用户名: 密码: 验证码:
条带开采工程非线性动力稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
条带煤柱和顶板组成的力学系统是随外部条件变化而不停地变化,在外界某种因素的扰动下,条带开采岩层平衡状态或运动状态会发生突然改变,对其动力系统稳定性进行分析是非常必要的。
     本文首先对把顶板岩层视为边界固定的弹性矩形平板,将条带煤柱近似等效为连续分布的温克尔弹性基础,利用winkler弹性地基和流变理论推导动力荷载下粘弹性地基上四边固支矩形板的粘弹性模型微分方程,分别讨论了在无阻尼情况下和阻尼存在下方程的解。以小阻尼情况为例,分析参数变化对条带开采工程力学系统影响,重点探讨了阻尼、刚度、顶板厚度、采出率和外部荷载频率的变化对系统稳定性特性影响,提出通过调整系统刚度和几何结构以及系统的力学状态来防治条带开采工程的失稳,给出了有针对性具体措施。
     然后,建立在静载荷和动载荷组合作用下的条带煤柱系统的非线性动力学模型,利用双尖点突变模型理论,找到条带煤柱自振频率随静载荷变化规律。推导出条带煤柱发生突变失稳的充分必要条件,在动力扰动条件下,由于煤柱非线性调整系数作用,系统的频率和振幅对条带煤柱稳定性起着重要作用,并探讨了条带煤柱刚度、阻尼力、采出率和弹性模量和对系统非线性动力不稳定区域的影响。而当外界扰动频率在系统固有频率某一范围内时,其微小变化对系统稳定状态起着明显的变化。然后将煤柱动力微分方程转化为杜芬方程的数学模型,通过数值仿真计算,结果表明周期载荷作用下存在着发生混沌运动的可能,必须进行混沌运动的分析。最后,结合峰峰矿区条带开采经验和万年矿建筑物下压煤实际情况,综合分析后,确定庄宴村下压煤的条带开采方案,并在此基础上建立了FLAC3D数值模型,采用动力时程分析方法分析了地震波对条带开采岩体稳定性影响,根据带抗拉摩尔库伦本构关系,利用强度屈服准则来判断条带煤柱单元稳定性,得出条带煤柱各单元安全系数,由此得出,条带煤柱在地震作用下稳定性降低,因此开采设计过程中必须考虑动载荷的影响。
     本文的研究成果对促进条带开采技术在“三下”压煤中的应用和发展、提高地下煤炭资源采出率、保护地表建筑物和生态环境、实现煤炭工业的可持续发展具有重要的理论和实际意义。
The mechanical system consisted by the strip coal pillar and roof was constantly changedwith external conditions in some factors.Under the condition of external disturbance, strip miningrock equilibrium state or state of motion would occur suddenly changed, it was very necessary forthe dynamic system stability analysis.First, the mining subsidence sensitivity was analysed becauseof the changing of engineering physical mechanical parameters of rock and mining geometry in thearticle, the key factor of surface subsidence were found out.The roof was looked as the border fixedelastic rectangular plate, the approximate equivalent of strip coal pillar for a continuous distributionof Weibull elastic foundation, the viscoelastic model differential equations were derivated under therectangular plate on viscoelastic foundation by Winkler elastic foundation and the rheological theoryof dynamic load, the equation solution were discussed respectively under the presence of theundamped case and damping. Taking the case of small damping as example, the effect of parameterswas analysed on strip mining engineering mechanics system, focusing on the damping, stiffness,thickness of roof, recovery rate and external load frequency change on system stabilitycharacteristics influence, it was put forward by adjusting the stiffness of the system and the geometryof the structure as well as mechanical state to control system of strip mining engineering instability,specific measures were put forward.
     Then, it was established in the static load and dynamic load under the combined action of stripcoal pillar system nonlinear dynamics model, according to the double cusp model of catastrophetheory, the strip coal pillar self vibration frequency was changed with the static load variation. Themutated instability of necessary and sufficient conditions with coal pillar was derivated. Because ofthe function of the coal pillar nonlinear adjustment coefficient, system frequency and amplitude wasplayed an important role in the strip coal pillar stability in the dynamic disturbance.The strip coalpillar stiffness, damping force, recovery ratio and elastic modulus and the system nonlinear dynamicinstability region of rats were studied. When external disturbance frequency was in a certain range ofthe system natural frequency, the tiny change on the system steady state plays a significant change.Then,the coal pillar dynamic differential equation was changed into Duffing equation, the resultsshow that the existence of chaos movement may appear under cyclic loading through the numericalsimulation, chaotic motion must be analysed. Finally, combined with the strip mining experience ofFengfeng area and Wannian mining under buildings actual condition,,Zhuang Yan village under the pressure of coal strip mining scheme was identified after a comprehensive analysis,and on basis ofthe above, the FLAC3Dnumerical model was established, the seismic waves on the strip mining ofrock stability influence was analyzed using the dynamic time-history analysis method. Accordingto Mohr-Coulomb with tensile constitutive relation, the stability of strip coal pillar unit was judgedusing yield strength criterion. The unit safety coefficient of the strip coal pillar was gotten. The stripcoal pillar stability would be reduced after earthquake, so the exploitation of design must beconsidered in the process of dynamic load effect.
     The reasearch would be provided with the important theory and the practical significance onstrip mining technology in three-underground mining application and development, covering therecovery rate of coal resources improved, the protection of surface buildings and ecologicalenvironment, the sustainable development of the coal industry realized.
引文
[1]郭文兵,邓喀中,邹友峰.我国条带开采的研究现状与主要问题[J],煤炭科学技术,2004,32(8):6-11.
    [2]钱鸣高,许家林,缪协兴.煤矿绿色开采技术[J].中国矿业大学学报,2003,32(4):343-348.
    [3]于广明,杨伦,等.地层沉陷非线性原理、监测与控制[M].长春:吉林大学出版社,2000.
    [4]郭文兵,邓喀中,邹友峰.岩层与地表移动控制技术的研究现状及展望[J].中国安全科学学报,2005,15(1):6-9.
    [5]吴立新,王金庄,刘延安等.建(构)筑物下压煤条带开采理论与实践[M].徐州:中国矿业大学出版社,1994.
    [6]郭增长,谢和平,王金庄.条带开采保留煤柱宽度和采出宽度与地表变形的关系[J].湘潭矿业学院学报,2003,18(2):13-17.
    [7]郭文兵,邓喀中,邹友峰.条带开采地表移动参数研究[J].煤炭学报,2005,30(2):182-186.
    [8]邹友峰,马伟民,何满朝等.条采沉陷计算的空间分层介质力学法[J].焦作矿业学院学报,1994,36(1):4-12.
    [9]邹友峰,邓喀中,马伟民.矿山开采沉陷工程[M]:徐州:中国矿业大学出版社,2003.
    [10]郭增长.极不充分开采地表移动预计方法及建筑物深部压煤开采技术的研究.[博士学位论文][D].北京:中国矿业大学(北京校区),2001.
    [11]吴立新,王金庄,郭增长.煤柱设计与监测基础.徐州:中国矿业大学出版社,2000.
    [12]王旭春,黄福昌.A.H.威尔逊煤柱设计公式探讨及改进.煤炭学报,2002,27(6):604-608.
    [13]崔希民,缪协兴.条带煤柱中的应力分析与沉陷曲线形态研究[J].中国矿业大学学报,2000,29(4):392-394.
    [14]侯朝炯,马念杰.煤层巷道两帮煤体应力和极限平衡区的探讨[J].煤炭学报,1989,12(4):21-29.
    [15]胡炳南.煤层群条带开采优化设计原则[J].煤矿设计,2000,4:3-6.
    [16]郭文兵,柴一言等.走向条带开采煤柱稳定性的影响因素探讨.煤炭高校第二届青年学术会议论文集,中国矿业大学出版社,1998.
    [17]郭文兵,柴一言.条带开采采场应力分布规律的光弹性实验研究[J].辽宁工程技术大学学报,1998,17(6):590-594.
    [18]吴立新,王金庄.煤柱屈服带宽度计算及其影响因素分析[J].煤炭学报,1995,20(6):625-631.
    [19]刘沐宇,徐长佑.硬石膏的流变特性及其长期强度的确定[J].中国矿业,2000,9(2):53~55.
    [20]邓广哲,朱维申.蠕变裂隙扩展与岩石长时强度效应实验研究[J].实验力学,2002,17(2):7~9.
    [21]邓喀中.开采沉陷中的岩体结构效应[M].徐州:中国矿业大学出版社,1998.
    [22]邓喀中,谭思秀,刘茂德.在有裂隙厚煤层中的条带煤柱尺寸计算方法[J].江苏煤炭,1994(4):43-45.
    [23]吴立新,王金庄,郭增长.煤柱设计与监测基础.徐州:中国矿业大学出版社,2000.
    [24]钱鸣高,缪协兴,许家林等.岩层控制的关键层理论[M].徐州:中国矿业大学出版社,2000.
    [25]张连贵,张怀新.威尔逊煤柱设计公式探讨及改进[J].煤炭学报,2002,27(6):3-5.
    [26]谢和平,段发兵,等.条带煤柱稳定性理论与分析方法研究进展[J],中国矿业,1998,7(5):37-41.
    [27]王卫军,侯朝炯.回采巷道煤柱与底板稳定性分析[J].岩土力学,2003,24(1):75-78.
    [28] V.K.singh D.singh,T.N.singh. Prediction of strength properties of some schistose rocksfrom petrographic properties using artificial neural networks [J].Int.J Rock Mech. Min Sci.,2001,(38):269-284.
    [29] Meulenkamp F. Application of neural network for the prediction of the unconfinedcompressive strength from equotip hardness [J]. International Journal of Rock Mechanicsand Mining Science,1999,36(1):29-39.
    [30] Ambrozic, Tomaz.Turk, Goran.Prediction of subsidence due to underground mining byartificial neural networks [J]. Computers and Geosciences,2003,29(5):627-637.
    [31]李守巨.基于神经网络的岩体渗透系数反演方法及工程应用[J].岩石力学与工程学报,2002,21(4):479-483.
    [32]乔春生.岩石工程数值分析选择岩体力学参数的神经元网络方法[J].岩石力学与工程学报,2000,19(1):479-483.
    [33] Zhang Yuzhuo,Wang Mingli. Fuzzy failure analysis of coal pillars for subsidence control.Journal of coal science and engineering (China),2000,6(1):19-22.
    [34]郭文兵.条带煤柱稳定性模糊数学分析[J].华北水利水电学院学报,1994,4:67-72.
    [35]于广明.地层沉陷的突变现象及其研究进展[J].辽宁工程技术大学学报,2001,20(1):1-5.
    [36]郭文兵,邓喀中,邹友峰.走向条带煤柱破坏失稳的尖点突变模型[J].岩石力学与工程学报,2004,23(12):1996-2000.
    [37]郭文兵,邓喀中,邹友峰.条带煤柱的突变破坏失稳理论研究[J].中国矿业大学学报.2005,34(1):77-81.
    [38] Sizer E., Gill M. Pillar failure in shallow coal mines—a recent case history [J].Transactions of the institution of mining and metallurgy,1995, Vol.109:147-156
    [39] Bieniawski ZT. Design of mine pillars for long-term stability[C].Proceeding of theinternational High-Tech conference on Geo-engineering. National Mining University ofBeijing, China,1995, p245-257
    [40] Karl R., Zipf J., Mark C. Design methods to control violent pillar failures inroom-and-pillar mine [J]. Transactions of the institution of mining and metallurgy,1997,Vol.106: A124-131.
    [41] Biswas, K.Peng, S.S. Study of weathering action on coal pillars and its effects onlong-term stability [J]. Mining Engineering (Littleton, Colorado),1999,51(1):71-76
    [42] Khaled Morsy Mohamed. Design considerations for long-wall yield pillar stability:[Ph.D.Dissertation].America: College of Engineering and Mineral Resources at West VirginiaUniversity,2003
    [43]王来贵,黄润秋.岩石力学系统运动稳定性理论及其应用[M].北京:地质出版社,1998.
    [44] Hatzor, Y.HArzi, A.A.; Zaslavsky, Y. Dynamic stability analysis of jointed rock slopesusing the DDA method: King Herod's Palace, Masada, Israel [J].International Journal ofRock Mechanics and Mining Sciences,2004,41(5):813-832.
    [45]舒仲周.运动稳定性[M].成都:西南交通大学出版社,1989.
    [46] Daddazio, Raymond P. Nonlinear dynamic slope stability analysis [J].Journal ofGeotechnical Engineering,1987,113(4):285-298.
    [47]韩茂安,顾圣士.非线性系统的理论和方法[M].北京:科学出版社,2001.
    [48] Mroz, Nawrocki, P Z. Deformation and stability of an elastic-plastic softening pillar [J].Rock Mechanics and Rock Engineering,1989,22(2):69-108
    [49] Tsang, P. Model for floor stability analysis [J].New Techno Mine Health Safe,1992,12(6):225-233
    [50]孔庆凯.非线性系统稳定性及其在力学系统中的应用:[硕士学位论文][D].成都:四川大学,2001.
    [51] Park, D.W. Stability analysis of a room-and-pillar mine with thinly laminated roof, strongpillar, and weak floor [J]. Preprint-Society of Mining Engineers of AIME,1991,23(3):7
    [52]谭云亮,王泳嘉,朱浮声.矿山岩层运动非线性动力学反演预测方法[J].岩土工程学报,1998,20(4):16-19.
    [53]赵国旭,谢和平,马伟民.宽厚煤柱的稳定性研究[J].辽宁工程技术大学学报,2004,23(1):38-40.
    [54]袁礼明,王金庄.条带开采法岩层移动机理分析[J].岩石力学与工程报,1990,9(2):147~153.
    [55]谢宗保,范志忠.条带煤柱稳定性及支护设计研究[J].煤炭科学技术2008,36(7):19-22.
    [56]何金,邓喀中.条带开采煤层间岩体应力分析[J].河南理工大学学报(自然科学版),2007,26(3):259-263.
    [57]刘刚.条带开采煤柱静动态稳定性研究[D].西安科技大学,2011,48-70.
    [58]邹友峰.条带矿柱平均垂直应力的宏观分布[J].水文地质工程地质,1995,(4):4-6.
    [59]胡炳南.条带开采中煤柱稳定性分析[J].煤炭学报1995,20(2):205-210
    [60]王连国,缪协兴.煤柱失稳的突变学特征研究[J].中国矿业大学学报,2007,1(36):7-11.
    [61]刘长友,万志军,卫建清,等.房柱式开采煤柱的承载变形规律及其稳定性分析[J].煤炭学报,2001,26(增):71-75.
    [62]徐思朋,茅献彪,张东升.煤柱塑性区的弹粘塑性理论分析[J].辽宁工程技术大学学报,2006,25(2):194-196.
    [63]杨静,茅献彪,刘宁.条带开采下煤柱稳定性的粘弹性分析[J].爆破.2007.12(24):212-215.
    [64]徐金海,缪协兴,张晓春.煤柱稳定性的时间相关性分析[J].煤炭学报,2005,8(30):433-437.
    [65] Garcia A.B.Mere J.O.Parameter optimization of influence functions in miningsubsidence.International Journal of Rock Mechanics and Mining Sciences.1997,34(7):1125-1131.
    [66] QianMing-gao,Xu jia-lin,Miaoxie-xing,etal.Green technique in coal mining[J].Jounal ofChina University of Mining&Techoology,2003,32(4):343~348.
    [67]李德海,陈祥恩,李东升.厚松散层下开采地表移动预计及岩移参数分析[J].矿山压力与顶板管理,2002,(1):90-92.
    [68]陈祥恩,李德海,勾攀峰.巨厚松散层下开采及地表移动[M].中国矿业大学出版社,2001.9:222-223.
    [69]郝延锦,吴立新,戴华阳.用弹性板理论建立地表沉陷预计模型[J],岩石力学与工程学报,2006,25(2):2958-2962.
    [70]吴立新,王金庄,刘延安,等.建(构)筑物下压煤条带开采理论与实践[M].徐州:中国矿业大学出版社,1994.
    [71]柴华彬,邹友峰.条带开采中采空区顶板突变模型及稳定性分析.沈阳:第九届全国岩石力学与工程大会论文集,科学出版社,2006,9
    [72]柴华彬.条带开采工程岩体稳定性分析及地表移动参数研究[博士学位论文][D].焦作:河南理工大学,2008.
    [73]苏国韶,张小飞,陈光强,等.爆炸荷载作用下岩体振动特性DE-FLAC3D数值模拟方法[J].北京理工大学学报,2009(6):119-123.
    [74]郭雷.高应力岩体动力响应及岩爆研究[硕士学位论文][D].长沙:中南大学,2006,17-48.
    [75]李夕兵,李地元,郭雷,等.动力扰动下深部高应力矿柱力学响应研究[J].岩石力学与工程学报,2007,26(5):922-928.
    [76]国胜兵,王明洋,赵跃堂.爆炸地震波作用下地下结构动力响应数值分析[J].世界地震工程,2004,20(4):137-142.
    [77]姜耀东,赵毅鑫,宋彦琦,等.放炮震动诱发煤矿巷道动力失稳机理分析[J].岩石力学与工程学报,2005,24(17):3131-3136.
    [78]杨建立,左建平,孙凯等.大采高多断层工作面综放诱发地表沉陷观测及数值分析[J].岩石力学与工程学报,2011,30(60):1216-1224.
    [79]郭建军,窦源东,杨玉泉.矿柱失稳突变学机理及对夏甸金矿矿柱稳定性分析[J].黄金,2008,29(11):24-28.
    [80]郭建军,窦源东.开采对矿柱及围岩扰动破坏规律的数值模拟研究[J].黄金,2008,29(6):30-35.
    [81]谷惠棠,胡慧明.基于突变理论的矿柱失稳破坏研究[J].金属矿山.2011,(8):15-18.
    [82]唐春安.岩石破裂过程的灾变[M].北京:煤炭工业出版社,1993.
    [83]秦四清,何怀锋.狭窄煤柱冲击地压失稳的突变理论分析[J].水文地质工程地质.1995,(5):17-20.
    [84]秦四清,王思敬.煤柱-顶板系统协同作用的脆性失稳与非线性演化机制[J].工程地质学报,2005,13(4):437-446.
    [85]白云飞.基于突变理论的矿柱岩爆机理与岩爆预测研究[硕士学位论文][D].长沙:中南大学.2009.
    [86]张勇,潘岳.弹性地基条件下狭窄煤柱岩爆的突变理论分析[J].岩土力学,2007,28(7):1469-147.
    [87]徐曾和;徐小荷;唐春安.坚硬顶板下煤柱岩爆的尖点突变理论分析[J].1995,(5):60-63.
    [88]李江腾.硬岩矿柱失稳及时间相依性研究[D].中南大学.2005.7.
    [89]王连国,缪协兴.基于尖点突变模型的矿柱失稳机理研究[J].采矿与安全工程学报,2006,23(2):137-140.
    [90]王连国,缪协兴.煤柱失稳的突变学特征研究[J].中国矿业大学学报.2007,36(1):7-11.
    [91]王连国,缪协兴,王学知,等.条带开采煤柱破坏宽度计算分析[J].岩土工程学报,2006,28(6):767-769.
    [92]谢和平,周宏伟,刘建锋,等.不同开采条件下采动力学行为研究[J].煤炭学报,2011,36(7):1067-1074
    [93]李银山,张善元,刘波,等.各种板边条件下大挠度圆板自由振动的分岔解[J].机械强度,2007,,2(1):30-35
    [94]祝彦知,程楠.四种粘弹性地基上弹性地基板的自由振动解[J].强度与环境2001,(3):31-40.
    [95]冯振宇,王忠民,樊丽俭.粘弹性点支承粘弹性桩的动力稳定性分析[J].中国公路学报,200619(1):67-70.
    [96]张我华,邱战洪,陈合龙.堤坝和基础非线性动力失稳灾变的分岔突变分析[J].浙江大学学报(工学版),200741(1):88-96.
    [97]左宇军,李夕兵,马春德,张义平,王卫华.动静组合载荷作用下岩石失稳破坏的突变理论模型与试验研究[J].岩石力学与工程学报,200524(3):741-748.
    [98]祝颜知,冯紫良,程楠.文克尔粘弹性地基上弹性地基板的解析解[J].强度与环境,2001(2):42-50.
    [99]王来贵,张寅初,章梦涛,等.岩石试件力学系统运动规律的描述及稳定性初探[J].阜新矿业学院学报(自然科学版),1997,16(2):134-138.
    [100]葛修润,蒋字,卢允德,等.周期荷载作用下岩石疲劳变形特性试验研究[J].岩石力学与工程学报,2003,22(10):l581-l585.
    [101]朱因远,周纪卿.非线性振动和运动稳定性[M].西安交通大学出版社,1992.
    [102]魏宏森,宋水华等.开创复杂性研究的新学科[M],四川教育出版社,1991.
    [103]刘建锋,徐进,李青松.循环荷载下岩石阻尼参数测试的试验研究[J].岩石力学与工程学报.2010,29(5):1037-1041.
    [104]刘建锋,徐进,李青松,等.循环荷载作用下岩石阻尼特性的试验研究[J].岩石力学与工程学报,2010,29(5):1036-104.
    [105]王来贵,张永利,马少鹏等.调整系统状态防治冲击地压的机制[J].煤矿开采,1998(2):22-24.
    [106]彭凡,傅衣铭.粘弹性板的非线性动力稳定特性分析[J].固体力学学报,2004,25(1):115-118.
    [107]张倬元,王士天,王兰生.工程地质分析原理[M].北京:地质出版社,1980.
    [108]张咸恭,王思敬,张倬元等.中国工程地质学[M].北京:科学出版社,2000.
    [109]杨健,王连俊.岩爆机理声发射试验研究[J].岩石力学与工程学报,2005,4(20):3796-3802.
    [110]张茹,谢和平,刘建锋等.单轴多级加载岩石破坏声发射特性试验研究[J].岩石力学与工程学报,2006,25(12):2584-2588.
    [111]王来贵,刘向峰,马少鹏.岩石试件非稳定破坏演化过程分析.新世纪岩石力学与工程的开拓和发展——中国岩石力学与工程学会第六次学术大会论文集,2000.
    [112]陈予恕.非线性振动系统的分叉和混沌理论[M].北京:高等教育出版社,1993.
    [113]郭建军.夏甸金矿矿柱及围岩稳定性分析与应用[博士学位论文][D].青岛:山东科技大学,2005.
    [114]邹友峰,柴华彬.我国条带煤柱稳定性研究现状及存在问题[J].采矿与安全工程学报,2006,23(2):141-145.
    [115]高富强,高新峰,康红普.动力扰动下深部巷道围岩力学响应FLAC分析[J].地下空间与工程学报,2009,5(4):682-685.
    [116]Li X, Ma C.Experimental study of dynamic response and failure behavior of rock undercoupled static-dynamic loading [A].In:Aoki O ed.Proceedings of the ISRMInternationalSymposium3rd ARMS[C].Rotterdam:Mill Press,2004,891-895.
    [117]隋斌,朱维申,李树忱.深部岩柱在动态扰动下力学响应的数值模拟[J].岩土力学,2009,30(8):2501-2505.
    [118]LEE C F.Performance of underground coal mines during the1976TangshanEarthquake[J].Tunneling and Underground Space Technology,1987,2:199-202.
    [119]陈继锋.甘肃华亭地区矿震记录特征分析[J].西北地震学报,2010,32(1):92-94.
    [120]李永靖,张向东,袁世君等.抚顺老虎台矿矿山地震活动趋势研究[J].中国矿业,2004,13(11):64-66.
    [121]刘大勇,宋建潮,王恩德.基于双岩模式的抚顺煤田矿震成因机理探讨[J].地质灾害与环境保护,2007,18(2):9-14.
    [122]杨小彬.矿震与天然地震相关性的研究[硕士学位论文][D].阜新:辽宁工程技术大学,2002
    [123]武晓娟.科学应对义马煤业冲击地压事故.《中国能源报》-2011-11-14.
    [124]伍永田,张旭生,李晓芸.地震作用对采空区塌陷的UDEC模拟[J].矿业工程,2007,5(6):19-22.
    [125]李海波,马行东,李俊如等.地震荷载作用下地下岩体洞室位移特征的影响因素分析[J].岩土工程学报,2006,28(3):358-362.
    [126]黄润秋,王贤能,唐胜传.深埋隧道地震动力响应的复反应分析[J].工程地质学报,1997,5(1):l-7.
    [127]张雪枫.可液化场地及桥梁桩基地震反应的数值模拟[硕士学位论文][D].北京:北京交通大学,2011.
    [128]李世凯.强震作用下岩质边坡崩塌的动力响应分析[硕士学位论文][D].成都:成都理工大学,2011.
    [129]张森.顺层岩质边坡地震动力响应和稳定性研究[硕士论文][D].兰州:兰州大学,2011.
    [130]杨溢.爆破荷载对蠕动边坡的累积效应及稳定性影响学位研究[博士学位论文][D].昆明:昆明理工大学,2010-12.
    [131]张友锋,袁海平.FLAC3D在地震边坡稳定性分析中的应用[J].江西理工大学学报,2008,29(5):23-26.
    [132]李磊.滑坡堆积体的地震波动力响应研究[硕士学位论文][D].成都:成都理工大学,.2010.
    [133]蔡汉成.边坡地震动力响应及其破坏机制研究[硕士学位论文][D].兰州:兰州大学,2010.
    [134]Itasca Consulting Group Inc. FLAC3D(fast Lagrangian analysis of continua in3dimensions) user’s manual(version3.0)[R]. Minneapolis,USA:Itasca Consulting GroupInc,2005.
    [135]石崇.含弱面岩体的地震动力响应分析及工程应用[D].南京:河海大学,2008.
    [136]王如宾,徐卫亚,石崇等.高地震烈度区岩体地下洞室动力响应分析[J].岩石力学与工程学报,2009,28(3):568-575.
    [137]宁宇,徐卫亚,郑文棠等.白鹤滩水电站拱坝及坝肩加固效果分析及整体安全度评价[J].岩石力学与工程学报,2008,27(9):1890-1898.
    [138]A. Wolf. J. B. Swift, H. L. Swinney J. A. Vastano. Determining Lyapunovexponents from a time series[J], Physica16D,1985,285-317.
    [139]王妍,徐伟.基于时间序列的相空间重构算法及验证[J].山东大学学报(工学版),2005,35(6):89-94.
    [140]朱石坚,俞翔基.Lyapunov指数谱的非线性隔振系统混沌运动参数区域预测[J].海军工程大学学报,2003,15(6):8-12.
    [141]张作生,彭虎,公佩祥.时间序列分维数提取算法的研究[J].中国科学技术大学学报,1997,27(2):221-224.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700