用户名: 密码: 验证码:
LED用高折射率光学树脂的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高折射率光学树脂用于发光二极管(LED)封装时,可以使LED芯片免受应力冲击和水汽侵蚀,能改善光取出效率、减少发热和延长使用寿命。研究表明,分子结构中以硫醇或硫醚基团引入硫原子是提高聚合物折射率最有效的方法之一。然而,现已报道的高折射率光学树脂存在价格高、稳定性差、或难以加工的问题,有必要研究成本适中和综合性能良好的高折射率光学树脂。
     采用4,4'-二巯基二苯硫醚和4,4'-二羟基二苯硫醚,通过二步法,分别合成了高折射率的二巯基二苯硫醚环氧预聚物(DGETDBT)和二羟基二苯硫醚环氧预聚物(DGETP)。通过傅里叶变换红外光谱仪(FTIR)和核磁共振仪的氢谱(1H NMR)表征合成产物的分子结构,用差示扫描量热仪(DSC)、热重分析仪(TGA)、热机械分析仪(TMA)、紫外可见光谱仪和阿贝折射仪分析环氧预聚物、环氧混合物及其固化物的光学性能、热性能和热稳定性,并与普通的双酚A环氧预聚物(DGEBA)的相应性能进行对比。分析表明,DGETDBT和DGETP的折射率分别为1.665和1.612,与间苯二甲胺(MXDA)固化反应得到的固化物折射率分别为1.698和1.645,与甲基六氢苯酐(MHHPA)固化反应得到的固化物折射率分别为1.628和1.595,高于DGEBA相应的1.570、1.604和1.568,表明硫原子对提高折射率有很大帮助。DGETDBT、DGETP和DGEBA与MXDA反应的固化物可见光透光率均超过85%,与MHHPA反应的固化物相应值超过88%。DGETDBT/MXDA和DGETDBT/MHHPA固化物透光率为零的区域为200~370nm和200~390nm。透光率为零的区域覆盖紫外线谱带有利于防止LED发出的紫外线泄露,保护人眼免受紫外线伤害。DGETDBT、DGETP和DGEBA固化时表现出同样的放热行为,与MXDA及MHHPA反应得到的固化物T1均超过250℃,明显高于LED的正常使用温度。DGETP价格适中,折射率为1.612,其他性能不低于DGEBA,有望成为LED的高效封装树脂。
     硫醇类固化剂折射率高,固化速率快,且能提高固化产物的韧性。脂肪硫醇可通过硫脲法合成,合成过程比苯硫酚的合成过程简单。采用硫脲法合成邻苯二甲硫醇(OBDMT),FTIR和1H NMR表征合成产物的分子结构。OBDMT为无色晶体,折射率为1.628。DGETP/OBDMT固化物的折射率为1.654,透光性超过85%,玻璃化转变温度为28.7℃。DGETP/MHHPA固化物的折射率为1.595,透光性超过88%,玻璃化转变温度为64.9℃。对于同一种环氧树脂,OBDMT固化物比MHHPA固化物具有更高的折射率。
     采用点击化学法,季戊四醇四丙烯酸酯(PETTA)分别与季戊四醇四巯基乙酸酯(PETTG)和OBDMT反应,通过热固化和紫外光固化两种工艺,制备PETTA/PETTG固化物和PETTA/OBDMT固化物。PETTA/OBDMT固化物的折射率为1.597,透光率基本超过85%,1%的热失重温度达237.8℃。PETTA/PETTG固化物的透光率最高达93%,1%的热失重温度达324.2℃,可以媲美有机硅封装树脂,其折射率为1.556,高于大部分有机硅封装树脂的1.410~1.530。
     原位分析及拟合结果表明,折射率随着固化时间或者固化度呈明显的指数关系。在固化初始阶段,分子数目变化较快,体积收缩较大,因此折射率变化较快;在中后期阶段,分子数目变化不是特别明显,固化体系的体积收缩也较小,折射率增加不明显。这一结果与经典电磁学理论得到的Lorentz-Lorenz关系式相一致,即折射率受摩尔体积和摩尔折射率两者影响。
     由FTIR法、Kissinger法和Ozawa法得到的DGETP/三乙烯四胺(TETA)混合物的固化表观活化能分别为52.6kJ·mol~(-1)、56.3kJ·mol~(-1)和59.3kJ·mol~(-1),三个结果相近,可以相互验证。非等温DSC固化动力学研究表明,OBDMT固化DGETP的活化能最低,TETA的次之,MHHPA的最大。OBDMT固化DGETP的反应级数与TETA的相等,而MHHPA的反应级数则不相同,固化曲线上也表明这一点。DGEBA和DGETBBA的固化活化能、固化起点温度和峰值温度均较高,DGETP和DGETDBT的固化活化能、固化起点温度以及固化峰值温度均较低。
     针对LED的发热问题,采用乙烯-辛烯共聚物(POE)、乙烯-醋酸乙烯酯共聚物(EVA)、三元乙丙橡胶(EPDM)等热塑性弹性体分别与石蜡一起制备定形相变材料。用耐热实验、耐热水实验和温度循环实验测试它们的稳定性,用DSC求取它们的热焓。结果表明,POE、EVA、EPDM等三种热塑性弹性体基定形相变材料的储热及稳定性能明显优于目前报道的HDPE基定形相变材料的相应性能。
Optical resins with high refractive index used for encapsulant in light emitting diode(LED) is essential in avoiding stress shock and humidity corrosion, improving light extractionefficiency, reducing heat elimination and prolonging the service life of LED chip. Manyresearches showed that introducing sulfur element, by thioalcohol and thioether, into thechemical structure of polymer is regarded as one of the most effective methods to improverefractive index of optical resins.
     However, there are some problems, such as high cost, poor stability or difficultprocessing, in optical resin with high refractive index up to now reported. The opticalmaterials with high refractive index, lower cost and better comprehensive performance areextremely needed to develop. Therefore, the main contents and results of this paper are asfollowing:
     First, diglycidyl ether of thiodibenzenethiol (DGETDBT) and diglycidyl ether ofthiobis-phenol (DGETP) were synthesized using4,4’-thiodibenzenethiol,4,4'-thiobis-phenoland epichlorohydrin by two-step method. Their chemical structures were characterized withFTIR and1H NMR spectrometer. Using m-xylylenediamine (MXDA) andmethylhexahydrophthalic anhydride (MHHPA) as curing agent, curing behavior and thermalstability of DGETDBT and DGETP were studied by DSC and TGA and their lighttransmittance and refractive index were analyzed by UV–Vis scanning spectrophotometer andAbbe refractometer, compared with those performances of diglycidyl ether of bisphenol A(DGEBA).
     The refractive indices of DGETDBT and DGETP were1.665and1.612.The refractiveindices of cured products with MXDA were1.698and1.645,1.628and1.595with MHHPA.It was all significantly higher than the corresponding values of DGEBA (1.604and1.568).The refractive index test showed that sulfur atoms in DGETDBT and DGETP contributed tothe obvious increasing of their refractive indices. The refractive indexes of cured productswere relevant to the refractive indices and proportion of epoxy prepolymer and curing agent.
     The visible light transmittance of cured products of DGETDBT, DGETP and DGEBAwith MXDA and MHHPA were all exceeded85%, increasing in order. The transmittanceszero region of DGETDBT/MXDA and DGETDBT/MHHPA were200~370nm and200~390nm. It might protect people from UV radiation when these resins were used inencapsulant of light emitting diode (LED).
     DGETDBT、DGETP和DGEBA three kinds of prepolymer had the same curing behavior and the cured products of these prepolymers and curing agent MXDA and MHHPA had agood thermal stability. The temperature at1%weight loss of these cured products allexceeded250℃,which is much higher than the normal usage temperature of LED.
     The refractive index of DGETP (1.612) is higher than that of DGEBA (1.570) at thesame time it has the preferable thermal stability and acceptable price. Therefore DGETP canbe expected to be a kind of high rate of quantity and price encapsulant material for LED.
     Second, thiol curing agent can possess high refractive index and high curing speed andimprove the toughness of cured product. Although thiophenol brings a high refractive index,the complex synthesis of thiophenol leads to the extremely high price. While aliphatic thiolcan be synthesized by thiourea of which the costing is acceptable.
     O-benzenedimethanethiol(OBDMT) was synthesized using o-benzenedimethanechlorinevia thiourea-method in this paper. Its chemical structure was characterized with FTIR and1HNMR spectrometer. OBDMT was derived as a pale yellow or colorless crystal with arefractive index of about1.628. The refractive index of cured DGETP/OBDMT was1.654,the transmittance is near to85%and the glass transition temperature is close to28.7℃.Corresponding values for cured DGEBA/MHHPA were1.595,88%and64.9℃, respectively.The product of OBDMT has higer refractive index than the product of MHHPA.
     Third, PETTA/PETTG and PETTA/OBDMT cured resin were prepared via an clickchemistry method in which pentaerythritol tetraacrylate (PETTA) respectively reated withpentaerythritol tetrathioglycolic (PETTG) and OBDMT. The thiol-ene addition reaction in thecuring course was mainly carried out by heat-curing or UV-curing.
     PETTA/PETTG and PETTA/OBDMT cured resin both have low glass transitiontemperature. The refractive index of PETTA/OBDMT cured resin is1.597, but thermalstability and transmission of PETTA/OBDMT are lower than those of PETTA/PETTG curedresin. PETTA/PETTG cured resin have outstanding thermal stability (the temperature at1%mass loss thermal is324.2℃) and the higher transmission (over90%), which is on a par withthe silicone resin. The refractive index of PETTA/PETTG cured resin reached1.556,higherthan mostof silicone resin (the refractive index only1.410-1.530).
     Fouth, the relationship between curing degree, curing time and refractive index ofDGETP/triethylene tetramine(TETA) mixture was studied by in-situ reaction method. Thereare the clearly exponential relation between the refractive index and curing degree or curingtime. The change of the refractive index and curing degree is bigger during its initial curingperiod, but those became smaller in the middle and later curing periods because molecular number and molecular volume had no evident changes. The result proved that the refractiveindex was mainly influenced by its molecular volume and the inherent molar refractivityaccording to the Lorentz–Lorenz equation.
     The curing kinetics of DGETP/TETA cured product was studied by FTIR andnon-isothermal DSC.The reaction activation energy was52.6kJ·mol~(-1),56.3kJ·mol~(-1)and59.3kJ·mol~(-1), calculated by Kissinger equation, Ozawa equation and FTIR method,respectively. Three datas were conincident and could be validated with each other. the resultsfrom the non-isothermal curing kinetics in DSC showed that the reaction activation energy ofDGETP/MHHPA mixture was highest, followed by DGETP/TETA, and least byDGETP/OBDMT. The reaction order of DGETP/OBDMT was equal to that ofDGETP/TETA, different from that of DGETP/MHHPA. These results have been reflected bythe DSC curves.
     The reaction activation energy, onset temperature and peak exothermic temperature ofDGEBA and DGETBBA have the high value, while corresponding values of DGEBATP andDGETDBT retained the lower value.
     The end, the form-stable phase change materials (FSPCM) based on thermoplasticelastomers, such as POE, EVA and EPDM, were respectively preparated with paraffin,aimming at the heat problem of LED. The stabilities of FSPCM were measured via heatresistance test test, hot water bath test, temperature cycle test and differential scanningcalorimetry (DSC) test. The results showed that the heat storage and stable performances ofthree thermoplastic elastomer/wax FSPCMs were obvious better than those of HDPE/waxFSPCM.
引文
[1] Rector L., Starkey D.. Performance of epoxy encapsulants for optoelectronic packaging[C]/IEEE.20044th IEEE international coference on polymers and adhesivesinmicroelectronics and photoics. Portland.2004:211-215
    [2] Gunshor R.L., Nurmikkob A. V..Wide bandgap semiconductors and their application tolight emitting devices [J].Curr. Opin. Solid. State. Mater. Sci.,1996,1(1):4-l0
    [3]李林楷.电子封装用环氧树脂的研究进展[J].国外塑料,2005(9):41-46
    [4] Huang J.C, Chu Y.P., Wei M. Comparison of epoxy resins for applications inlight—emitting diodes[J].Adv. Polym. Tech.,2004,23(4):298-306
    [5] Ma M., Mont F.W., Yan X., et al. Effects of the refractive index of the encapsulant on thelight-extraction efficiency of light-emitting diodes [J]. Optical Society of America,2011,49:1135-1140
    [6]Moon-Hwan Chang, Diganta Das, Varde P.V., Michael Pecht.Light emitting diodesreliability review[J]. Microelectronics Reliability,2011:1–21
    [7]赵阿玲,尚守锦,陈建新.大功率白光LED寿命试验及失效分析[J].照明工程学报,2010,21(1):48-52
    [8]Tsai M.C.,Yu C.S.,Kang S.W..Flat plate loop heat pipe with a novel evaporatorstructure[C].Proceedings of21st Annual IEEE Semiconductor Thermal Measurement andManagement Symposium. San Jose, CA USA,15-17March,2005:187-190
    [9] Lin Y., Tran N., Zhou Y., et al. Materials challenges and solutions for the packaging ofhigh power LEDs [C]. In Proc.2006Int. Microsyst., Packag., Assembly Conf. Taiwan:177-180
    [10] Yan Zhou, Nguyen Tran, Yuan-Chang Lin, et al. One-Component, Low-Temperature,and Fast Cure Epoxy Encapsulant With High Refractive Index for LED Applications[C].IEEE Transactions on Advanced Packaging,2008,31(3):484-489
    [11]吕长利,崔占臣,杨柏.高折射率环氧和环硫型光学树脂的研究进展[J].应用化学,2001,18(5):342-346
    [12] Musikant Solomon. Optical materials: An Introduction to Selection andApplication[M]. New Youk: MARCEL DEKKER,INC,1985
    [13]安智珠.聚合物分子设计原理[M].湖南科学技术出版社,1985
    [14]杨柏,吕长利,沈家骢.高性能聚合物光学材料[M].化学工业出版社.20005,8
    [15] Jin-gang Liu,Mitsuru Ueda. High refractive index polymers: fundamental research andpractical Applications [J]. Journal of Materials Chemistry,2009,19:8907-8919
    [16]高长有.含硫高折光指数光学塑料的分子设计[J].材料研究学报,1999.2,13(1):9-15
    [17] Sasagawa, Katsuyoshi et al. Sulfur-containing urethane-based resin and lens andproduction thereof [P].日本专利:JP05320301,1993
    [18] Tsuyoshi Okubo, Shigeo Kohmoto, Makoto Yamamoto. Synthesis, characterization, andoptical properties of polymers comprising1,4-dithiane-2,5-bis (thiomethyl) group[J].Journal of Applied Polymer Science,1998,68:1791-1799
    [19]龟谷英照,小木聪,今澄贵公男,等.甲基丙烯酸酯化合物,含有该化合物的树脂组合物及其固化物以及光学头镜片用能量射线固化型树脂组合物及其固化物[P].中国专利: CN101675089,2010-03-17
    [20] Okada Reisuke, Ohkubo Tsuyo shi, KosakaM asah isa. Polymer for optical products andprocess for preparation thereof[P].欧洲专利:EP530757,1993
    [21] Zhang Gang, Huang Guang-shun, WangXiao-jun, et al. Synthesis of high refractiveindex polyamides containing thioether unit [J]. J. Polym. Res.,2011,18:1261-1268
    [22] Nakayama, Yasushi. Optical material[P].日本专利:JP08-34853,1996,4
    [23] Harumichi A, Yoshinobu K. Sulfur-containing epoxy compound and sulfur-containingepoxy resin [P].日本专利:JP10-130250,1998,5
    [24] Qin Li, Hui Zhou, Charles E. Hoyle. The effect of thiol and ene structures on thiol-enenetworks: Photopolymerization, physical, mechanical and optical properties [J]. Polymer,2009,50:2237-2245
    [25] Kayanoki, hisayuki, et al. Resin composition having high refractive index properties [P].欧洲专利:EP524477,1993
    [26] Yoshinari, Kani et al. Phosphoric ester compound and production thereof [P].日本专利:JP04300886,1992
    [27] Kobayashi, Seiichi et al. New sulfur-containing aromatic acrylate [P].日本专利:JP04077467,1992
    [28]陆广,崔占臣,吕长利,等.新型含硫高折光指数光学树脂单体MPSDMA的合成及其共聚树脂的性能研究[J].高等学校化学学报,2001,22(6):1036-1040
    [29]高长有,杨柏,等.分子设计合成高折光指数的光学树脂[J].高等学校化学学报,1998.11,19(11):1840-1843
    [30]高长有,益小苏,杨柏,等.高折光指数光学树脂的合成[J].高分子学报,1998,63(3):324-331
    [31] Young Chul An, Gen-ichi Konishi.Facile Synthesis of High Refractive IndexThiophene-Containing Polystyrenes [J]. Journal of Applied Polymer Science,2012,124:789-795
    [32] Katsumasa Y, Michio S, Koji S, et al. Adhesive [P].日本专利:JP09-316421,1997,12
    [33] Nagata, Teruyuki. Epoxy resin lens and production thereof [P].日本专利: JP01213602,1989,8
    [34]金村芳信等.以多硫化物为基础的树脂,含有该树脂的塑料透镜以及制造该种透镜的方法[P].中国专利:CN1046741A,1990.11.07
    [35]吴璧耀,张道洪,张玉.苯硫乙硫基环氧丙烷的合成与结构表征[J].武汉化工学院学报,2003,25(4):37-39
    [36]吕长利,崔占臣,赵冬雪,杨柏.新型复合环氧光学树脂的制备与性能研究[J].高等学校化学学报,2001,22(11):1924-1928
    [37]崔占臣,吕长利,杨柏,等.用胺基多元硫醇固化环氧树脂制备高折射率光学材料的方法[P].中国专利:CN1166717,2002
    [38]许嘉纹,李巡天,陈凯琪,等.发光二极管的封装材料组成物[P].中国专利:CN101418206A,2007.10
    [39] Hsun-Tien Li, Chia-Wen Hsu, Kai-Chi Chen. A novel high refractive transparentmaterial in LED package applications[C]. Electronic Materials and Packaging,2008.Taipei, Taiwan: EMAP2008. International Conference on:309-312
    [40] Amagai, Akikazu et al. Episulfide group containing alkyl sulfide compounds[P].欧洲专利: EP0761665B1,1997,11
    [41] Amagai, Akikazu, et al. Episulfide compound [P].欧洲专利:EP0785194A1,1997,01
    [42]崔占臣.新型高折射率光学树脂的制备与性能研究[D].吉林大学:吉林大学博士论文,2001
    [43]付中林,吴璧耀.电子塑封材料用环氧树脂的进展[J].武汉化工学院学报,2003,25(4):47-50
    [44] Chunguang Li, Jue Cheng, Feng Yang, et al. Synthesis and cationic photopolymerizationof a difunctional episulfide monomer [J]. Progress in Organic Coatings,2013,76:471-476
    [45]汤大新,马嵩,张军,等.环硫树脂的合成与反应动力学[J].吉林大学自然科学学报,1989,(2):139-142
    [46]尹文华,贾文静,吴璧耀.环硫-环氧活性稀释剂的合成与性能研究[J].化工上新型材料,2005,33(12):69-72
    [47]马嵩,张军,李玉玮,等.快速固化环氧-环硫树脂体系的研究[J].高分子材料科学与工程,1990,(1):29-33
    [48]魏东,张旭玲,曾繁涤.酚醛环氧环硫树脂的合成和表征[J].2006,22(4):32-35
    [49] Kobayashi S., Sasagawa K., Kanemura Y.. Sulfur-containing urethane-based resin andlens and Production thereof[P].日本专利:JP05,320,301,1993
    [50]童显,吕学义,张云芳,曾兆华,杨建文,陈用烈,童叶翔.含硫高折光指数光学树脂单体的合成[C].2005年全国高分子学术论文报告会,中国北京:2005,10
    [51] Kolb H. C., Finn M. G., Sharpless K. B.. Click chemistry: Diverse chemical functionfrom a few good reactions [J]. Angewandte Chemie International Edition,2001,40:2004-2021
    [52] Moses J., Moorhouse A.. The growing applications of click chemistry [J].ChemicalSociety Reviews,2007,36(8):1249-1262
    [53] Patton G.C.. Development and applications of click chemistry reported
    [EB/OL].[2004].http://www.chemistry.illinois.edu/research/organic/seminar_extracts/2004_2005/08_Patton_Abstract.pdf, online
    [54] Kolb H.C.,Sharpless K.B..The growing impact of click chemistry on drug discovery[J].Drug Discovery Today,2003,8(24):1128-1137
    [55] Sharad D., Bhagat, Jhunu C., et al. High Refractive Index Polymers Based on Thiol EneCross-Linking Using Polarizable Inorganic/Organic Monomers[J]. Macromolecules,2012,45,11741181
    [56] Yasuo Suzuki, Tomoya Higashihara, Shinji Ando, Mitsuru Ueda. Synthesis andCharacterization of High Refractive Index and High Abbe’s Number Poly (thioethersulfone)s based on Tricyclo decane Moiety[J]. Macromolecules,2012,45:34023408
    [57] Rie Okutsu, Yasuo Suzuki, Sinji Ando, Mitsuru Ueda.Poly (thioether sulfone) with HighRefractive Index and High Abbe’s Number[J]. Macromolecules,2008,41:6165-6168
    [58]刘金刚,尚玉明,范琳,杨士勇.高耐热、低介电常数含氟聚酰亚胺材料的合成与性能研究[J].高分子学报,2003,1(4):565-570
    [59] Liu J.G., Nakamura Y., Shibasaki Y., et al, High Refractive Index Polymers:Fundamental Research and Aromatic Dianhydrides [J]. Macromolecules,2007,40(13):4614-4620
    [60] Liu J. G., Nakamura Y., Suzuki Y., et al. Highly Refractive and Transparent PolyimidesDerived from44'-[m-Sulfonylbis-(phenylenesulfanyl)]diphthalic Anhydride and VariousSulfur-containing Aromatic Diamines[J]. Macromolecules,2007,40(22):7902-7909.
    [61] Liu J. G., Nakamura Y., Shibasaki Y., et al. J. Polym. Sci., Part A: Polym. Chem.,2007,45,5606-5617
    [62] Suzuki Y., Liu J. G., Nakamura Y., et al. Synthesis of Highly Refractive and TransparentPolyimides Derived from4,4′-[p-Sulfonylbis(phenylenesulfanyl)]diphthalic Anhydrideand Various Sulfur-containing Aromatic Diamines [J]. Polymer Journal,2008,40,414-420.
    [63] Liu J. G., Nakamura Y., Ogura T., et al. Macromol. Chem. Phys.,2008,209,195-203
    [64] Terraza C. A., Liu J. G., Nakamura Y., et al. J. Polym. Sci., Part A: Polym. Chem.,2008,46,1510
    [65] You N.H., Suzuki Y., Yorifuji D., et al. Synthesis of High Refractive Index PolyimidesDerived from1,6-Bis(p-aminophenylsulfanyl)-3,4,8,9-tetrahydro-2,5,7,10-tetrathiaanthracene andAromatic Dianhydrides[J]. Macromolecules,2008,41:6361-6366
    [66] Li Z., Liu J.G., Yang S.Y.. Synthesis and Characterization of Thioether andPyridine-Bridged Aromatic Polyimides with High Refractive Indices and High GlassTransition Temperatures [J]. High Performance Polymers,2010,22:468-482
    [67] Liu J.G., Nakamura Y., Shibasaki Y., et al.Synthesis and Characterization of HighRefractive Index Polyimides Derived from4,4’-(p-Phenylenedisulfanyl)dianiline andVarious Aromatic Tetracarboxylic Dianhydrides[J]. Polymer Journal,2007,39(6):543-550
    [68] Huang X.H, Huang W., Fu L.C.,et al.Synthesis and characterization ofthioether-containing polyimides with high refractive indices[J]. J. Polym. Res.,2012,19:9790
    [69] Fukuzaki N., Higashihara T., Ando S., et al.Synthesis and Characterization of HighlyRefractive Polyimides Derived from Thiophene-Containing Aromatic Diamines andAromatic Dianhydrides[J]. Macromolecules,2010,43:1836-1843
    [70] Seesukphronrarak S., Kawasaki S., Kobori K.,et al.Synthesis of Fluorene-Based HighPerformance Polymers.I.Poly(arylene thioether)s with Excellent Solubility and HighRefractive Index[J].Journal of Polymer Science: Part A: PolymerChemistry,2007,45:3073-3082
    [71] Seesukphronrarak S., Kawasaki S., Kobori K. et al. Fluorene-rich high performancepolyesters: synthesis and characterization of9,9′-fluorenylidene and2,7-fluorenylene-based polyesters with excellent optical property[J]. Journal of PolymerScience: Part A: Polymer Chemistry,2008,46:2549-2556.
    [72] Matsumura S., Kihara N., Takata T.. Properties of a few aromatic poly(thioether ketones)as sulfur-containing high-performance polymers[J].Journal of Applied Polymer Science,2004,92:1869-1874.
    [73] Seto R., Kojima T., Hosokawa K., et al.Synthesis and property of9,9’-spirobifluorene-containing aromatic polyesters as optical polymers with highrefractive index and low birefringence[J]. Polymer,2010,51:4744-4749
    [74]李志斌,王跃川.高折射率光学树脂的结构设计[J].材料导报,2010,24(7):118-122
    [75] Lorenz Zimmermann, Martin Weibel, Walter Caseri, et al. Polymer nanocomposites with“ultralow” refractive index [J]. Polymers for Advanced Technologies,1993,4(1):1-7
    [76] Xiong M.N., Zhou S.X., Chen H., Wu L.M.. Preparation of Acrylic Resin/TiO2Organic-inorganic Hybrid by Sol-gel Process and Characterization of Its Structure [J].Acta Polymerica Sinica,2005,3:417-422
    [77] Hendry I. Elim, Bin Cai, Yu Kurata, et al. Refractive Index Control and RayleighScattering Properties of Transparent TiO2Nanohybrid Polymer [J]. Journal of PhysicalChemistry B,2009,113:10143-10148
    [78] Zhao Y.B., Wang F., Shi W.F.. Synthesis and characterization of ZnS/hyperbranchedpolyester nanocomposite and its optical properties [J]. Polymer,2007,48(10):2853-2859
    [79] Cheng Guan, Chang-Li Lu, Yi-Fei Liu, et al.Preparation and Characterization of HighRefractive Index Thin Films of TiO2/Epoxy Resin Nanocomposites [J]. Journal ofApplied Polymer Science,2006,102:1631-1636
    [80] Shane U Brien, Mehmet Gopuroglu, Gabriel M Crean. Preparation and characterizationof an epoxy functional inorgan-inorganic hybrid material system with phenyl side groupfor waveguiding applications [J].Thin Solid Films,2007,515(13):5439-5443
    [81] Mehmet Copuroglu, Shane O’Brien, Gabriel M. Crean. Effect of preparation conditionson the thermal stability of an epoxy-functional inorganic-organic hybrid material systemwith phenyl side group[J].Polym. Degrad. Stab.,2006,91(12):3185--3190
    [82] Walter C. Nanocomposites of polymers and metals or semiconductors: Historical back-ground and optical properties[J]. Macromolecular Rapid Communications,2000,21(11):705-722
    [83] Althues H., Henle J., Kaskel S.. Functional inorganic nanofillers for transparent polymers[J]. Chem. Soc. Rev.,2007,36:1454-1465
    [84] Zimmermann L.,Weibel M.,Caseri W.,et al. High refractive index films of polymernanocomposites[J]. Journal of Materials Research,1993,8(7):1742-1748
    [85] Kypriandou L. T., Althaus H. J., Wyser Y., et al. High refractive index materials of ironsulfides and poly(ethylene oxide)[J]. Journal of Materials Research,1997,12(8):2198-2206
    [86] Papadimitrakopoulos F.,Wisniecki P.,Bhagwagar D. E.. Mechanically attrited silicon forhigh refractive index nanocomposites[J]. Chem. Mater.,1997,9(12):2928-2933
    [87] Ullah M. H., Kim J. H., Ha C. S.. Highly transparent o-PDA functionalized ZnS-polymernanocomposite thin films with high refractive index[J]. Mater Lett,2008,62(16):2249-2252
    [88]吴启保,青双桂,熊陶,等.大功率LED器件封装材料的研究现状[J].化工技术与开发,2009,38(2):15-17
    [89]江梅,刘毅飞,吕长利,等.高折射率有机/无机纳米杂化透明膜层材料的制备与性质研究[J].高分子学报,2008(6):594-599
    [90] Li Y.Q., Fu S.Y., Yang Y., et al. Facile synthesis of highly transparent polymernanocomposites by introduction of coreshell structured nanoparticles[J]. Chem.Mater.,2008,20(8):2637-2643
    [91] Norio Nakayama, Toyoharu Hayashi. Preparation and characterization of TiO2-ZrO2andthiol-acrylate resin nanocomposites with high refractive index via UV-inducedcrosslinking polymerization[J]. Composites Part A,2007,38:1996-2004
    [92] Joseph L.H.C., Tung C.T., Lin Y.M., et al. Preparation and optical properties oftitania/epoxy nanocomposite coatings[J].Materials Letters,2008,62:3416-3418
    [93] Joseph L.H.C., Liu H.W., Su W.F.. Fabrication of hybrid surface-modified titania-epoxynanocomposite films [J].Journal of Physics and Chemistry of Solids,2009,70:1385-138
    [94]官建国,黄俊,袁润章.光学透明材料的现状和研究进展Ⅱ:有机一无机纳米复合光学透明材料[J].武汉工业大学学报,1998,20(9):11-13
    [95]徐晓秋,杨雄发,伍川,等.凝胶型LED封装材料基础聚合物的制备及性能[J].高分子材料科学与工程,2011,27(2):672-676.
    [96]杨雄发,杨琳琳,等.一种高折光率发光二极管封装硅树脂的研制[J].高等学校化学学报.2012.5,33(5):1078-1083
    [97] Kim J.S., Yang S.C., Bae B.S.. Thermally Stable Transparent Sol-Gel Based SiloxaneHybrid Material with High Refractive Index for Light Emitting Diode (LED)Encapsulation [J]. Chem. Mater.2010,22:3549-3555
    [98] Jin-Kyu Choi, Duck-Hee Lee, Soon-Ki Rhee, et al. Observation of Tunable RefractiveIndices and Strong Intermolecular Interactions in Newly Synthesized Methylene-biphenylene-Bridged Silsesquioxane Thin Films [J]. Journal of Physical Chemistry C,2010,114,14233-14239
    [99]刘瑞霞,尚呈元,等.高折光指数含硅环氧树脂的合成与性能研究[J].热固性树脂.2012.3,27(2):6-10
    [100] SeungCheol Yang, Joon-Soo Kim, JungHo Jin, et al. Thermal resistance ofcycloaliphatic epoxy hybrimer based on sol-gel derived oligosiloxane for LEDencapsulation[J].Journal of Applied Polymer Science,2010,117:2140-2145.
    [101] Donald Herr, Sharon Chaplinsky, Anthony L., et al. Synthesis and study of new radialorganic/inorganic hybrid epoxides [J]. Journal of Applied Polymer Science,2008,107(5):3244-3257
    [102] Laine R.M., Choi J., Lee I.. Organic-Inorganic Nanocomposites with CompletelyDefined Interfacial Interactions deifined interfaeialinteraetions[J].AdvancedMaterials,2001,13:800-803
    [103] Junchao Huang, Yang Xiao, Khine Yi Mya, et al. Thermomechanical properties ofpolyimide-epoxy nanocomposites from cubic silsesquioxane epoxides[J]. Journal ofMaterials Chemistry,2004,14:2858-2863
    [104]周利寅,贺英,张文飞,谌小斑.LED封装用环氧树脂/环氧倍半硅氧烷杂化材料的研制[J].工程塑料应用,2009,37(3):5-8
    [l05]周伟,张芳,王小群.相变温控在电子设备上的应用研究进展[J].电子器件,2007,30(1):344-348
    [106]向建化,张春良,江帆,刘晓初,汤勇.大功率发光二极管相变热沉的制造及测试(英文).Transactions of Nonferrous Metals Society of China,2011,9
    [107] Ye Hong,Ge Xinshi.Preparation of polyethylene-paraffin compound as form-stable solid-liquid phase change material[J].Solar Energy Materials&Solar Cells,2000,64(1):37-44.
    [108]尹辉斌,高学农,丁静,张正国.快速热响应复合材料的储/放热性能分析.工程热物理学报,2011,32(10):1719-1721
    [109]陈云深,陈凯,沈斌君,等.交联定形相变储能材料的研制[J].复合材料学报,2006,23(6):67-70
    [110]张正国,方晓明,高学农,方玉堂,徐涛,王学泽.一种用于锂电池散热的复合相变材料及装置[P].中国专利:CN102181270A,2011-09-14
    [111] Ahmet Sar. Eutectic Mixtures of Some Fatty acids for Latent Heat Storage: ThermalProperties and Thermal Reliability with Respect to Thermal Cycling[J]. EnergyConversion and Management,2006,47(9-10):1207-1221
    [112]Ahmet Sar, Ali Karaipekli.Preparation, thermal properties and thermal reliability ofcapric acid/expanded perlite composite for thermal energy storage[J]. MaterialsChemistry and Physics,2008,109:459~464
    [110]张涛,余建祖.相变装置中填充泡沫金属的传热强化分析[J].制冷学报,2007,28(6):13-17
    [1] Liu J.G.,Mitsuru U.. High refractive index polymers: fundamental research and practicalApplications [J]. Journal of Materials Chemistry,2009,19:8907-8919
    [2]Katsumasa Y., Michio S., Koji S., et al. Adhesive [P].日本专利:JP9316421A,1997
    [3]贾修伟,房晓敏,丁涛,等.四溴双酚A二缩水甘油醚的合成与表征[J].河南大学学报(自然科学版),2006,36(1):44-49
    [4]Martinez P.A., Cadiz V., Ana M., et al. Synthesis, characterization, and thermal behaviorof new epoxy polyesterimide[J]. Angewandte Makromolekulare Chemie, l985,133:97-109
    [5]Lee L.H.. Mechanism of thermal degradation of phenolic condensation polymers. I.Studies on the thermal stability of polycarbonate [J]. Journal of Polymer Science partA-PolymerChemistry, l961,2:2859-2873
    [6]Antoon M.K., Koening J.I., Serafini T.. Fourier-transform infrared study of the reversibleinteraction of water and a crosslinked epoxy matrix [J]. Journal of Polymer Science partB-Polymer Pphysics.,1981,19:1567-1575
    [7] Pan G.Y., Du Z.J., Zhang C., et al. Synthesis, characterization, and properties of novelnovolac epoxy resin containing naphthalene moiety [J]. Polymer,2007,48:3686-3693
    [8] Agag T., Takeichi T. Synthesis and characterization of epoxy film cured with reactivepolyimide [J]. Polymer,1999,40:6557-6563
    [9] Gu Q., Zhou Q.. Preparation of high strength and optical transparent silicone rubber[J].European Polymer Journal,1998,34:1727-1733
    [10]Lin Y.H., You J.P., Lin Y.C., et al. Development of high-performance optical silicone forthe packaging of high-power LEDs[J]. IEEE Transactions on Components and PackagingTechnologies,2010,33:761-766
    [1]刘安昌,李高峰,夏强,张良.4,4’-二巯基二苯硫醚的合成[J].武汉工程大学学报,2010,32(3):25-30
    [2]Uchiro H..prepartion of aromatic thiols[P].日本专利:JP2000256306,1999-03-03
    [3]Uchiro H. Non-aqueous reduction of aromatic sulfonyl chlorides to thiols Using adichlorodimethylsilane-zinc-dimethyla-cetamide system [J].Tetrahedron Letters,1999,40(16):3179-3182
    [4] Bert D. B., Hong M., Dmitrii F.. Synthesis and Characterization of Conjugated Mono-andDithiol Oligomers and Characterization of Their Self-Assembled Monolayers [J]. Langmuir,2003,19:4272-4284
    [5] Judek M. W., Spiewak B. P.. An efficient synthesis of thiobis(benzenethio1)[J].Syntheticcommunications,1998,28(2):197-199
    [6]冯柏成,井丽倩,刘鹏.4,4'-二巯基二苯硫醚的新法合成及表征[J].青岛科技大学学报(自然科学版),2011,32(8):338-341
    [7]倪生良,胡晓斌,孙健.对二羟基二苯基硫醚的合成[J].内蒙古石油化工,2004,30: ll-13
    [8]Yie-Chan Chiu,Hsieh-Chih Tsai,Chen Chou, et al. Preparation, Intermolecular Motion, andThermal Properties of Thiodiphenyl Epoxy[J]. Journal of Applied Polymer Science,2010,118:2116–2125
    [1] Hsun-Tien Li,Chia-Wen Hsu,Kai-Chi Chen. A novel high refractive transparent materialin LED package applications[C]. Electronic Materials and Packaging,2008.Taipei,Taiwan:EMAP2008. International Conference on:309-312
    [2]邵越水,孙莉,钱晓峰,裴文.苯硫酚化学研究进展[J].浙江化工,2002(3):24-26
    [3]Judek M. W.,Spiewak B. P.. An efficient synthesis of thiobis(benzenethiol)[J].Syntheticcommunications,1998,28(2):197-199
    [4] Bert D. B., Hong M., Dmitrii F., et al. Synthesis and Characterization of ConjugatedMono-and Dithiol Oligomers and Characterization of Their Self-Assembled Monolayers [J].Langmuir,2003,19:4272-4284
    [5]邹赣生,胡志强,胡斌.脲盐法合成对叔丁基苄硫醇的研究[J].江西化工,2001(1):21-22
    [6]章亚东,邢军伟.硫脲法合成1,2-乙二硫醇的后处理工艺研究[J].郑州大学学报(工学版),2009,30(2):23-26
    [1]陈洪江,吴敏,虞鑫海,等.新型环氧树脂胶粘剂的固化动力学研究[J].粘结,2009(8):43-45
    [2]罗金树,李鹏,等.超支化聚酯增韧环氧体系固化动力学[J].玻璃钢/复合材料,2008(5):6-11
    [3]Lee J. L., Choi H. K., Shim M. J., et a1.Kinetic studies of an epoxy cure reactionby isothermal DSC analysis [J]. Thermochimica Acta,2000(343):l11–l17
    [4]Scherzer T., Decker U.. The effect of temperature on kinetics of diacrylatephotopolymerizations studied by real-time FT-IR spectroscopy [J]. Polymer,2000(41):7681-7690
    [5]胡忠杰,虞鑫海,徐永芬,等.四缩水甘油基-4,4′-二氨基二苯甲烷/1,4-双(4-氨基苯氧基)苯环氧树脂体系固化反应的动力学模型[J].绝缘材料,2007,40(6):50-52
    [6]刘静,赵敏,张荣珍,等.FT-IR法研究环氧树脂固化反应动力学[J].功能高分子学报,2000(13):207-210
    [7]Rocks J., Rintoul L., Vohwinkel F., et a1.The kinetic and mechanism of cure ofan amino-glycidyl epoxy resin by a co-anhydride as studied by FT-raman spectroscopy[J].Polymer,2004(45):6799-6811
    [8]陈立新,王汝敏,蓝立文,徐亚洪,廖建伟.含芳香酯基液晶基元环氧树脂固化动力学FTIR研究[J].航空材料学报,2001,21(1):43-46
    [9]徐冬梅,张可迭,陆新华,朱秀林.端氨基树枝状大分子/环氧树脂体系固化动力学的FTIR研究[J].高校化学工程学报,2006,20(3):385-389
    [10]张竞,黄培.环氧树脂固化动力学研究进展[J].材料导报,2009,23(7):58-61
    [11]毛友安,童乙青.用差示扫描量热法(DSC)研究环氧树脂固化动力学[J].国防科技大学学报,1987(1):59-67
    [12]Kissinger H.E.. Reaction Kinetics in Differential Thermal Analysis [J]. Anal. Chem.,1957,29(11):1702-1706
    [13]Ozawa T.A.. New Method of Analyzing Thermo gravimetric Data [J].Bulletin of theChemical Society of Japan,1965,11:1881-l886
    [14]Crane L. W., Dynes P. J., Kaelble D. H.. Analysis of curing kinetics in polymercomposites[J].Journal of Polymer Science: Polymer Letters Edition,1973,11(8):533-540
    [15]郭清兵,陈江华,谭赘华,李翠金.环氧树脂固化动力学的非等温DSC研究[J].广东化工,2010,37(4):68-69
    [1]Kade M. J., Burke D. J., Hawker C. J.. The power of thiol-ene chemistry [J].Polym.Sci.PartA:Polym.Chem.,2010,48:743-750
    [2]Hoyle C. E.,Bowman C. N.. Thiol-ene click chemistry [J]. Angew. Chem. Int. Ed.,2010,49:1540-1573
    [3]Lowe A. B..Thiol-ene‘‘click’’reactions and recent applications in polymer and materialssynthesis [J]. Polym.Chem.,2010,1:17-36
    [4]Shin J.,Nazarenko S., Hoyle C. E.. Enthalpy relaxation of photopolymerized thiol-enenetworks: Structural effects[J].Macromolecules,2008,41:6741-6746
    [5]Voets I. K., Keizer A., Stuart M. A. C., et al. Irreversible structural transitions in mixedmicelles of oppositely charged diblock copolymers in aqueous solution[J]. Macromolecules,2007,40:2158-2164
    [6]Chan J. W., Zhou H., Hoyle C. E., et al. Photopolymerization of thiol-alkynes: Polysulfidenetworks [J].Chem.Mater.,2009,21:1579-1585
    [7]Yasuo Suzuki, Tomoya Higashihara, Shinji Ando, Mitsuru Ueda. Synthesis of amorphouscopoly(thioether sulfone)s with high refractive indices and high Abbe numbers[J].European Polymer Journal,2010,46:34–41
    [8] Burget D., Mallein C., Fouassier J.P.. Photopolymerization of thiol–allyl ether andthiol–acrylate coatings with visible light photosensitive systems [J]. Polymer,2004,45:6561-6567
    [9] Li Qin, Zhou Hui, Charles E. Hoyle. The effect of thiol and ene structures on thiol–enenetworks: Photopolymerization, physical, mechanical and optical properties [J]. Polymer,2009,50:2237-2245
    [1]Ye H., Ge X.. Preparation of polyethylene-paraffin compound as form-stable so lid-liquidphase change material[J].Solar Energy Materials&Solar Cells,2000,64(1):37-44
    [2]闫全英,王威.低温相变石蜡储热性能的实验研究[J].太阳能学报,2006,27(8):6~9
    [3]Kunping Lin, Yinping Zhang, Hongfa Di, et al. Study of an electrical heating system withductless air supply and shape-stabilized PCM for thermal storage [J].Energy Conversionand Management,2007,1:23-26
    [4]高学农,李得伦,孙滔,曹昕,何文祥.石蜡/膨胀石墨复合相变材料控温电子散热器的性能[J].华南理工大学学报(自然科学版).2012,40(1):7-12
    [5]薛平,李建立,丁文赢,韩晋民,孙国林.定形相变材料的制备方法[J].化工新型材料.2008,36(9):16~18

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700