., Wang Z.M., Kim D. K., et al. Effects of water on the esterification of freefatty acids by acid catalysts [J]. Renewable Energy,2010,35:614618.
    [57] Shivareddy I., Sonali S., Jayanta K. B. A kinetic approach to the esterifcation of maleicanhydride with methanol on H Y zeolite. Journal of Industrial and Engineering Chemistry [J].2010,16:467–473.
    [58] Shukla M.K., Leszczynski J. Guanine in water solution: comprehensive study ofhydration cage versus continuum solvation model [J]. International Journal of QuantumChemistry,2010,110(15):30273039
    [59] Elles C.G., Shkrob I.A., Crowell R. A. Excited state dynamics of liquid water: insightfrom the dissociation reaction following two photon excitation [J]. Journal of ChemicalPhysics,2007,126(16):164503.
    [60] Lambropoulos I., Roussis I.G. Inhibition of the decrease of volatile esters and terpenesduring storage of a white wine and a model wine medium by caffeic acid and gallic acid [J].Food Research International,2007,40:176–181.
    [61] Elperin T., Fominykh A. Mass transfer during solute extraction from a fluid sphere withinternal circulation in the presence of alternating electric field [J]. Chemical Engineering andProcessing,2006,45:578585.
    [62] López N., Puértolas E., Hernández Orte P., et al. Effect of a pulsed electric fieldtreatment on the anthocyanins composition and other quality parameters of CabernetSauvignon freshly fermentedmodel wines obtained after different maceration times [J].LWT Food Science and Technology,2009,42:12251231.
    [63]潘丽军,许彬,姜绍通等.乳酸乙酯水解动力学研究[J].食品科学,2006,27(6):5254.
    [64]韩光泽,华贲,陈清林,等.能量的普遍化表达式与能态公设[J].华南理工大学报(自然科学版),2001,29(7):4850.
    [65]韩光泽,郭平生,李绍新,等.热力学及其普遍化表达式的动力学特征[J].热能动力工程,2007,22(4):409413.
    [66]韩光泽,李珺,郭平生,等.能量传递和转换的动力学分解关系[J].广西师范大学学报(自然科学版),2006,24(2):1923.
    [1]王恭堂.白兰地工艺学[M].北京:中国轻工业出版社,2002:190202.
    [2]陈思耘.酒精发酵中高级醇的形成途径及影响因素[J].食品与发酵工业田.1981,12(1):7681.
    [3] Mosedale J R, Puech J L. Wood maturation of distilled beverages [J]. Food Science andTechnology,1998,9(3):95101.
    [4]邹海晏,程志娟.蒸馏酒中的高级醇及其对风味的影响[J].酿酒科技1988,12(1):2426.
    [5]武宝忠,申华.浅析啤酒发酵过程中高级醇的产生及控制措施[J].酿酒.2003,30(3):6667.
    [6]甄会英.葡萄酒中高级醇的测定方法与调控技术研究[D].河北农业大学硕士学位论文,2005.
    [7]黄宏,周锡生.野生山葡萄酒杂醇油含量偏高的原因及对策[J].中外葡萄与葡萄酒,2002,(2):5556.
    [8]张燕,卫晓红. GC/MS GC法定性定量测定白兰地芳香性成分[J].酿酒科技,2010,194(8):9295.
    [9]钱敏,刘坚真,白卫东,等.气质联用仪在食品工业中的应用[J].中国调味品,2009,34(9):101108.
    [10]林志国.啤酒中高级醇的控制[J].酿酒科技.2001,104(2:)5556.
    [11]斐婷婷,兰彦平,周连第,等.果酒中高级醇形成及其控制[J].酿酒科技,2011,201(3):2426.
    [12] Rankine B.C. Formation of higher alcohols by wine yeast and relationships to tastethresholds [J]. Journal of the Science of Food and Agriculture,1967,18:583589.
    [13] Puétrolas E., López N., Condón S., et al. Potential applications of PEF to improve redwine quality [J].Trends in Food Science&Technology,2010,21(5):247255.
    [14]郑飞云,姜甜,董建军等.酒类主要风味物质对乙醇水体系中氢键的影响[J].食品科学,2010,31(9):106112.
    [15] Burikov S., Dolenko T., Patsaeva S., et al. Raman and IRspectroscopy research onhydrogen bonding in water ethanol systems [J].Molecular physica,2010,108(18):24272436
    [16]杨星.酒类陈酿过程中分子缔合及电化学参数变化研究[D].广州:华南理工大学,2011.
    [17]杨华峰,曾新安,陈勇,等.新鲜葡萄酒高强电磁场人工催陈研究[J].酿酒,2003,30(3):4042.
    [18]李绍峰,段旭昌,刘树文,等.超高压处理对新鲜干红葡萄酒物理特性的影响[J].酿酒科技,2005,134(8):6164.
    [19]张有明,曹成,林奇等.L天冬氨酸中的氢键作用研究[J].化学研究与应用,2006,18(8):952954.
    [20]曾新安.豉香型米酒自然陈酿和高压电场催陈效果机理研究[D].广州:华南理工大学,2001.
    [21] Zeng X.A., Yu S.J., Zhang L., et al. The effects of AC electric field on wine maturation[J].Innovative Food Science and Emerging Technologies,2008,9(4):463468
    [22]卢中明,张宿义,吴卫宇.白酒质量控制数学模型的研究与应用[J].2009,179(5):2123.
    [23]陈娟,吕新生.电场活化聚合物材料特性的数学建模研究与分析[J].安徽工业大学学报,2007,24(1):5054.
    [24]丘泰球,李月花.花粉细胞超生破壁技术的研究[J].应用声学,1992,11(2):1013.
    [25]戴干策,任德呈,范自晖.传递现象导论[M].北京:化学工业出版社,1996:3439.
    [26]张东翔,李安妹,徐曦,等.静电场与表面活性剂对液液体系相间传质动力学特性的影响[J].北京理工大学学报,2008,28(3):267270.
    [27]韩光泽,李珺,郭平生,等.能量传递和转换的动力学分解关系[J].广西师范大学学报,2006,24(2):1921.
    [28] Lambropoulos I., Roussis I.G. Inhibition of the decrease of volatile esters and terpenesduring storage of a white wine and a model wine medium by caffeic acid and gallic acid [J].Food Research International,2007,40:176–181.
    [29] Lin Z.Y., Zeng X.A., Yu S.J., et al. Enhancement of ethanol acetic acid esterificationunder room temperature and non catalytic condition via pulsed electric field application. Foodand Bioprocess Technology,2011, DOI:10.1007/s1194701106784, in press.
    [30] Elperin T., Fominykh A. Mass transfer during solute extraction from a fluid sphere withinternal circulation in the presence of alternating electric field [J]. Chemical Engineering andProcessing,2006,45:578585.
    [31] Han Z., Zeng X.A., Yu S.J., et al. Effects of pulsed electric field (PEF) treatment onphysicochemical properties of potato starch [J]. Innovative Food Science and EmergingTechnologies,2009,10(4):481485.
    [32] López N., Puértolas E., Hernández Orte P., et al. Effect of a pulsed electric fieldtreatment on the anthocyanins composition and other quality parameters of CabernetSauvignon freshly fermentedmodel wines obtained after different maceration times [J].LWT Food Science and Technology,2009,42:12251231.
    [33] Park J.Y., Wang Z.M., Kim D.K., et al. Effects of water on the esterification of free fattyacids by acid catalysts [J]. Renewable Energy,2010,35:614618.
    [34] Shukla M.K. Leszczynski J. Guanine in water solution: comprehensive study ofhydration cage versus continuum solvation model [J]. International Journal of QuantumChemistry,2010,110(15):30273039.
    [35] Beata M., Monika J., Iwona L. Kinetic study on catalytic methane esterification in oleumcatalyzed by iodine [J]. Chemical Engineering Journal.2009,154:156161.
    [36]周丽亚,高静,黄志红.由乳酸合成乳酸乙酯反应动力学的研究[J].化学研究与应用,2008,20(12):16051608.
    [37]赵天涛,张丽杰,高静等.脂肪酶催化乳酸与乙醇合成乳酸乙酯的反应动力学[J].催化学报,2008,29(2):141144.
    [38]韩光泽,华贲,陈清林,等.能量的普遍化表达式与能态公设[J].华南理工大学学报:自然科学版,2001,29(7):4850.
    [39]钟方丽,曹宏斌,李鑫钢.外电场作用下的生物膜传质模型[J].吉林化工学院学报,2003,20(4):5961.
    [1]孙玉利,李法德,杨玉娥等.食品物料的电导率及其影响因素[J].包装与食品机械,2005,23(2):47.
    [2]梁英教.物理化学[M].北京:冶金工业出版社,1983:287.
    [3]黄丽君.应用电导率仪测定水中溶解性总固体[J].浙江预防医学,2005,17(1):80.
    [4] Mccleskey RB., Nordstrom DK., Ryan JN. et al.A new method of calculating electricalconductivity with applications to natural waters [J].Geochimica et cosmochimicaacta,2012,77:369382.
    [5] Colombie S., Latrille E.,Sablayrolles JM., et al.Interest of on line monitoring electricalconductivity during wine fermentation[J].European food research and technology,2008,226(6):15531557.
    [6]李冲伟,宋永,李宏涛等.电导率在3种饮料酒发酵过程中的在线监测的研究[J].中国酿造,2011,232(7):3638.
    [7]罗莉萍.中国白酒的电导率及与品质控制的关系[J].中国酿造,2008,197(20):7173.
    [8]李云辉,张宿义,卢中明等.白酒中浑浊、沉淀与电导率关系的研究[J].酿酒科技,2011,210(12):5153.
    [9] López N, Puértolas E, Hernández Orte P, et al. Effect of a pulsed electric field treatmenton the anthocyanins composition and other quality parameters of Cabernet Sauvignon freshlyfermented model wines obtained after different maceration times [J]. LWT Food Science andTechnology,2009,42(7):12251231.
    [10] De Vito F., Ferrari G., Lebovka N. I., et al. Pulse duration and efficiency of soft cellulartissue disintegration by pulsed electric fields [J]. Food and Bioprocess Technology,2008,1:307313.
    [11] Ortega Heras M., González Huerta C., Herrera P., et al. Changes in wine volatilecompounds of varietal wines during ageing in wood barrels [J]. Analytica Chimica Acta,2004,513:341350.
    [12]康文怀.微氧技术作用机理及其在干红葡萄酒工业化生产中的应用研究[D].杨凌:西北农林科技大学,2006.
    [13]周洪波,Ralf C.R.陈坚.酸度、氧化还原电位和水力停留时间对葡萄糖厌氧混合发酵的影响[J].过程工程学报,2001,1(2):180184.
    [14]康宇红,尹玉先.产酸发酵体系中ORP动力学模型的建立及其检验[J].2003,19(4):408410.
    [15]洪妍,郭秋梅,董铁有,等. ORP的测量及数显ORP标定的原理[J].河南科技大学学报(自然科学版),2006,27(1):1820.
    [16] David G., Jeff M. ORP Measurements in Warter and Wastewater [J]. Ultrapure WaterJournal,1993,25(5):2631.
    [17]赖晓绮,黄承玲.氧化还原平衡条件中条件电位的计算[J].赣南师范学院学报,2000(6):6567.
    [18] Sanz M.L., Del Castillo M.D., Corzo N., et al.2Furoylmethyl amino acids andhydroxymethyl furfural as indicators of honey quality [J]. Journal of agriculture and FoodChemistry,2003,51(15):42784283.
    [19] Singleton V.L. Oxygen with phenols and related reactions in musts, wines and modelsystems: observations and practical impli cations [J]. Am. J. Enol. Vitic,1987,38:6977.
    [20] Spillman P.J., Pollnitz A.P., Liacopoulos D., et al. Formation and degradation of furfurylalcohol,5Methylfurfuryl alcohol, vanillyl alcohol, and their ethyl ethers in barrel aged wines[J]. J. Agric. Food Chemistry,1998,46:657663.
    [21] Min S., Jin Z.T., Zhang Q.H. Commercial scale pulsed electric field processing oftomato juice. Agricultural and food chemistry.2003,51:33383344.
    [22]高警峰,彭永臻,王淑莹,等.以DO、ORP、pH控制SBR法的脱氮过程[J].中国给水排水,2001,17(4):611.
    [23]杨星.酒类陈酿过程中分子缔合及电化学参数变化研究[D].广州:华南理工大学,2011.
    [24]邓嫔,刘威,李小明,等. pH、ORP监控在亚硝酸型生物脱氮过程中的应用[J].环境科学与技术,2007,30(3):9799.
    [25]徐慧纬,张旭,杨珊珊,等.电场条件下的硫酸盐还原效应及pH/ORP响应[J].清华大学学报(自然科学版),2009,49(9):15201523.
    [26] Fincan M., Devito F., Dejmek P. Pulsed electric field treatment for solid liquidextraction of red beetroot pigment [J].Food Engineering,2004,64(2):229236.
    [27] Hayashi M. Organophosphine syntheses via activation of the phosphorus silicon bond ofsilylphosphines [J]. Chemical record,2009,9(4):236245.
    [28] Jeon J.G. Kim H.J. A continuum reaction field theory of polarizable, nondipolar,quadrupolar solvents: Ab initio study of equilibrium solvation in benzene [J]. Journal ofSolution Chemistry,2001,30(10),849860.
    [29]曾新安,越强,肖利民.橡木桶陈酿过程葡萄酒溶解氧的变化[J].酿酒科技,2005,137(11):7374.
    [30]康文怀,李华,秦玲.葡萄酒中溶解氧与酚类物质的研究进展[J].酿酒,2003,30(4):4446.
    [31]肖利民,曾新安,陈勇,等.葡萄酒后处理阶段溶解氧变化研究[J].食品科技,2004,(6):7779.
    [32] Roger BB.,赵光鳌,等.葡萄酒酿造学-原理及应用[M].北京:中国轻工业出版社,2001:8595.
    [33] Jia Q.H., Ren S.G. Influence of acids content, esters content, alcohols content on Chineseliquor [J]. Food Engineering,2008,4:1213.
    [1] Mosedale JR., Puech JL. Wood maturation of distilled beverages [J]. Food Science andTechnology,1998,(12)9:95101.
    [2]王霞,李记明,赵光鳌.橡木制品对白兰地中酚类物质的影响[J].酿酒科技,2006,146(8):4851.
    [3]王霞.橡木片对白兰地的陈酿作用研究[J].酿酒科技,2005,138(12):5456.
    [4]郝宪孝,崔宝欣,张秀兰等.无定形橡木陈酿白兰地的质量特性研究[J].酿酒科技,2006,145(7):4244.
    [5]崔宝欣.无定形橡木陈酿白兰地的机理研究[J].烟台师范学院学报(自然科学版).1997,13(4):200205.
    [6]尹卓容.橡木萃取物的生产[J].食品工业.1999,12(4):2730.
    [7] Puech JL.Phenolic compounds in oak wood extracts used in the aging of brandies [J].Journal of the Science of Food and Agriculture.1988,42:165172.
    [8] Arapitsas P., Antonopoulos A., Stefanou E., et al. Artificial aging of wines using oakchips [J].Food Chemistry.2004,86:563570.
    [9] Morales M L., Benitez B., Troncoso AM. Accelerated aging of wine vinegars with oakchips: evaluation of wood flavor compounds [J].Food Chemistry.2004,88:305315.
    [10] Tesfaye W., Morales M.L., Benitez B., et al. Evolution of wine vinegar compositionduring accelerated aging with oak chips [J]. Analytica Chimica Acta.2004,513:239245.
    [11] Alamo MD. Sanza I. Nevares Dominguez. Wine aging in bottle from artificial systems(staves and chips) and oak woods Anthocyanin composition [J]. Analytica ChimicaActa.2006,563:255263.
    [12] Monedero L., Olalla M., Villalon M., et al. Standardisation of the chromaticcharacteristics of sobretablas wine macerates obtained by an accelerated ageing techniqueusing heating and oak shavings [J].Food Chemistry.2000,69:4754.
    [13] Schahinger G. The importance of determining toast levels in oak casks for wine[J].Australian Grape grower Winemaker.1995,8:1011.
    [14] Sanza MDA., Domínguez IN., Cárcel LMC., et al. Analysis for low molecular weightphenolic compounds in a red wine aged in oak chips [J]. Analytica Chimica Acta,2004,513:229237.
    [15] Elperin T., Fominykh A. Mass transfer during solute extraction from a fluid spherewith internal circulation in the presence of alternating electric field [J]. ChemicalEngineering and Processing,2006,45:578585.
    [16] Puértolas E., Saldna G., Condon S., et al. Evolution of polyphenolic compounds in redwine from Cabernet Sauvignon grapes processed by pulsed electric fields during aging inbottle[J]. Food Chemistry,2010,119(3):10631070.
    [17] Garde Cerdán T., Marsellés Fontanet AR., Arias Gil M., et al. Effect of storageconditions on the volatile composition of wines obtained from must stabilized by PEF duringageing without SO2[J]. Innovative Food Science and Emerging Technologies,2008,9:469–476.
    [18] López N., Puértolas E., Hernández Orte P., et al. Effect of a pulsed electric fieldtreatment on the anthocyanins composition and other quality parameters of CabernetSauvignon freshly fermented model wines obtained after different maceration times [J].LWT Food Science and Technology,2009,42:12251231.
    [19] Amami E,Vorobiev E,Kechaou N. Modelling of mass transfer during osmoticdehydration of apple tissue pre treated by pulsed electric field [J]. LWT,2006,39:10141021.
    [20] Han Z., Zeng X.A., Yu S.J., et al. Effects of pulsed electric fields (PEF) treatment onthe properties of corn starch [J]. Journal of Food Engineering,2009,93:318323.
    [21] Elperin T.,Fominykh A.,Orenbakh Z. Heat and mass transfer during bubble growth inan alternating electric field [J]. Int. Comm. Heat Mass Transfer,2004,31:10471056.
    [22] Amami E,Vorobiev E, Kechaou N. Modelling of mass transfer during osmoticdehydration of apple tissue pre treated by pulsed electric field [J]. LWT,2006,39:10141021.
    [23] Wang J., Guan Y.G., Yu S.J., et al. Study on the maillard reaction enhanced by pulsedelectric field in a glycin glucose model system [J]. Food and bioprocess technology,2011,4(3):469474.
    [24] López N., Puértolas E., Condón S., et al. Effects of pulsed electric fields on theextraction of phenolic compounds during the fermentation of must of Tempranillo grapes [J].Innovative Food Science and Emerging Technologies,2008,9:477–482.
    [25] Lin Z.Y., Zeng X.A., Yu S.J., et al. Enhancement of ethanol acetic acid esterificationunder room temperature and non catalytic condition via pulsed electric field application. Foodand Bioprocess Technology,2011, DOI:10.1007/s1194701106784, in press.
    [26] Chatonnet P., Dubourdieu D., Boidron J. N., et al. The origin of ethylphenols in wines[J]. Journal of the Science of Food and Agriculture,1992,60(2):165178.
    [27] Chassagne D., Guilloux Benatier M., Alexandre H., et al. Sorption of wine volatilephenols by yeast lees [J]. Food Chemistry,2005,91(1):3944.
    [28] Jarauta I., Cacho J., Ferreira V. Concurrent phenomena contributing to the formation ofthe aroma of wine during aging in oak wood: An analytical study [J]. Journal of Agriculturaland Food Chemistry,2005,53(10):41664177.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700