用户名: 密码: 验证码:
微生物发酵降解造纸法烟草薄片有害前体物的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
造纸法烟草薄片是以烟梗和烟末等烟草加工废弃物为原料的一种资源再生利用产品,具有焦油含量低,有害成分释放量小等特点。但是由于烟梗中以纤维素和果胶为主的细胞壁物质含量较多,会导致造纸法烟草薄片有害成分的释放量增加。因此,降解造纸法烟草薄片原料中纤维素和果胶等大分子物质的含量对实现调控造纸法烟草薄片烟气焦油有害成分组成和含量至关重要。
     本课题根据造纸法烟草薄片化学组成的特性,从造纸法烟草薄片原料中分离筛选出能够降解纤维素、果胶、蛋白质和淀粉等大分子物质的微生物菌株,并利用这些微生物进行发酵处理,达到调控造纸法烟草薄片和烟草原料烟气焦油组成的目的。同时,采用热重红外联用技术和热重质谱联用技术研究菌株发酵对造纸法烟草薄片热裂解过程中主要有害成分和致香成分释放轨迹的影响作用机理。
     (1)以降解纤维素、果胶、蛋白质及淀粉能力为评价指标,采用平板分离技术从造纸法烟草薄片原料中分离出优势菌群,并对优势菌群进行筛选、纯化及种群鉴定研究。研究结果显示,菌株GX5的果胶酶活性最高,达295.79U/mL,其蛋白酶活性也较高;GX6的淀粉酶活性最强,达到31.74U/mL;菌株GX8的纤维素酶活性最高,达到435.52U/mL。三种优势菌株的种群鉴定结果为:GX5为枯草芽孢杆菌(Bacillus subtilis),GX6为蜡状芽孢杆菌(Bacillus cereus)GX8为短短芽孢杆菌(Brevibacillus brevis)。通过发酵工艺优化及正交实验设计最终确定较佳的发酵培养基成分及最佳发酵工艺为:玉米粉2%、黄豆粉3.0%、淀粉2.0%、桔皮粉1.5%、培养24h、培养温度30℃、起始pH值为7.0,整个液体培养的固含量为7.5%;发酵时,三种高酶活菌先单独发酵12h后再按照GX5:GX6:GX8为1:2:2的进行混合,混合均匀后继续发酵24h。
     (2)研究了各高酶活菌株发酵对造纸法烟草薄片原料和造纸法烟草薄片化学组成的影响;同时,采用小型热裂解装置进行热裂解实验模拟烟草燃吸过程,采用气相色谱质谱联用分析(GC/MS)对热裂解焦油组成特性进行表征,分析各菌株发酵处理后热裂解焦油中有害成分的变化情况。实验结果表明,菌株发酵处理会导致造纸法烟草薄片中纤维素、果胶、蛋白质及淀粉等大分子物质含量降低,总糖和还原糖的含量增加。从调控原料化学组成来看,采用对造纸法烟草薄片基片浆料进行菌株发酵处理优于直接处理烟草原料。混合菌株发酵在抑制焦油中杂化化合物和PAHs的生成,降解焦油中烟碱含量以及促进焦油中酮类物质的生成方面的能力明显优于其他菌株。菌株GX8和混合菌株发酵抑制烟草原料和造纸法烟草薄片热裂解烟气中CO生成的效果均优于菌株GX5和菌株GX6,烟气中CO的生成主要与原料中纤维素含量有关。
     (3)以还原糖、挥发性组分以及热裂解焦油中致香成分的含量为评价指标,研究各高酶活菌株及高酶活混合发酵液对造纸法烟草提取物的发酵效果。研究发现,菌株发酵处理促使蛋白质组分热裂解过程向更有利于形成2,6-二甲基吡嗪、大马酮和新植二烯等致香成分的化学反应进行。混合菌株发酵处理在改善烟梗提取物挥发性成分及增加烟气焦油中香气化合物含量方面都优于单一菌株。不同发酵时间对烟梗提取物热裂解焦油中吡嗪类、吡啶类和吡咯类化合物产生显著影响。烟梗提取物热裂解焦油的组成特性不仅与其烟梗提取物中的挥发性组分有关,更受热裂解升温过程中发生的美拉德反应影响。
     (4)采用热重红外联用技术(TG-FTIR)和热重质谱联用技术(TG-MS)对造纸法烟草薄片热裂解焦油中主要有害成分和致香成分的释放轨迹进行研究。研究发现,混合菌株发酵处理会导致造纸法烟草薄片和烟梗提取物热稳定性减弱,还会导致造纸法烟草薄片热裂解过程中酮类和酚类化合物在300℃左右出现新的释放峰,使酚类化合物释放温度向低温区移动,避免高温区芳烃类化合物的释放,从而减少了烟气中有害成分的形成。此外混合菌株发酵处理不仅会导致烟草薄片热裂解过程糠醛、茚和萘的释放量减少,同时会导致其释放温度区间更加集中。经过混合菌株发酵处理后,糠醛的释放温度区间主要集中在400至650o℃;茚和萘的释放温度区间集中在500至800℃;这些有害成分释放温度的集中有助于调控烟气中这些物质的形成。苯酚的释放温度区间主要集中在400至600℃。混合菌株发酵处理对烟梗提取物热裂解过程中吡咯和3-乙烯基吡啶的释放温度区间没有影响作用,但是会导致3-乙烯基吡啶的释放量的减小。同时,混合菌株发酵处理不仅会导致2,6-二甲基吡嗪释放温度区间的增大,而且会导致其释放量的增加,对增加卷烟烟气香味起到重要作用。
The paper-process reconstituted tobacco, using tobacco wastes as raw materials, can beregards as a resource recycling products. It has the following and main characteristics: lowyields of tars and small releasing amounts of harmful compounds. The high content ofhazardous compound precursors, including cellulose, pectin andproteins in tobacco stem willlead to increasing the evolution of harmful compounds.Therefore, it was important todegradethe hazardous compound precursors of paper-process reconstituted tobacco to regulate thecomponent and yield of harmful compounds.
     According to the chemical composition characteristics of the paper of paper-processreconstituted tobacco, thisstudy focused on the separation of strains from the raw material,which has high capacity of degrading cellulose, pectin, protein and starch, then using thesemicrobial strains fermentation regulating the components of tar from paper-processreconstituted tobacco and raw materials. Meanwhile, the influences of fermentation processon the evolution mechanism of main harmful and chiefly fragrant compounds were studied byTG-FTIR and TG-MS.
     Based on the degradation capacity of cellulose, pectin, protein and starch, thepredominant bacterium were separated by theplate separation technology, and thenpurification and population identification.The research results show that the strain GX5hashighest pectinase activity, the value up to295.79U/mL, protease activity of the strainGX5was also higher; the strain GX6has highest amylase activity, the value up to31.74U/mL;the strain GX8has highest celluloseactivity, the value up to435.52U/mL. The threepredominant strains were identified as Bacillus subtilis (GX5), Bacillus cereus (GX6) andBrevibacillus brevis (GX8), respectively.Ingredients and the best fermentation process:2%ofthe corn flour,3.0%of soybean meal,2.0%of starch,1.5%of the orange peel powder,cultured24h, incubation temperature30°C, and initial pH value was7.0, the solids content of7.5%. The optimal proportion of GX5: GX6: GX8was1:2:2identified by the orthogonalexperimental design.
     Study on the effect of high enzyme activity strains on the chemical composition ofpaper-process reconstituted tobacco and raw materials. Meanwhile, thermal pyrolysis wasused to simulatethe reaction of tobacco burning suction process, the evolution tars during thisreaction were analyzed by GC/MS. Experimental results show that the fermentation processwill reduce the content of cellulose, pectin, protein and starch, however, total increase thecontent of total sugar and reducing sugar.From the regulation of the chemical composition of raw materials, the fermentation of reconstituted tobacco pulp is superior to the fermentation ofraw material. Mixed strains fermentation inhibit the formation of hybrid generationcompounds and PAHs, promote the generation of ketones, and the effect capacity of mixedstrains fermentation were better than the other single strain. The inhibition capacity of COduring the strain GX8and the mixed strain fermentation process are better than the strainsGX5and GX6. The formation of CO is directly related to the cellulose content.
     The effect of high enzyme activity strains and mixed strains fermentation on thecomponent and yield of reducing sugar, volatile components, and pyrolysis tars were studied.This study found that the fermentation process promote the formation of2,6-dimethylpyrazine, Malaysiaone and neophytadiene. The improve effect of volatile components andfragrant compounds during the mixed strains fermentation process are superior to single strainfermentation process.The fermentation time has significant effect on the releasing of pyrazine,pyridine and pyrrole.The composition characteristics of pyrolysis tar werenot only affectsbythe volatile components of tobacco stem extracts, but also affect by the Maillard reaction inthe heating process.
     The releasing laws of harmful and fragrant compounds from paper-process reconstitutedtobacco pyrolysis were studied by TG-FTIR and TG-MS. This study found that mixedfermentation process will lead to the thermal stability of reconstituted tobacco and tobaccostem extract reduce. Anew release peak of phenols appearsaround300℃during mixed strainfermentation process. Meanwhile, the mixed strain fermentation lead to the releasetemperature of ketones and phenols shift to low temperature zone, avoiding the formation ofaromaticsin high temperature zone, finally, reducing the formation of harmfulcomponents.Mixed strain fermentation will not only result in the reduction of furfural, indeneand naphthalene releasing, but also lead to the releasing temperature more focused. Aftermixed strain fermentation process, furfural release temperature range mainly in the400to650℃; the releasing temperature range of indene and naphthalene is concentrated in the500to800℃. The release temperature range of Phenols is mainly concentrated in the400to600℃. Mixed strain fermentation has nosignificant effect on the releasing temperature ofpyrrole and3–vinylpyridine, but will reduce the formation of3–vinylpyridine. Meanwhile,the releasing temperature range of2,6-dimethyl pyrazine will be extended, and the releasing amount of2,6-dimethyl pyrazine will be increased during the mixed strain fermentationprocess.
引文
[1] Gellatly G. Process for utilizing tobacco fines in making reconstituted tobacco. GooglePatents,1983
    [2]孙霞,苏文强.造纸法烟草薄片的研究现状及应用展望[J].华东纸业.2010,41:34-39
    [3]韩卿,张美云,吴养育,何福望.造纸法烟草薄片制造工艺的研究[J].西北轻工业学院学报.2002,01:23-27
    [4]吴宇航,李思东.造纸法烟草薄片的研究进展[J].广东化工.2012,05:20-26
    [5]白晓莉,邹泉,董伟,牟定荣,刘强.工艺加工对再造烟叶致香成分、有害成分和感官质量的影响[J].烟草科技.2009,10:33-37
    [6]王加深,刘晓晖,吉雄.国产造纸法再造烟叶在烤烟型卷烟产品改造中的应用[J].烟草科技.2004,03:6-10
    [7] Summerfield M, Ohlemiller T, Sandusky H. A thermophysical mathematical model ofsteady-draw smoking and predictions of overall cigarette behavior[J]. Combustion andFlame.1978,33:263-279
    [8] Borgerding M, Bodnar J, Chung H, Mangan P, Morrison C, Risner C. Chemical andbiological studies of a new cigarette that primarily heats tobacco: Part1. Chemicalcomposition of mainstream smoke[J]. Food and chemical toxicology.1998,36:169-182
    [9] Stedman RL. Chemical composition of tobacco and tobacco smoke[J]. Chemical Reviews.1968,68:153-207
    [10] Chepiga T, Morton M, Murphy P, Avalos J, Bombick B, Doolittle D. A comparison ofthe mainstream smoke chemistry and mutagenicity of a representative sample of the UScigarette market with two Kentucky reference cigarettes[J]. Food and chemicaltoxicology.2000,38:949-962
    [11] Shihadeh A, Saleh R. Polycyclic aromatic hydrocarbons, carbon monoxide,tar, andnicotine in the mainstream smoke aerosol of the narghile water pipe[J]. Food andchemical toxicology.2005,43:655-661
    [12]夏巧玲,谢复炜,王昇,赵明月.卷烟烟气中稠环芳烃的分析研究[J].中国烟草学报.2004,04:33-39
    [13] Chen BH, Chen YC. Formation of polycyclic aromatic hydrocarbons in the smoke fromheated model lipids and food lipids[J]. Journal of agricultural and food chemistry.2001,49:5238-5243
    [14] Grimmer G, Naujack K-W, Dettbarn G. Gaschromatographic determination of polycyclicaromatic hydrocarbons, aza-arenes, aromatic amines in the particle and vapor phase ofmainstream and sidestream smoke of cigarettes. Toxicology letters[J].1987,35:117-124
    [15] Ding YS, Ashley DL, Watson CH. Determination of10carcinogenic polycyclic aromatichydrocarbons in mainstream cigarette smoke. Journal of agricultural and foodchemistry[J].2007,55:5966-5973
    [16]刘立全.烟草和纤维素材料热解生成PAH的机理[J].烟草科技.2002,12:11-17
    [17]管仕栓,张扬,张文玉,汪文良,刘艳芳,梁宏谋,程传玲.卷烟主流烟气中主要酚类含量的分析研究[J].广州化工.2010,01:23-29
    [18]Risne CH, Cash SL. A high-performance liquid chromatographic determination of majorphenolic compounds in tobacco smoke[J]. Journal of chromatographic science.1990,28:239-244
    [19] Spears A W.Quantitative determination of phenol in cigarette smoke[J]. AnalyticalBiochemistry.1963,22:39-47
    [20] Gopalakrishna R, Chen Z-H, Gundimeda U. Tobacco smoke tumor promoters, catecholand hydroquinone, induce oxidative regulation of protein kinase C and influenceinvasion and metastasis of lung carcinoma cells[J]. Proceedings of the NationalAcademy of Sciences.1994,91:12233-12237
    [21] Boutwell RK, Sivak A. The function and mechanism of promoters of carcinogenesis[J].CRC critical reviews in toxicology.1973,2:419-444
    [22Schmeltz I, Hoffmann D. Nitrogen-containing compounds in tobacco and tobaccosmoke[J]. Chemical Reviews.1977,77:295-311.
    [23]史宏志,刘国顺,谢子发,李超,魏跃伟,王芳.不同产地白肋烟中性香气成分及生物碱组成和含量分析[J].中国烟草学报.2008,14:23-27
    [24] Smith C, Perfetti T, Rumple M, Rodgman A, Doolittle D. Research SectionIARC Group2A CarcinogensReported in Cigarette Mainstream Smoke[J]. Food and chemicaltoxicology.2000,38:383
    [25] Weeks WW, Sisson V, Chaplin J. Differences in aroma, chemistry, solubilities, andsmoking quality of cured flue-cured tobaccos with aglandular and glandulartrichomes[J]. Journal of agricultural and food chemistry.1992,40:1911-1916
    [26] Jarvis M, Russell M, Saloojee Y. Expired air carbon monoxide: a simple breath test oftobacco smoke intake[J]. British Medical Journal.1980,281:484.
    [27] Baker RR, Bishop LJ. The pyrolysis of tobacco ingredients[J]. Journal of analytical andapplied pyrolysis.2004,71:223-311
    [28]谢兰英,钟科军,刘琪,奚红霞.卷烟烟气CO及其降低去除研究进展[J].环境科学与技术.2006,29:109-111
    [29] Kozlowski LT, Connor RJ, Sweeney CT. Cigarette design. Smoking and tobacco controlmonograph.2001,13
    [30]戴亚,郭家明,肖怡宁,王茜,刘启斌.血红蛋白的提取及降低卷烟烟气中N-亚硝胺含量的初步实验[J].烟草科技.2001,1:19-21
    [31]许永,向能军,缪明明,倪朝敏,桂永发,李中任.茶叶中茶多酚的提取及其在卷烟中的应用[J].广东化工.2007,34:46-48
    [32]赵群.聚乳酸纤维在改性香烟滤嘴中的性能研究[J].科技视界.2012,1:24
    [33]高鑫,孙庆杰,唐荣成,盛培秀.中草药在香烟滤嘴中的应用[J].科技信息.2010,35:355
    [34] A llen J L,Gatz J L,Eklund P C.Applications for activated carbons from used tires:Butane working capacity[J]. Carbon.1999,34:6-18
    [35]董志坚,朱大恒,周御风.栽培措施对烟叶安全性的影响[J].中国烟草科学.2000,21:42-45
    [36] Brown CC, Kessler LG. Projections of Lung Cancer Mortality in the United States[J].Journal of the National Cancer Institute.1988,80:43-51
    [37] Heggestad HE. Origin of Bel-W3, Bel-C and Bel-B tobacco varieties and their use asindicators of ozone[J]. Environmental Pollution.1991,74:264-291
    [38] Rainey CL, Conder PA, Goodpaster JV. Correction to Chemical Characterization ofDissolvable Tobacco Products Promoted To Reduce Harm[J]. Journal of agricultural andfood chemistry.2012,60:10372
    [39]安瑞.降低烟草薄片中有害物质前体成分的研究[M].湖北工业大学,2012
    [40]宋鹏.微生物发酵降低卷烟烟气中有害成分及提高卷烟质量的研究[D].西北大学,2008
    [41] Yang Y, Xi Y, Zhang G, Guo L, Li Q, Zhu D. Molecular Biology Progress in NicotineDegradation by Microorganisms[J]. Chinese Tobacco Science.2010,4:20
    [42] Reid JJ. Bacterial leafspots of Pennsylvania tobacco: Occurrence and nature of themicroorganism associated with wildfire. Pennsylvania State College, School ofAgriculture, Agricultural Experiment Station.1942
    [43] Izquierdo Tamayo A. Bacteria in tobacco fermentation[J]. TA.1958,2:2146
    [44] Garner WW. Tobacco culture. Farmers' Bulletin United States Department of Agriculture.1930,571
    [45] English J, Mitchell D. Influence of an introduced composite of microorganisms oninfection of tobacco by Phytophthora parasitica var nicotianae[J]. Phytopathology.1988,78:484-491
    [46] Dawson RF. A method for the culture of excised plant parts[J]. American Journal ofBotany.1938:522-524
    [47] Ruiz Gutierrez V. Nicotine degradation by bacteria,2: Enterobacter cloacae as nicotinedegrader[J]. Anales del Instituto Nacional de Investigaciones Agrarias SerieAgricola.1983
    [48] Miyake T. Shaped matters of tobaccos and process for producing the same. GooglePatents.1977
    [49] Gellatly G. Process for utilizing tobacco fines in making reconstituted tobacco. GooglePatents.1983
    [50] Silberman HC. Pressed stems-enzyme treated tobacco stems. Philip Morris TobaccoCompany.1967
    [51]赵铭钦,岳雪梅.微生物发酵增质剂对卷烟酸性组分含量及品质效应的影响[J].中国烟草科学.2000,1:44-49
    [52] Giovannozzi-Sermanni G. Arthrobacter nicotianae, a new type of Arthrobacter causingnicotine degradation[J]. Coersta.1959,3:2595
    [53] Gasdorf HJ, Benedict R, Cadmus M, Anderson R, Jackson R. Polymer-producing speciesofArthrobacter[J]. Journal of bacteriology.1965,90:147-150
    [54] Caponigro V, Contillo R. Microbial degradation of aromatic hydrocarbons used as reactorcoolants[J]. Experientia,1970
    [55] Gravely LE, Geiss VL, Gregory CF. Process for reduction of nitrate and nicotine contentof tobacco by microbial treatment. Google Patents.1985
    [56] Mitsuhara I, Matsufuru H, Ohshima M, Kaku H, Nakajima Y, Murai N. Inducedexpression of sarcotoxin IA enhanced host resistance against both bacterial and fungalpathogens in transgenic tobacco[J]. Molecular plant-microbe interactions.2000,13:860-868
    [57] Baitsch D, Sandu C, Brandsch R, Igloi GL. Gene cluster on Arthrobacter nicotinovoransinvolved in degradation of the plant alkaloid nicotine: cloning, purification, andcharacterization of2,6-dihydroxypyridine3-hydroxylase[J]. Journal of bacteriology.2001,183:5262-5267
    [58] Konstantinova T, Parvanova D, Atanassov A, Djilianov D. Freezing tolerant tobacco,transformed to accumulate osmoprotectants[J]. Plant Science.2002,163:157-164
    [59] Choi KW, Han O, LEE HJ, Yun YC, Moon YH, Kim M, et al. Generation of resistance tothe diphenyl ether herbicide, oxyfluorfen, via expression of the Bacillus subtilisprotoporphyrinogen oxidase gene in transgenic tobacco plants[J]. Bioscience,biotechnology, and biochemistry.1998,62:558-560
    [60] Chiribau CB, Sandu C, Fraaije M, Schiltz E, Brandsch R. A novelγ-N-methylaminobutyrate demethylating oxidase involved in catabolism of the tobaccoalkaloid nicotine by Arthrobacter nicotinovorans[J]. European Journal of Biochemistry.2004,271:4677-4684
    [61] Wang S, Xu P, Tang H, Meng J, Liu X, Huang J. Biodegradation and detoxification ofnicotine in tobacco solid waste by a Pseudomonas[J]. Biotechnology letters.2004,26:1493-1496
    [62] Kloepper JW, Ryu C-M, Zhang S. Induced systemic resistance and promotion of plantgrowth by Bacillus spp[J]. Phytopathology.2004,94:1259-1266
    [63] Ruan A, Min H, Peng X, Huang Z. Isolation and characterization ofstrain HF-1, capableof degrading nicotine[J]. Research in microbiology.2005,156:700-706
    [64] Wang SN, Xu P, Tang HZ, Meng J, Liu XL, Ma CQ. Green Route to6-Hydroxy-3-succinoyl-pyridine from (S)-Nicotine of Tobacco Waste by Whole Cellsof a Pseudomonas sp[J]. Environmental science&technology.2005,39:6877-6880
    [65] Yuan Y, Lu Z, Huang L, Li Y, Lu F, Bie X, et al. Biodegradation of nicotine from tobaccowaste extract by Ochrobactrum intermedium DN2[J]. Journal of industrialmicrobiology&biotechnology.2007,34:567-570
    [66] Wei H, Lei L, Xia Z, Liu S, Liu P, Liu X. Characterisation of a novel aerobicnicotine-biodegrading strain ofPseudomonas putida[J]. Annals of microbiology.2008,58:41-45
    [67] García-Moreno MI, Benito JM, Mellet CO, Fernández JMG. Chemical and enzymaticapproaches to carbohydrate-derived spiroketals: Di-D-fructose dianhydrides (DFAs)[J].Molecules.2008,13:1640-1670
    [68] El Sayed KA, Laphookhieo S, Baraka HN, Yousaf M, Hebert A, Bagaley D. Biocatalyticand semisynthetic optimization of the anti-invasive tobacco[J]. Bioorganic&medicinalchemistry.2008,16:2886-2893
    [69] Jin-guang Y, Feng-long W, Cong G, Xi-lun Z. Isolation and characterization of a novelnicotine-degrading bacterium named Pseudomonas putida strain A3. IndustrialElectronics and Applications (ICIEA),2011:2647-2650
    [70] Yang W, Davis. Microbial models of mammalian metabolism. Biotransformation ofN-methylcarbazole using the fungus Cunninghamella echinulata[J]. Drug metabolismand disposition.1992,20:38-46
    [71] Newton RP, Gravely LE. Filter. Google Patents.1978
    [72] Imanishi S, Hashizume K, Nakakita M, Kojima H, Matsubayashi Y, Hashimoto T.Differential induction by methyl jasmonate of genes encoding ornithine decarboxylaseand other enzymes involved in nicotine biosynthesis in tobacco cell cultures[J]. Plantmolecular biology.1998,38:1101-1111
    [73]张玉玲,汪安云,黄琼,祝明亮,柴家荣,陈章玉.施用细菌菌株(WB5)对烟草特有亚硝胺含量变化的初步研究[J].中国烟草学报.2004,10:29-32
    [74]李晓,刘凤珠,姚光明,李宏,姜凌.酶解法改善烟叶吸味品质的试验[J].烟草科技.2002,3:14-17
    [75]马林.利用生物技术改变烟叶化学组分提高其吸食品质和安全性的研究.郑州工程学院学报[J].2001,22:40-42
    [76] Geiss VL, Gregory CF, Newton RP, Gravely LE. Process for reduction of nicotinecontent of tobacco by microbial treatment[J]. Google Patents,1979.
    [77] Bond L. Selling addictions: similarities in approaches between Big Tobacco and BigBooze[J]. World Healthcare Providers.2010,1:29-32
    [78]骆莉,卓浩廉,周瑢,孔浩辉,程志颖,杨博.生物技术及美拉德反应改良烟梗提取液的性质.食品工业科技[J].2012,33:189-192
    [79] B.M.Spann. Reconstituted tobacco from venezuelan by-products by enzymeconversion[J].Philip Morris Research Center,1965
    [80]程彪,贾涛,刘立全等.烟草工业中微生物和酶作用的控制与利用[J].烟草科技.1999,3:8-11
    [81] Hans-jochen, Eberhardt. The biological degradation of nicotine bynicotinephlicmicroorganisms [J]. Beitrage Zur Tabkforschung International.l995,l6(3):65
    [82]朱大恒,陈锐,陈再根,周御风,韩锦峰,金保锋.烤烟自然醇化与人工发酵过程中微生物变化及其与酶活性关系的研究[J].中国烟草学报.2001,7:26-30
    [83]韩卿,张美云.造纸法烟草薄片制造工艺的研究[J].西北轻工业学院学报.2002,20:19-22
    [84]金闻博.烟草化学.清华大学出版社.2000
    [85]侯晓娟.碱性纤维素酶产生菌的分离,选育,发酵产酶条件及酶学性质研究[D].西北大学,2008
    [86]东秀珠,蔡妙英.常见细菌系统鉴定手册.科学出版社.2001
    [87] Buchanan R.伯杰氏系统细菌学手册.中国科学出版社.1984
    [88]邱立友,岳雪梅.自然发酵烤烟叶面微生物区系的分离鉴定[J].烟草科技.2000,4:14-17
    [89]韩锦峰,朱大恒,刘卫群,叶波平.陈化发酵期间烤烟叶面微生物活性及其应用研究[J].中国烟草科学.1997,4:13-14
    [90] Reid JJ, McKinstry DW, Haley DE. Studies on the Fermentation of Tobacco.Pennsylvania State College, School ofAgriculture and Experiment Station.1938
    [91] Sguros PL. Microbial transformations of the tobacco alkaloids I. Cultural andmorphological characteristics of a nicotinophile[J]. Journal of bacteriology.1955,69:28-37
    [92] Hecht SS, Hoffmann D. Tobacco-specific nitrosamines, an important group ofcarcinogens in tobacco and tobacco smoke[J]. Carcinogenesis.1988,9:875
    [93]王莹,范坚强,包可翔,王金华,王志.一株片烟中纤维素降解菌的筛选鉴定及其初步应用研究[J].现代农业科技.2011,25-28
    [94]东秀珠,蔡妙英.常见细菌系统鉴定手册:科学出版社;2001.
    [95] Buchanan R.伯杰氏系统细菌学手册.北京:中国科学出版社.1984.
    [96]杨金奎,段焰青,陈春梅,李庆华,黄静文,张克勤.醇化烟叶表面可培养微生物的鉴定和系统发育分析[J].烟草科技.2008,11:51-55
    [97]赵铭钦,张维群.陈化期间烤烟叶片中生物活性变化的研究[J].华中农业大学学报.2000,19:537-542
    [98] Zhao M, Wang B, Li F, Qiu L, Wang S, Cui J. Analysis of bacterial communities onaging flue-cured tobacco leaves by16S rDNA PCR–DGGE technology[J]. Appliedmicrobiology and biotechnology.2007,73:1435-1440
    [99] Huang J, Yang J, Duan Y, Gu W, Gong X, Zhe W. Bacterial diversities on unaged andaging flue-cured tobacco leaves estimated by16S rRNA sequence analysis[J]. Appliedmicrobiology and biotechnology.2010,88:553-562
    [100] Wright Av. Regulating the safety of probiotics-The European approach[J]. Currentpharmaceutical design.2005,11:17-23
    [101]高鹤永,弓爱君,曲冬梅,邱丽娜.正交设计法优化Bt发酵培养基[J].现代农药.2004,3:11-13
    [102] Salminen S, von Wright A, Morelli L, Marteau P, Brassart D, de Vos WM.Demonstration of safety of probiotics-a review[J]. International journal of foodmicrobiology.1998,44:93-106
    [103] Jin L, Ho Y, Abdullah N, Ali M, Jalaludin S. Antagonistic effects of intestinalLactobacillus isolates on pathogens of chicken[J]. Letters in applied microbiology.2008,23:67-71
    [104] Chen H, Xiao X, Wang J, Wu L, Zheng Z, Yu Z. Antagonistic effects of volatilesgenerated by Bacillus subtilis on spore germination and hyphal growth of the plantpathogen, Botrytis cinerea[J]. Biotechnology letters.2008,30:919-923
    [105]周成旭,马斌,汪飞雄,徐斌,严小军.海洋原甲藻与三角褐指藻混合培养条件下的种群生长与氮磷营养盐变化[J].海洋科学.2006,30:58-61
    [106]姜心,陈伟,周波,黄坤勇.三菌混合崮态发酵苹果渣产复合酶的研究[J].饲料工业.2010,31:20-25
    [107]庞良伟.纤维素分解菌的混合培养及互生特性研究[D].成都,四川大学,2003
    [108]李巨秀.混菌种发酵果渣生产蛋白饲料的研究[D].西北农林科技大学,2002.
    [109]刘士亮.浅析造纸法烟草薄片生产中存在的问题及解决思路[J].湖北造纸.2012,01:67-71
    [110]刘良才,胡惠仁,温洋兵,石淑兰,唐向兵,胡德武.外加植物纤维对造纸法烟草薄片物理性能的影响[J].中华纸业.2011,16
    [111]骆莉,卓浩廉,周瑢,孔浩辉,程志颖,杨博.生物技术及美拉德反应改良烟梗提取液的性质[J].食品工业科技.2012,06:33
    [112]肖瑞云.不同复合酶对烟梗化学成分和感官评吸的影响[J].江西农业学报,2010,4:9-10
    [113]林凯.酶法对烟梗丝降解效果的研究[J].安徽农业科学,2011
    [114] hamberlain W.J., Bake J.L.. Studies on the reduction of nitrosamines in tobacco[J].Tobacco Science.1986,30:81-82
    [115] Djordjevic, M.V., Gay, S.L.. Tobacco-specific nitrosamines accumulation anddistribution in flue-cured tobacco isolines[J]. J.Agric. Food Chem.1989,37:751
    [116]杨红旗.中国烤烟主要香气前体物的研究[D].湖南农业大学,2006
    [117]王健,黄国林.果胶生产工艺研究进展[J].化工时刊,2007,21:70-73
    [118] Kar F, Arslan N. Effect of temperature and concentration onviscosity of orange peelpectin solution and intrinsic viscosity-molecular weight relationship[J]. CarbohydratePolymers,1999,40:277-284
    [119]王月侠,葛善礼,贾涛.烟梗化学组成的分析[J].烟草科技,1996(3):16.
    [120]闫克玉.烟草化学[M].郑州:郑州大学出版社,2002
    [121]吴玉萍,杨光宇,王东丹.高效液相色谱法测定烟草中的果胶含量[J].光谱实验室,2004,21:183-185
    [122]宫长荣,王能如,汪耀富.烟叶烘烤原理[M].北京:科学出版社,1994
    [123] Seversin R F. Cubicula constituents of tobacco factorsaffecting their production andtheir role in insect anddisease resistance and smoke quality[J]. Recent AdvanceofTobacco Science,1985,11:105-174
    [124] Sun J X, Xu F, Sun X F, Xiao B, Sun R C. Physico-chemical and thermalcharacterization of cellulose from barley straw[J]. Polymer Degradation and Stability.2005,88:521-531
    [125] Raveendran K, Ganesh A, Khilar K C. Pyrolysis characteristics of biomass and biomasscomponents[J]. Fuel,1996,75:987-998
    [126] Yang H P, Yan R, Chen H P, Zheng C G, Lee D H, Liang D T. In-Depth Investigation ofBiomass Pyrolysis Based on Three Major Components: Hemicellulose, Cellulose andLignin[J]. Energy&Fuels,2006,20:383-393
    [127] Chamberlain W.J., Bake J.L.. Studies on the reduction of nitrosamines in tobacco[J].Tobacco Science.1986,30:81-82
    [128]刘维涓,王亚明,刘刚,候英,段孟.烤烟烟叶与造纸法再造烟叶热裂解产物的对比分析[J].林产化学与工.2009,2:83-85
    [129] Chakraborty M K.Technical assay of tobacco aroma[J].Indian JTechno.1965,3:371-372
    [130]邱晔,卢伟,王建,孙力,张强,魏杰.造纸法烟草薄片对卷烟一氧化碳释放量影响研究[J].云南大学学报(自然科学版).2010,3:80-85
    [131]厉昌坤,周显升,王允白.烤烟烟叶焦油释放量与部分化学成分的关系[J].中国烟草科学,2004,25:25-27
    [132] David H Slaymaker. The tobacco salicylic acid-binding protein3(SABP3) is thechloroplast carbonic anhydrase, which exhibits antioxidant activity and plays a role inhypersensitive defense response[J]. PNAS,2002,8(99):1160-1145
    [133] Chapter12. Analytical Pyrolysis of Protein. Techniques and Instrumentation inAnalyticalChemistry,1998,20,217–315.
    [134]阎克玉,李兴波,屈剑波.河南烤烟(40级)水溶性总糖和还原糖含量及其相关性研究[J].郑州轻工业学院学报.1997,12:42-47
    [135]余祥英,胡军,曾世通,赵明月. Maillard反应中杂环香味化合物形成机理的研究进展[J].香料香精化妆品.2012
    [136] VA Yaylayan, LJW Haffenden. Mechanism of imidazole and oxazole formation inlabeled glycine and ananine model systems[J]. Food chemistry.2003,81:403-409
    [137] MY Low, JK Parker, DS Mottram. Mechanisms of alkylpyrazine formation in a potatomodel system containing added glycine[J]. Journal of agricultural and food chemistry.2007,55(10):4087-4094
    [138]P Schieberle. Quantitation of important roast-smelling odorants in popcorn by stableisotope dilution assays and model studies on flavor formation during popping[J].Journalof agricultural and food chemistry.1995,43(9):2442-2448
    [139] A Adams, N De Kimpe.Chemistry of2-acetyl-1-pyrroline,6-acetyl-1,2,3,4-tetrahydropyridineextraordinary maillard flavor compounds[J]. Chemical reviews.2006,106(6):2299-2319
    [140]廖艳芬,洛仲泱,王树荣.纤维素快速热裂解机理实验研究I.试验研究[J].燃料化学学报,2003,31:133-138
    [141]王树荣,廖艳芬,谭洪.纤维素快速热裂解机理实验研究II.机理分析[J].燃料化学学报,2003,31:317-321
    [142] Lu Qiang, Zhu Xifeng. On-linecatalytic upgrading of biomass fast pyrolysisproducts[J].Chinese Science Bulletin,2009,54:1941-1948
    [143] Phillip F Britt, Buchanan A C, III, et al. Pyrolysis mechanisms of lignin:surface-immobilized model compound investigation of acid-catalyzed and free-radicalreaction pathways [J]. Journal ofAnalytical and Applied Pyrolysis,1995,33:1-19
    [144] Yang H P, Yan R, Chen H P. Characteristics of hemicellulose, cellulose and ligninpyrolysis[J]. Fuel,2007,86(12):1781-1788
    [145] Haruo Kawamoto, Masakazu Ryoritani, Shiro Saka. Different pyrolytic cleavagemechanisms of-ether bond depending on the side-chain structure of lignin dimers[J].J. Anal. Appl. Pyrolysis,2008,81:88-94
    [146]娄瑞.非木材纤维木素在不同热化学条件下的产物形成规律与调控途径[D].华南理工大学,广州,2011
    [147] Joseph L, Banyasz San Li, Jim L H. Gas evolution andthe mechanism of cellulosepyrolysis[J]. Fuel,2001,80:1757-17631
    [148] Tao X, Xiaoming H. Study on combustion mechanism of asphaltbinder by using TG-FTIR technique[J]. Fuel,2010,89:2185-2190
    [149] Yang H, Yan R, Chen H, Zheng C, Lee DH, Liang DT. In-depth investigation ofbiomass pyrolysis based on three major components: hemicellulose, cellulose andlignin[J]. Energy&Fuels,2006,20:388-393
    [150]王擎,施正学.美拉德反应机理研究新进展[J].食品科学.1993,7:7-9
    [151]刘立全.梅拉德反应在烟草增香中的应用研究进展[J].烟草科技.1994,6:21-24

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700