用户名: 密码: 验证码:
木质素羧酸盐的制备及其在石墨/水分散体系中的作用机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,地球自然资源的不断匮乏和生态环境的迅速恶化已经成为威胁人类社会生存和可持续发展的重要问题。如何高效利用可再生生物质资源已经引起国内外的广泛关注。木质素作为自然界第二丰富的天然高分子聚合物,是一种可再生的天然生物质资源。在我国,工业木质素主要来自于碱法制浆造纸废液,具有来源丰富、价格低廉和水溶性差等特点。以工业木质素为原料,通过化学改性生产“环境友好”的绿色精细化工产品以及开发绿色化学工艺,不仅可以减少造纸废液造成的环境污染,也可以提高工业木质素的经济附加值,充分利用木质素这类重要生物质资源,具有环境和资源双重意义。
     本文以酸析麦草碱木质素为原料合成木质素羧酸钠盐,分别研究了溶媒法和水媒法两种不同的工艺。结果表明,在溶媒法制备工艺中,采用水与乙醇体积比为20︰80的溶剂体系,反应温度为70℃,二次加碱方式的反应条件下可得到最优化合成工艺,合成出的木质素羧酸钠的羧甲基化产率及其羧基含量分别为94.8%和2.76mmol/g;在水媒法制备工艺中,采用氢氧化钠质量浓度为20.0%,一氯乙酸质量浓度为37.5%,反应温度和时间分别为70℃和90min的反应条件下可得到最优化合成工艺,合成出的木质素羧酸钠的羧甲基化产率及其羧基含量分别为93.0%和2.82mmol/g。
     分别采用自动电位滴定仪、FTIR、~1H,~(13)C–NMR和~1H-~(13)C HSQC–NMR等测试技术对溶媒法和水媒法制备的木质素羧酸钠的结构特征进行了详细表征和分析。结果表明,溶媒法工艺制备的产物在1604cm-1和1422cm-1处出现羧基的两个特征吸收峰;~(13)C–NMR图谱在179~170ppm区域内出现了较强信号的羧酸基团碳化学位移峰,同时在73~66ppm区域内出现了多个较强信号的羧甲基基团中亚甲基的碳化学位移峰,且α位醚化愈创木基单元的碳信号较酸析麦草碱木质素有较大幅度的增强,麦草碱木质素分子中羧基增量远大于其酚羟基减少量,证明有机相中羧甲基取代反应在麦草碱木质素的酚羟基和α位醇羟基上同时进行。水媒法工艺制备的产物在1601cm-1和1421cm-1处出现羧基的两个特征吸收峰,且酸析产品在1725cm-1处出现羧酸基团特征吸收峰;~1H–NMR图谱在12.47ppm处出现羧酸基团的氢化学位移峰,同时分别在4.57ppm和4.35ppm处出现两个新的氢化学位移峰;~(13)C–NMR图谱在170.62ppm处出现较强信号的羧酸基团碳化学位移峰,同时分别在69.28和65.74ppm处出现两个新的碳化学位移峰;~1H-~(13)C HSQC–NMR图谱分别在4.57/65.07ppm和4.35/68.6ppm处出现两个新的H/C化学位移信号;~(13)C–NMR图谱半定量分析表明α位醚化愈创木基结构单元的相对含量增幅明显,而紫丁香基结构单元的相对含量在改性前后基本没有变化,证明在水相体系中麦草碱木质素分子中愈创木基结构单元的酚羟基和支链α位醇羟基均被羧甲基所取代,揭示了水媒法制备木质素羧酸盐的羧甲基化反应机理。
     分别采用粘度计、Zeta电位仪、稳态荧光仪、动态光散射仪等表征技术研究了浓度、溶液pH和离子强度等因素对木质素羧酸钠在水溶液中粘度行为和聚集行为的影响。结果发现木质素羧酸钠溶液比浓粘度随着其浓度的下降而急剧增大,证明木质素羧酸钠在稀水溶液中具有显著的聚电解质特征;溶液比浓粘度随着溶液pH值的增大而迅速下降,随着溶液离子强度的增大先减小后增大。羧基含量为2.82mmol/g、2.61mmol/g和1.99mmol/g的木质素羧酸钠在水中临界聚集浓度分别为0.022g/L、0.025g/L和0.026g/L,当浓度高于临界聚集浓度时,溶液中存在不同粒径大小及分布的聚集体。随着木质素羧酸钠浓度的增大,其溶液荧光激发光谱发生明显红移,散射光强度增大,表明木质素羧酸钠在水溶液中同时发生了分子聚集和π-π聚集,聚集体粒径增大。随着溶液pH值的增大,溶液散射光强度逐渐减弱,荧光激发光谱仅在强碱性条件下出现微小红移,表明木质素羧酸钠发生分子解聚,且仅在强碱性条件下芳香基团间的π-π相互作用有所加强。溶液离子强度对溶液荧光激发光谱没有明显影响,但散射光强度和颗粒粒径均随着溶液离子强度的增大先减小后增大,表明木质素羧酸钠在低离子强度下仅发生分子内收缩,然后随着溶液离子强度的进一步增大而发生分子聚集。羧基含量和尿素对溶液荧光激发光谱没有明显影响。
     研究了羧基含量、溶液pH、离子强度及尿素对木质素羧酸钠在天然鳞片石墨/水界面吸附特性的影响。结果表明,木质素羧酸钠在天然鳞片石墨上的饱和吸附量随着羧基含量的增大而增大,吸附等温线符合Langmuir吸附模型;在中性条件下,溶液离子强度对吸附量没有明显影响,而在酸性条件下吸附量随着溶液离子强度的增大而增大;随着溶液pH值的增大,吸附量先减小后增大;尿素的加入使得木质素羧酸钠的饱和吸附量减少,且对吸附的影响程度随着溶液pH值的增大而减小,在碱性条件下则可以忽略。
     研究了羧基含量、溶液pH、离子强度及尿素对木质素羧酸钠在高纯石墨/水界面吸附特性的影响。结果表明,木质素羧酸钠在高纯石墨表面上的饱和吸附量随着羧基含量的增大而增大,吸附等温线符合Langmuir吸附模型;在中性条件下,吸附量随着溶液离子强度的增大而增大,当NaCl的摩尔浓度≥0.5mol/L时,吸附量不再增加;吸附量随着溶液pH值的增大而减小;尿素的加入使得木质素羧酸钠的饱和吸附量减少。
     采用耗散型石英晶体微天平研究了溶液pH和离子强度对木质素羧酸钠在金片/水界面吸附特性的影响。结果表明,随着溶液pH值的增大,木质素羧酸钠在金片上的吸附量减少,吸附膜粘弹性增强;吸附量随着溶液离子强度的增大而增大,在NaCl摩尔浓度为1.0mol/L时吸附膜由粘弹性转变为刚性,且随着吸附时间的延长出现转折。
     采用分散稳定性分析仪分别研究了木质素羧酸钠的羧基含量、分散剂掺量和悬浮液pH对天然鳞片石墨/水和高纯石墨/水分散体系稳定性的影响,同时与木质素磺酸钠、羧甲基纤维素钠和聚丙烯酸钠三种常用分散剂进行对比。结果表明,羧基含量为2.82mmol/g的木质素羧酸钠对天然鳞片石墨水悬浮液和高纯石墨水悬浮液都具有良好的分散稳定性能;在悬浮液pH=6.7和木质素羧酸钠掺量为1.0%的条件下,天然鳞片石墨水悬浮液的分散稳定性最好;在悬浮液pH=7.3和木质素羧酸钠掺量为0.5%的条件下,高纯石墨水悬浮液的分散稳定性最好;木质素羧酸钠的加入明显减少了石墨间的团聚,颗粒粒径减小;木质素羧酸钠的分散稳定效率高于上述三种常用分散剂。
     采用Zeta电位仪研究了木质素羧酸钠的羧基含量及掺量、悬浮液pH对高纯石墨颗粒表面Zeta电位的影响。结果表明,高纯石墨颗粒表面Zeta电位随着木质素羧酸钠的羧基含量及掺量的增大而下降。当悬浮液的pH值在酸性范围内,高纯石墨颗粒表面的Zeta电位随着悬浮液pH值的增大先降低后升高;当悬浮液的pH值在碱性范围内,高纯石墨颗粒表面的Zeta电位随着悬浮液pH值的增大而降低。
Nowadays, the gradual shortage of natural resources and the rapid worsening of theenvironment have already become the severe problems for the survival and continuousdevelopment of human being. How to utilize the renewable biomass resource with highefficiency has attracted worldwide concern. Lignin, the second most abundant biopolymer onearth, is one of renewable natural biomass resources. In china, industrial lignin mainly existedin the waste liquor from the paper and pulping industry has the properties of rich sources, lowprice and poor water solubility. Using industrial lignin as raw material, producingenvironmentally friendly green fine chemical products via chemical modification anddeveloping green chemical processes not only reduce the pollution damage to theenvironment caused by the pulping waste liquor, but also increase the economic value addedof industrial lignin, which has double significance in environment and resource.
     Using wheat straw alkali lignin (WAL) as raw material, the research on preparation ofcarboxymethylated lignin (CML) was carried out via organic solvent-medium method andwater-medium method, respectively. Results showed that the productivity ofcarboxymethylation and carboxylic group content of CML prepared in organic solventmedium were94.8%and2.76mmol/g under the optimum conditions of ethanol and waterwith the volume ration of80:20as solvent, reaction temperature of70°C and two-stageNaOH addition; the productivity and carboxylic group content of CML prepared in watermedium were93.0%and2.82mmol/g under the optimum conditions of NaOH massconcentration of20.0%, monochloroacetic acid mass concentration of37.5%, reactiontemperature of70°C and reaction time of90min.
     The structures of CML samples were characterized and determined by means of theautomatic potentiometric titration, FTIR,~1H,~(13)C–NMR and~1H-~(13)C HSQC–NMRspectroscopy, respectively. For the CML sample prepared in organic solvent medium, theabsorption peaks at1604and1422cm-1were assigned to the characteristic absorption bandsof craboxylate (–COO-);~(13)C–NMR spectrum showed that many strong peaks within the rangeof179~170ppm were originated from the C atom of–COOH, and the appearances of somesignals in the range of73~66ppm were attributed to the C atoms of methylene groups of carboxymethyl groups (–CH2COOH). Moreover, there was a marked increase in the relativequantity of guaiacyl unit with α-ether, and the increase in carboxylic group content of WALwas much larger than the decrease in phenolic group content, which illustrated that thesubstitution reaction of carboxymethylation in organic solvent medium occurredsimultaneously in phenolic hydroxyl group and the α-position aliphatic hydroxyl group ofWAL. For the CML sample prepared in water medium, the absorption peaks at1601and1421cm-1were assigned to the characteristic absorption bands of–COO-, and a strong peak at1725cm-1in H-form CML originated from unconjugated carbonyl stretch; In~1H–NMR spectrum, abroad peak at12.47ppm was assigned to proton of the hydroxylic group, and the appearancesof two new signals at4.57ppm and4.35ppm were attributed to protons of methylene groupsof–CH2COOH; In~(13)C–NMR spectrum, a very strong signal at170.62ppm was originatedfrom the C atom of–COOH, and two new signals at69.28ppm and65.74ppm wereattributed to C atoms of methylene groups of–CH2COOH; Moreover, in~1H-~(13)C HSQC–NMRspectrum, there were also two new crosspeaks at δ4.57/65.07ppm and4.35/68.6ppmattributed to H/C signals of methylene groups in substituents of-CH2COOH. By calculatingthe relative quantity of the main lignin units shown in~(13)C–NMR spectra, it was found thatthere was obviously an increase in relative quantity of guaiacyl unit with α-ether, but therelative quantity of syringyl unit has hardly any change at all after carboxymethylationreaction in comparison with that before reaction. Results showed that the carboxymethylationreaction in water medium also occurred simultaneously in phenolic hydroxyl group and theα-position aliphatic hydroxyl group. Finally, a possible mechanism of carboxymethylationreaction of WAL in water medium was proposed.
     The effects of mass concentration, solution pH and ionic strength on the viscositybehavior and aggregation of CML in aqueous solution were studied by means of viscometer,Zeta potential analyzer, static fluorometer and dynamic light scattering technique. It wasfound that the reduced viscosity of CML solution increased dramatically with decreasingCML concentration, which confirmed the obvious characteristic of polyelectrolyte of CML indilute aqueous solution; moreover, the reduced viscosity of CML solution decreased rapidlywith increasing solution pH, while it decreased first and then increased with increasing ionicstrength. The critical aggregation concentrations (CAC) of CML samples with different carboxylic group contents of2.82mmol/g,2.61mmol/g and1.99mmol/g in water were0.022g/L,0.025g/L and0.026g/L, respectively. When the concentration was higher than CAC,there existed aggregates with different particle sizes and distributions. With increasingsolution pH, the scattered light intensity of CML solution was weakening gradually, and ared-shift of the fluorescence excitation spectrum of CML occurred only under strong alkalinecondition. Results showed that the molecular aggregation of CML occurred and the π-πinteraction among aromatic rings was strengthened under strong base condition. On the otherhand, the ionic strength had no obvious effect on the fluorescence excitation spectrum, but thescattered light intensity and particle size decreased first and then increased with increasingionic strength. The results indicated that when ionic strength was relatively lower, there onlyoccurred the intramolecular shrinkage; however, with further increasing ionic strength, themolecular aggregation was present. Both the carboxylic group content and urea had noobvious influences on the fluorescence excitation spectrum of CML.
     The effects of carboxylic group content, solution pH, ionic strength and urea on theadsorption characteristics of CML at the natural graphite (NG)/water interface wereinvestigated. It was found that the saturation adsorption capacity of CML on NG surfaceincreased with increasing carboxylic group content, and the adsorption isotherm was wellrepresented by the Langmuir Isotherm model. Solution ionic strength had no obviousinfluence on adsorption under neutral condition, while the amount adsorbed of CMLincreased with increasing solution ionic strength under acidic condition. With increasingsolution pH, the amount adsorbed of CML decreased first and then increased. The saturationadsorption capacity of CML was decreased with the addition of urea, moreover, the impactand extent on adsorption decreased with increasing solution pH, and could be ignored underalkaline condition.
     The effects of carboxylic group content, solution pH, ionic strength and urea on theadsorption characteristics of CML at the high-purity graphite (HPG)/water interface wereinvestigated. It was observed that the saturation adsorption capacity of CML on HPG surfaceincreased with increasing carboxylic group content, and the adsorption isotherm was also wellrepresented by the Langmuir Isotherm model. The amount adsorbed of CML increased withincreasing solution ionic strength under neutral condition, and reached the maximum when CML molar concentration was0.5mol/L; the uptake of CML decreased with increasingsolution pH; the saturation adsorption capacity of CML was also decreased with the additionof urea.
     The effects of solution pH and ionic strength on the adsorption characteristics of CML atthe gold/water interface were studied by using quartz crystal microbalance with dissipation.With increasing solution pH, the amount adsorbed of CML on gold surface decreased, and theviscoelasticity of adsorbed layer increased. The uptake of CML increased with increasingsolution ionic strength. Moreover, when CML molar concentration was1.0mol/L, theadsorbed layer turned into a rigid one, and a turning point was present with prolongingadsorption time.
     Using Turbiscan Lab analyzer, the influences of carboxylic group content of CML,dosage of dispersant and suspension pH on the dispersion stability of NG/water system andHPG/water system were investigated and compared with three common dispersants ofsodium lignosulfonate (SL), sodium carboxymethyl cellulose (Na-CMC) and sodiumpolyacrylate (PAAS), respectively. Results showed that the dispersion efficiency of CML withcarboxylic group content of2.82mmol/g was higher than those of three common dispersantsmentioned above. The dispersion stabilities of aqueous NG suspension prepared with CML of1.0%dosage at suspension pH6.7and aqueous HPG suspension prepared with CML of0.5%dosage at suspension pH7.3were optimal, respectively. Meanwhile, it was observed that theagglomerate of graphite particles was dramatically reduced and the particle size wasdecreased.
     The effects of carboxylic group content and dosage of CML, suspension pH on the zetapotential of HPG particle surface were investigated using Zeta potential analyzer. It was foundthat the zeta potential of HPG particle surface decreased with increasing carboxylic groupcontent and dosage of CML. When suspension pH was in the acidic range, with increasingsuspension pH, zeta potential decreased first and then increased; when suspension pH was inthe alkaline range, zeta potential decreased with increasing suspension pH.
引文
[1]周益同,张小丽,高源,张力平.曼尼希反应合成碱木质素胺基多元醇的研究[J].现代化工,2011,31(增刊):260-263.
    [2]张春敬,刘玉.黑液中提取碱木素(溶出木素)的研究进展[J].华东纸业,2011,42(6):70-75.
    [3]刘志平,付时雨,詹怀宇.利用紫外分光光度法优化麦草碱木素磺化工艺[J].造纸科学与技术,2012,32(2):1-4.
    [4]张兴华,付德宝.制浆黑液中碱木质素的利用开发途径,林业勘查设计[J].2011,(3):114-115.
    [5]张小丽,周益同,高源,张力平.碱木质素羟甲基化改性的研究[J].现代化工,2011,31(增刊):194-196.
    [6] Lawther J.M., Sun R.C., Banks W.B.. Rapid isolation and structural characterizationof alkali-soluble lignins during alkaline treatment and atmospheric refining of wheatstraw[J]. Industrial Crops and Products,1996,5(2):97-105.
    [7] Sun R.C., Lawther J.M., Banks W.B.. A tentative chemical structure of wheat strawlignin[J]. Industrial Crops and Products,1997,6(1):1-8.
    [8] Sun R.C., Xiao B., Lawther J.M.. Fractional and structural characterization ofBall-milled and enzyme lignins from wheat straw[J]. Journal of applied polymerscience,1998,68(10):1633-1641.
    [9] Sun X.F., Sun R.C., Folwer P., Baird B.S.. Extraction and characterization of originallignin and hemicelluloses from wheat straw[J]. Agricultural and food chemistry,2005,53(4):860-870.
    [10]林鹿,Chen C.L., Gratzl J.S..麦草木素结构的研究进展[J].中国造纸学报,2001,16:119-125.
    [11]林鹿,Chen C.L., Gratzl J.S.,詹怀宇.草类木素的氨化反应Ⅰ.草类制浆黑液中木素的纯化与结构分析[J].中国造纸学报,2001,16:96-100.
    [12] Ghatak H.R.. Spectroscopic comparison of lignin separated by electrolysis and acidprecipitation of wheat straw soda black liquor[J]. industrial crops and products,2008,28(2):206-212.
    [13]周强,陈昌华,陈中豪.碱木素的多相催化羟甲基化[J].中国造纸学报,2000,15(1):120-122.
    [14]陈嘉川,谢益民,李彦春,刘温霞,刘玉.天然高分子科学[M].北京:科学出版社,2008.
    [15]武书彬.工业木素的特性及其化学改性[J].纸和造纸,1996,(2):49-50.
    [16]田震,邱学青,欧阳新平,杨东杰.碱木素磺化改性为水泥减水剂的工艺研究[J].造纸科学与技术,2001,20(1):27-30.
    [17]姜庆梅.麦草碱木素缩合改性制备减水剂的方法[P].CN101337789,2009.
    [18]蒋亚清,高建明.改性草浆碱木素减水剂的制备与性能评价[J].江苏大学学报(自然科学版),2008,29(5):406-409.
    [19]邱学青,周明松,杨东杰,楼宏铭.麦草碱木素高效水煤浆分散剂的应用性能[J].中国造纸,2007,26(2):31-34.
    [20]姚光裕.麦草碱木素氧化氨解生产缓慢释放氮肥[J].中华纸业,2002,23(7):51.
    [21]江启沛,张小勇,李佐虎.草浆碱木素过氧化氢氧化氨解制备氨化木质素缓释肥料的研究[J].环境工程学报,2009,3(2):279-284.
    [22]王海燕,倪宁晖,李忠正,薛国新.麦草碱木素臭氧氧化改性的初步研究[J].中国造纸,2004,23(9):28-32.
    [23]王海燕,倪宁晖,李忠正,薛国新.麦草碱木素复合臭氧氧化改性及应用性能的研究[J].中国造纸学报,2005,20(1):101-105.
    [24] Mazieroa P., Oliveira Neto M., Machado D., Batista T., Cavalheiro C.C.S., NeumannM.G., Craievichd A.F., Moraes Rocha G.J., Polikarpov I., Gon alves A.R.. Structuralfeatures of lignin obtained at different alkaline oxidation conditions from sugarcanebagasse[J]. Industrial Crops and Products.2012,35(1):61-69.
    [25]谌凡更,李忠正.麦草碱木素与环氧乙烷共聚的研究[J].纤维素科学与技术,1998,6(1):48-54.
    [26] Xiao B., Sun X.F., Sun R.C.. The chemical modification of lignins with succinicanhydride in aqueous systems[J], Polymer degradation and stability,2001,71(2):223-231.
    [27]卢孔燎,韦汉道,黄焕琼,王磊.竹类碱木素表面活性剂的合成研究[J].中国造纸学报,1995,10:45-50.
    [28]宋哲玉,杨桂迎,刘晓莲.碱木素胺化及作为沥青乳化剂的应用[J].西北轻工业学院学报,1997,15(1):99-103.
    [29] Enkvist T.. Kraft or soda black liquor adhesive[P]. US3864291,1973.
    [30]谌凡更,李静.碱木素硫化反应以及木素酚醛树脂固化性能的研究[J].纤维素科学与技术,2000,8(2):1-6.
    [31]高鸿宾.有机化学[M].北京:高等教育出版社,2005.
    [32] Tijsen C.J., Kolk H.J., Stamhuis E.J., Beenackers A.A.C.M.. An experimental studyon the carboxymethylation of granular potato starch in non-aqueous media[J].Carbohydrate Polymers,2001,45(3):219-226.
    [33] Heinze T., Pfeiffer K.. Studies on the synthesis and characterization ofcarboxymethylcellulose[J]. Angewandte Makromolekulare Chemie,1999,266(1):37-45.
    [34] Pushpamalar V., Langford S.j., Ahmad M., Lim Y.Y.. Optimization of reactionconditions for preparing carboxymethyl cellulose from sago waste[J]. CarbohydratePolymers,2006,64(2):312-318.
    [35] Au N.T., Dong N.T., Dung P.L., Thien D.T.. Synthesis and characterization ofwater-soluble o-carboxymethyl glucomannan derivatives[J]. Carbohydrate Polymers,2011,83(2):645-652.
    [36] Wang L.F., Pan S.Y., Hu H., Miao W.H., Xu X.Y.. Synthesis and properties ofcarboxymethyl kudzu root starch[J]. Carbohydrate Polymers,2010,80(1):174-179.
    [37] Petzold K., Schwikal K., Heinze T.. Carboxymethyl xylan-synthesis and detailedstructure characterization[J]. Carbohydrate Polymers,2006,64(2):292-298.
    [38]蒋挺大.木质素[M].北京:化学工业出版社,2009.
    [39] Bazarnova N.G., Galochkin A.I., Markin V.I.. Carboxymethylated chemical reagentfor drilling fluids[P]. RU2127294-C1,1999.
    [40] Iiyama K., Ota A., Nehei Y., Abe H.. Cathode additive for lead storage batter, containscarboxymethylated lignin having specific carboxymethyl group substitution degree,as raw material[P]. JP2006202607A,2006.
    [41] Ishida T., Ishida A., Iiyama K., Lam T.B.T., Yamamoto N.. Prepn. of water-solublekraft lignin for use as antiviral agent etc. by purification and carboxymethylation[P].JP9511053-X,1997.
    [42] Lange W., Schweer W.. The carboxymethylation of organosolv and kraft lignins[J].Wood Science Technology,1980,14(1):1-7.
    [43] Peternele W.S., Winkler-Hechenleitner A.A., G6mez Pineda E.A.. Adsorption ofCd(II) and Pb(II) onto functionalized formic lignin from sugar cane bagasse[J].Bioresource Technology,1999,68(1):95-100.
    [44]余权英,谭向华.木材羧甲基化改性及其溶解性研究[J].林产化学与工业,1997,17(3):33-39.
    [45] Matsushita Y., Imai M., Tamura T. and Fukushima K.. Preparation and evaluation of adispersant for gypsum paste from acid hydrolysis lignin[J]. Journal of AppliedPolymer Science,2005,98(6):2508-2513.
    [46] Da Silva L.G., Ruggiero R., Gontijo P.M., Pinto R.B., Royer B., Lima E.C., FernandesT.H.M., Calvete T.. Adsorption of Brilliant Red2BE dye from water solutions by achemically modified sugarcane bagasse lignin[J]. Chemical Engineering Journal,2011,168(2):620-628.
    [47] Cerrutti B., de Souza C., CastellanA., Ruggiero R., Frollini E.. Carboxymethyl ligninas stabilizing agent in aqueous ceramic suspensions[J]. Industrial Crops and Products,2012,36(1):108-115.
    [48] Tanaka Y., Abe H., Senju, R.. The active centre for the gel conversion at the treatmentof lignin with potassium dichromate (orig. jap.)[J]. Kogyo Kagaku Zasshi,1966,69:1968-1970.
    [49] Sofía C., Armindo R.G., Anderson G., Lucian A.. Lucia and Dimitris S. Propensity ofLignin to Associate: Light Scattering Photometry Study with Native Lignins[J].Biomacromolecules,2008,9(12):3362-3369.
    [50] Garver T., Callaghan P.. Hydrodynamics of kraft lignins[J]. Macromolecules,1991,24(2):420-430.
    [51] Norgren M., Edlund H.. Stabilisation of kraft lignin solutions by surfactantadditions[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2001,194(1):239-248.
    [52] Qian Y., Deng Y., Yi C., Yu H., Qiu X.. Solution behaviors and adsorptioncharacteristics of sodium lignosulfonate under different pH conditions[J].BioResources,2011,6(4):4686-4695.
    [53] Fredheim G.E., Braaten S.M., Christensen B.E.. Molecular weight determination oflignosulfonates by size-exclusion chromatography and multi-angle laser lightscattering[J]. Journal of Chromatography A,2002,942(1):191-199.
    [54] Lindstr m T.. The colloidal behaviour of kraft lignin Part I. Association and gelationof kraft lignin in aqueous solutions [J]. Colloid&Polymer Science,1979,257(3):277-285.
    [55] Chernoberezhskii Y.M., Atanesyan A.A., Dyagileva A.B., Lorentsson A.V.,Leshchenko T.V.. Effect of the concentration of sulfate lignin on the aggregationstability of its aqueous dispersions[J]. Colloid Journal,2002,64(5):637-639.
    [56]邱学青,吴渊,邓永红,杨东杰,欧阳新平,易聪华.不同pH条件下木质素磺酸钠的静电逐层自组装研究[J].高分子学报,2010,(6):699-704.
    [57] Benko J., Tappi J.. The colloidal behavior of kraft lignin and lignosulfonates[J].Colloids and Surfaces,1964,47:508-515.
    [58](a) Sarkanen S., Teller D.C., Hall J., McCarthy J.L.. Lignin.18. Associative effectsamong organosolv lignin components[J]. Macromolecules,1981,14(2):426-434.(b)Sarkanen S., Teller D.C., Abramowski E., McCarthy J.L.. Lignin.19. Kraft lignincomponent conformation and associated complex configuration in aqueous alkalinesolution, Macromolecules[J]. Macromolecules,1982,15(4):1098-1104.(c) SarkanenS., Teller D.C., Stevens C.R., McCarthy J.L.. Lignin.20. Associative interactionsbetween kraft lignin components[J]. Macromolecules,1984,17(12):2588-2597.
    [59] Deng Y., Feng X., Zhou M., Qian Y., Yu H., Qiu X.. Investigation of aggregation andassembly of alkali lignin using iodine as a probe[J]. Biomacromolecules,2011,12(4):1116-1125.
    [60] Woerner D.L., McCarthy J.L.. Lignin.24. Ultrafiltration and light-scattering evidencefor association of kraft lignins in aqueous solutions[J]. Macromolecules,1988,21(7):2160-2166.
    [61] Norgren M., Edlund H., W gberg L.. Aggregation of lignin derivatives under alkalineconditions. Kinetics and aggregate structure[J]. Langmuir,2002,18(7):2859-2865.
    [62] Cathala B., Saake B., Faix O., Monties B.. Association behaviour of lignins and ligninmodel compounds studied by multidetector size-exclusion chromatography[J].Journal of Chromatography A,2003,1020(2):229-239.
    [63]冯鑫佳.π-π作用和疏水效应对碱木质素聚集行为的影响[D].华南理工大学硕士学位论文,2012.
    [64] Pillai K.V., Renneckar S.. Cation π Interactions as a Mechanism in Technical LigninAdsorption to Cationic Surfaces[J]. Biomacromolecules,2009,10():798-804.
    [65] Rezanowich A., Goring D.A.I.. Polyelectrolyte expansion of a lignin sulfonatemicrogel[J]. Journal of Colloid Science,1960,15(5):452-471.
    [66] Rezanowich A., Yean W.Q., Goring D.A.I.. High resolution electron microscopy ofsodium lignin sulfonate[J]. Journal of Applied Polymer Science,1964,8(4):1801-1812.
    [67] Afanansjiv N., Korobova E., Parfenova L.. Structure of lignosulfonatesmacromolecules in solutions[A].1997ISWPC Proceedings, Monteral, Canadian,1997:1-3.
    [68] Gundersen S.A., Sjoblom J.. High and low-molecular-weight lignosulfonates andKraft lignins as oil/water-emulsion stabilizers studied by means of electricalconductivity[J]. Collid Polymer Science,1999,277(5):462-468.
    [69] Myrvold B.O.. A new model for the structure of lignosulphonates Part1. Behavior indilute solutions[J]. Industrial Crops and Products,2008,27(2):214-219.
    [70] Qiu X., Kong Q., Zhou M., Yang D.. Aggregation behavior of sodium lignosulfonatein water solution[J]. The Journal of Physical Chemistry B,2010,114(48):15857-15861.
    [71] Yan M., Yang D., Deng Y., Chen P., Zhou H., Qiu X.. Influence of pH on the behaviorof lignosulfonate macromolecules in aqueous solution[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2010,371(1):50-58.
    [72]严明芳.木质素磺酸盐的溶液行为及其在气/液和固/液界面的吸附机理研究[D].华南理工大学博士学位论文,2011.
    [73] Deng Y., Wu Y., Qian Y., Ouyang X., Yang D., Qiu X.. Adsorption and desorptionbehaviors of lignosulfonate during the self-assembly of multilayers[J]. Bioresources,2010,5(2):1178-1196.
    [74]吴渊.自组装法研究木质素磺酸盐吸附[D].华南理工大学硕士学位论文,2011.
    [75]汪劲波.水分散石墨体系的制备研究[D].苏州大学硕士学位论文,2006.
    [76] Bhinde T., Brewer A.Y., Clarke S.M., Phillips T.K., Arnold T., Parker J.E.. Adsorptionof Unsaturated Amides on a Graphite Surface: trans-unsaturated amides[J]. TheJournal of Physical Chemistry C,2011,115(14):6682-6689.
    [77]涂川俊,夏金童,张文皓.炭系导电涂料的研究进展[J].炭素技术,2004,23(3):31-36.
    [78] Moskon J., Dominko R., Cerc-Korosec R., Gaberscek M., Jamnik J.. Morphology andelectrical properties of conductive carbon coatings for cathode materials[J]. Journal ofPower Sources,2007,174(2):683-688.
    [79] Azim S.S., Satheesh A., Ramu K.K., Ramu S., Venkatachari G.. Studies on graphitebased conductive paint coatings[J]. Progress in Organic Coatings,2006,55(1):1-4.
    [80]王恒飞,张其土.片式电容器用石墨浆料的分散稳定性[J],电子元件与材料,2008,27(2):51-53.
    [81]龚正朋,游敏,张露露,吴建好,魏晓红.镀银鳞片石墨的制备研究[J].表面技术,2007,36(2):73-75.
    [82]王相田,胡黎明,顾达,胡英.超细颗粒分散过程分析[J].化学通报,1995,(5):13-17.
    [83]王恒飞,黄芸,何伟,张其土.CMC对石墨-H2O分散液稳定性的影响[J].材料科学与工程学报,2009,27(3):460-464.
    [84]杨燕,李林,贺智勇.水系浆料中鳞片石墨分散效果的评价方法[J].耐火材料,2009,43(2):149-152.
    [85] Yoshimatsu H.. Wettability by water and oxidation resistance of alumina-coatedgraphite powder[J]. Journal of the Electrochemical Society,1995,103(9):929-934.
    [86]任俊,卢寿慈.亲水性及疏水性颗粒在水中的分散行为研究[J].中国粉体技术,1999,5(2):6-9.
    [87]滕飞,宁桂玲,田志坚,熊国兴.激光散射法测试超细颗粒粒度分布的研究[J].光散射学报,2004,16(2):172-176.
    [88]张露露,游敏,隗祖民,龚正朋.表面活性剂改善鳞片石墨分散性的研究[J].电镀与涂饰,2007,26(4):23-27.
    [89] Otroj S., Bahrevar M.A., Mostarzadeh F., Nilforoshan M.R.. The effect ofdeflocculants on the self-flow characteristics of ultra low-cement castables inAl2O3-SiC-C system[J]. Ceramics International,2005,31(5):647-653.
    [90]任俊,沈健,卢寿慈.颗粒分散科学与技术[M].北京:化学工业出版社,2005.
    [91]王周福,庞业华,孙加林,汪厚植,汪彦若.天然鳞片石墨在水中的分散性研究[J].化工矿物与加工,2002,(11):1-3.
    [92]李朋伟,杨东杰,楼宏铭,邱学青.利用分散稳定性分析仪研究水煤浆的稳定性[J].燃料化学学报,2008,36(5):524-529.
    [93]李志礼,庞煜霞,李晓娜,邱学青.木质素磺酸钠的结构特征及用作烯酰吗啉水分散粒径分散剂[J].化工学报,2008,59(8):2127-2133.
    [94] Ata S., Yates P.D.. Stability and flotation behaviour of silica in the presence of anon-polar oil and cationic surfactant[J]. Colloids and Surfaces A: Physicochemicaland Engineering Aspects,2006,277(1):1-7.
    [95] Azema N.. Sedimentation behaviour study by three optical methods–granulometricand electrophoresis measurements dispersion optical analyzer[J]. Powder Technology,2006,165(3):133-139.
    [96]马建军,王子梅.用分散稳定性分析仪研究破乳剂的破乳性能[J].油田化学,2011,28(2):215-218.
    [97] Lemarchand C., Couvreur P., Vauthier C., Costantini D., Gref R.. Study of emulsionstabilization by graft copolymers using the optical analyzer Turbiscan[J].International Journal of Pharmaceutics,2003,254(1):77-82.
    [98] Celia C., Trapasso E., Cosco D., Paolino D., Fresta M.. Turbiscan Lab Expert analysisof the stability of ethosomes and ultradeformable liposomes containing a bilayerfluidizing agent[J]. Colloids and Surfaces B-Biointerfaces,2009,72(1):155-160.
    [99]陈云,冯其明,张国范,陈远道,卢毅屏,欧乐明.微细鳞片石墨分散性[J].中南大学学报(自然科学版),2004,135(6):955-959.
    [100]王恒飞,黄芸,何伟,张其土.非离子表面活性剂对石墨-H2O分散液稳定性的影响[J].功能材料,2009,40(1):48-51.
    [101] Lee J.H., Choi Y.M., Paik U., Park J.G.. The effect of carboxymethyl celluloseswelling on the stability of natural graphite particulates in an aqueous medium forlithium ion battery anodes[J]. Journal of Electroceramics.2006,17(2):657-660.
    [102]陈强,王宗廷,刘煜,刘洁杰.纳米石墨在液态介质中分散行为的研究进展[J].化工时刊,2010,24(1):62-65.
    [103]秦海莉,何润霞,兰辉.石墨分散剂的研究[J].内蒙古石油化工,1998,24(4):9-11.
    [104]秦海莉,何润霞.石墨分散剂最佳加量的研究[J].内蒙古科技与经济,1999,(2):55.
    [105] Moraru V., Nikolai L., Dmitrii S.. Structural transitions in aqueous suspensions ofnatural graphite[J]. Colloids and Surfaces A: Physicochemical and EngineeringAspects,2004,242(1-3):181-187.
    [106] Paruchuri V.K., Nguyen A.V., Miller J.D.. Zeta-potentials of self-assembled surfacemicelles of ionic surfactants adsorbed at hydrophobic graphite surfaces[J]. Colloidsand Surfaces A: Physicochemical and Engineering Aspects,2004,250(1-3):519-526.
    [107] Paruchuri V.K., Nalaskowski J., Shah D.O., Miller J.D.. The effect of cosurfactants onsodium dodecyl sulfate micellar structures at a graphite surface[J]. Colloids andSurfaces A: Physicochemical and Engineering Aspects,2006,272(3):157-163.
    [108] Yamanaka Y., Esumi K.. Adsorption of hydroxyethylcellulose or hydrophobicallymodified cellulose and anionic surfactant from their binary mixtures on particles[J].Colloids and Surfaces A: Physicochemical and Engineering Aspects,1997,122(1):121-133.
    [109]许乃岑,宋杰,王恒飞,张其土.SDS对石墨H2O分散液稳定性的影响[J].材料科学与工程学报,2010,28(2):208-211.
    [110] Zhang L., Somasundaran P., Maltesh C.. Adsoption of n-Dodecyl-β-D-maltoside onSolids[J]. Journal of Colloid and Interface Science,1997,191(1):202-208.
    [111]赵振国.吸附作用应用原理[M].北京:化学工业出版社,2005.
    [112]付爱萍,冯大诚.水在石墨面上吸附的理论研究[J].山东大学学报(自然科学版),1998,33(2):188-194.
    [113]陈建,王静,孙成.对氯苯酚在石墨上的吸附行为及其机理研究[J].中国环境科学,2009,29(6):636-639.
    [114]陈建,王京平,王晶,孙杰,孙成.四环素在石墨上的吸附行为研究[J].环境工程学报,2010,4(1):17-20.
    [115]陈永军,赵汝光,杨威生.长链烷烃和醇在石墨表面吸附的扫描隧道显微镜研究[J].物理学报,2005,54(1):284-290.
    [116] Subrammiant S., Laskowski J.S.. Adsorption of Dextrin onto Graphite[J]. Langmuir,1993,9(5):1330-1333.
    [117] Raju G.B., Holmgren A., Forsling W.. Adsorption of dextrin at mineral/waterinterface[J]. Journal of Colloid and Interface Science,1997,193(2):215-222.
    [118] Lee J.H., Paik U., Hackley V.A., Choi Y.M.. Effect of carboxymethyl cellulose onaqueous processing of natural graphite negative electrodes and their electrochemicalperformance for lithium batteries[J]. Journal of the Electrochemical Society,2005,152(9): A1763-A1769.
    [119] Ji L.L., Chen W., Duan L., Zhu D.Q.. Mechanisms for strong adsorption oftetracycline to carbon nanobubes: A comparative study using activated carbon andgraphite as adsorbents[J]. Environmental science&technology,2009,43(7):2322-2327.
    [120] Hou Q.F., Lu X.C., Hu B.X., Shen J.. Adsorption behaviour of Tween80ongraphite[J]. Adsorption Science&Technology,2005,23(1):27-36.
    [121]冯绪胜,刘洪国,郝京诚.胶体化学[M].北京:化学工业出版社,2005.
    [122]卢开森─闰德斯E.H..表面活性剂作用的物理化学[M].北京:轻工业出版社,1998.
    [123]王果庭.胶体稳定性[M].北京:科学出版社,1990.
    [124]阎志华,赵斌,程起林,干路平.黑底石墨浆料的稳定性研究[J].化学世界,2002,(3):120-123.
    [125]王珊珊.纳米石墨片在液相介质中的分散及机理研究[D].哈尔滨工程大学硕士学位论文,2008
    [1]周明松.麦草碱木质素高效水煤浆分散剂GCL3S的研制及其分散降粘性能机理研究[D].华南理工大学博士学位论文,2007.
    [2]华东理工大学化学系,四川大学化工学院编.分析化学(第五版)[M].北京:高等教育出版社,2007.
    [3]周明松,黄恺,邱学青,杨东杰.水相电位滴定法测定木质素的酚羟基和羧酸基含量[J].化工学报,2012,63(1):256-263.
    [4]卢灢泉,邓振华.实用红外光谱解析[M].北京:电子工业出版社,1989.
    [5]严明芳.木质素磺酸盐的溶液行为及其在气/液和固/液界面的吸附机理研究[D].华南理工大学博士学位论文,2011.
    [6] Yan M., Yang D., Deng Y., Chen P., Zhou H., Qiu X.. Influence of pH on thebehavior of lignosulfonate macromolecules in aqueous solution[J]. Colloids andSurfaces A: Physicochemical and Engineering Aspects,2010,371(1):50-58.
    [7] Deng Y., Feng X., Zhou M., Qian Y., Yu H., Qiu X.. Investigation of aggregation andassembly of alkali lignin using iodine as a probe[J]. Biomacromolecules,2011,12(4):1116-1125.
    [8] Gosselink R.J.A., Ab cherli A., Semke H., Malherbe, R., Kauper P., Nadif A., vanDam J.P.G.. Analytical protocols for characterization of sulphur-free lignin[J].Industrial Crops and Products,2004,19(3):271-281.
    [9]吴刚.材料结构表征与应用[M].北京:化学工业出版社,2002.
    [10]周玉,武高辉.材料分析测试技术―材料X射线衍射与电子显微分析(第一版)[M].哈尔滨:哈尔滨工业大学出版社,1998.
    [11]陈柱,聂立波,常浩.石英晶体微天平的研究进展及应用[J].分析化学,2011,(4):18-22.
    [12]孙承龙,王惠民,顾海鹰.石英晶体微天平技术及在医学中的应用[J].南通大学学报(医学院),2005B,25(5):393-394.
    [13]常浩,王琪民,张培强.石英微天平研究现状和展望[J].压电与声光,2003,25(6):465-468.
    [14] H k F., Rodahl M., Brzezinski P., Kasemo B.. Energy dissipation kinetics forprotein and antibody-antigen adsorption under shear oscillation on a quartz crystalmicrobalance[J]. Langmuir,1998,14(4):729-734.
    [15] H k F., Rodahl M., Kasemo B., Brzezinski P.. Structural changes in hemoglobinduring adsorption to solid surfaces: effects of pH, ionic strength, and ligandbinding[J]. Proceedings of the National Academy Sciences,1998,95(21):12271.
    [16] Muratsugu M., Ohta F., Miya Y., Hosokawa T., Kurosawa S., Kamo N., Ikeda H..Quartz crystal microbalance for the detection of microgram quantities of humanserum albumin: relationship between the frequency change and the mass of proteinadsorbed[J]. Analytical Chemistry,1993,65(20):2933-2937.
    [17] Rodahl M., H k F., Fredriksson C., Keller C.A., Krozer A., Brzezinski P., VoinovaM., Kasemo B.. Simultaneous frequency and dissipation factor QCM measurementsof biomolecular adsorption and cell adhesion[J]. Faraday Discuss,1997,107(0):229-246.
    [18] Sauerbrey G.. The use of quartz oscillators for weighing thin layers and formicroweighing[J]. Zeitschrift fur Physik,1959,155:206-212.
    [19] Kanazawa K.K., Gordon J.G.. Frequency of a quartz microbalance in contact withliquid[J]. Analytical Chemistry,1985,57(8):1770-1771.
    [20] Rodahl M., Kasemo B.. On the measurement of thin liquid overlayers with thequartz-crystal microbalance[J]. Sensors and Actuators A: Physical,1996,54(1):448-456.
    [21] Marx K.A.. Quartz crystal microbalance: A useful tool for studying thin polymerfilms and complex biomolecular systems at the solution-surface interface[J].Biomacromolecules,2003,4(5):1099-1120.
    [22] Norgren M., G rdlund L., Notley S.M., Htun M., W gberg L.. Smooth modelsurfaces from lignin derivatives. II. Adsorption of polyelectrolytes and PECsmonitored by QCM-D[J]. Langmuir,2007,23(7):3737-3743.
    [23] Notley S.M., Norgren M.. Adsorption of a strong polyelectrolyte to model ligninsurfaces[J]. Biomacromolecules,2008,9(7):2081-2086.
    [24] Nypel T., Pynn nen H., sterberg M., Paltakari J., Laine J.. Interactions betweeninorganic nanoparticles and cellulose nanofibrils[J]. Cellulose,2012,19(3):779-792.
    [25] Pillai K.V., Renneckar S.. Cation π Interactions as a Mechanism in Technical LigninAdsorption to Cationic Surfaces[J]. Biomacromolecules,2009,10(4):798-804.
    [26] Saarinen T., Orelma H., Gr nqvist S., Andberg M., Holappa S., Laine J.. Adsorptionof different laccases on cellulose and lignin surfaces[J]. BioResources,2009,4(1):94-110.
    [27] Saarinen T., Suurn kki A., sterberg M., Laine J.. Modification of lignin withlaccases for the adsorption of anionic ferulic acid studied by quartz cristallmicrobalance with dissipation and AFM[J]. Holzforschung,2009,63(3):298-306.
    [28] Saarinen T., sterberg M., Laine J.. Adsorption of polyelectrolyte multilayers andcomplexes on silica and cellulose surfaces studied by QCM-D[J]. Colloids andSurfaces A: Physicochemical and Engineering Aspects,2008,330(2-3):134-142.
    [29] Du B., Johannsmann D.. Operation of the quartz crystal microbalance in liquids:derivation of the elastic compliance of a film from the ratio of bandwidth shift andfrequency shift[J]. Langmuir,2004,20(7):2809-2812.
    [30] Plunkett M.A., Wang Z., Rutland M.W., Johannsmann D.. Adsorption of pNIPAMlayers on hydrophobic gold surfaces, measured in situ by QCM and SPR[J].Langmuir,2003,19(17):6837-6844.
    [31]李朋伟.木质素磺酸钠改性用于水煤浆添加剂及其对低阶煤分散降黏机理研究[D].华南理工大学博士学位论文,2009.
    [32]李朋伟,杨东杰,楼宏铭,邱学青.利用分散稳定性分析仪研究水煤浆的稳定性[J].燃料化学学报,2008,36(5):524-529.
    [1]孔倩.碱木质素溶液行为的研究[J].华南理工大学硕士学位论文,2011.
    [2]谭义秋,黄祖强,农克良.高取代度木薯羧甲基淀粉的合成及表征[J].过程工程学报,2010,10(1):173-178.
    [3] Pushpamalar V., Langford S.J., Ahmad M., Lim Y.Y.. Optimization of reactionconditions for preparing carboxymethyl cellulose from sago waste[J]. CarbohydratePolymers,2006,64(2):312-318.
    [4]吴向彪.高取代度超低粘度高纯级羧甲基纤维素钠的研制[D].华南理工大学硕士学位论文,2009.
    [5]徐继有,王宏平.氯乙酸的碱水解反应动力学实验[J].安徽化工,1990,(3):36-41.
    [6]卢灢泉,邓振华.实用红外光谱解析[M].北京:电子工业出版社,1989.
    [7] Lawther J.M., Sun R.C., Banks W.B.. Rapid isolation and structural characterizationof alkali-soluble lignins during alkaline treatment and atmospheric refining of wheatstraw[J]. Industrial Crops and Products,1996,5(2):97-105.
    [8] Sun R.C., Lawther J.M., Banks W.B.. A tentative chemical structure of wheat strawlignin[J]. Industrial Crops and Products,1997,6(1):1-8.
    [9] Sun R.C., Xiao B., Lawther J.M.. Fractional and structural characterization ofBall-milled and enzyme lignins from wheat straw[J]. Journal of Applied PolymerScience,1998,68(10):1633-1641.
    [10] Sun X.F., Sun R.C., Folwer P., Baird M.S.. Extraction and characterization of originallignin and hemicelluloses from wheat straw[J]. Agricultural and Food Chemistry,2005,53(4):860-870.
    [11]林鹿,Chen C.L., Gratzl J.S..麦草木素结构的研究进展[J].中国造纸学报,2001,16:119-125.
    [12]林鹿,Chen C.L., Gratzl J.S.,詹怀宇.草类木素的氨化反应Ⅰ.草类制浆黑液中木素的纯化与结构分析[J].中国造纸学报,2001,16:96-100.
    [13] Ghatak H.R.. Spectroscopic comparison of lignin separated by electrolysis and acidprecipitation of wheat straw soda black liquor[J]. Industrial Crops and Products,2008,28(2):206-212.
    [14]张敏,苏水杰,韦汉道.碱木质素改性及其产物表面活性的研究[J].纤维素科学与技术,1999,7(4):34-39.
    [15]谌凡更,卢卓敏,涂宾.麦草碱木质素烷基化反应的研究[J].林产化学与工业,2001,21(2):39-43.
    [16]赵瑶兴,孙祥玉.有机分子结构光谱鉴定[M].北京:科学出版社,2003.
    [17]詹怀宇.制浆原理与工程(第三版)[M].北京:中国轻工业出版社,2009.
    [18]杨淑惠.植物纤维化学(第三版)[M].北京:中国轻工业出版社,2005,123.
    [1]符若文,李谷,冯开才.高分子物理[M].北京:化学工业出版社,2005.
    [2]杨海洋,朱平平,任峰,李国锋,吴澎.粘度法研究高分子溶液行为的实验改进[J].化学通报,1999,(5):47-49.
    [3]于立娟.聚电解质研究进展[J].上海塑料,2011,(1):5-8.
    [4]秦福初,张玲,杨海洋,谢永军,何平笙.聚电解质溶液特性黏数确定方法的再讨论[J].高分子材料科学与工程,2010,26(6):171-174.
    [5] Badiger M.V., Gupta N.R., Eckelt J., Wolf B.A.. Intrinsic viscosity of aqueoussolutions of carboxymethyl guar in the presence and in the absence of salt[J].Macromolecular Chemistry and Physics,2008,209(20):2087-2093.
    [6] Fuoss R.M., Strauss U.P.. The viscosity of mixtures of polyelectrolytes andsimple electrolytes[J]. Annals of the New York Academy of Science,1949,51(4):836-851.
    [7]冯鑫佳.π-π作用和疏水效应对碱木质素聚集行为的影响[D].华南理工大学硕士学位论文,2012.
    [8]严明芳.木质素磺酸盐的溶液行为及其在气/液和固/液界面的吸附机理研究[D].华南理工大学博士学位论文,2011.
    [9] Aguiar J., Carpene P., Molina-Bolivar J.A.. On the determination of the criticalmicelle concentration by the pyrene13ratio method[J]. Journal of Colloid&Interface Science,2003,258(1):116-122.
    [10] Nakahara Y., Kida T., Nakatsuji Y., Akashi M.. New fluorescence method for thedetermination of the critical micelle concentration by photosensitivemonoazacryptand derivatives[J]. Langmuir,2005,21(15):6688-6695.
    [11] Boudier A., Aubert-Pou ssel A., Louis-Plence P., Gérardin C., Jorgensen C.,Devoisselle J.M., Bégu S.. The control of dendritic cell maturation by pH-sensitivepolyion complex micelles[J]. Biomaterials,2009,30(2):233-241.
    [12] Dutta P., Dey J., Ghosh G., Nayak R.R.. Self-association and microenvironment ofrandom amphiphilic copolymers of sodium N-acryloyl-l-valinate andN-dodecylacrylamide in aqueous solution[J]. Polymer,2009,50(6):1516-1525.
    [13]李翌.表面活性素在溶液中胶束化行为的研究[D].华东理工大学博士学位论文,2009.
    [14] Yan M., Yang D., Deng Y., Chen P., Zhou H., Qiu X.. Influence of pH on thebehavior of lignosulfonate macromolecules in aqueous solution[J]. Colloids andSurfaces A: Physicochemical and Engineering Aspects,2010,371(1):50-58.
    [15] Deng, Y., Feng, X., Zhou, M., Qian, Y., Yu, H., Qiu, X.. Investigation of aggregationand assembly of alkali lignin using iodine as a probe[J]. Biomacromolecules,2011,12(4):1116-1125.
    [16]夏之宁.光分析化学[M].重庆:重庆大学出版社,2004.
    [17]陈国珍,黄贤智,许金钩,郑朱梓,王尊本.荧光分析法(第二版)[M].1990.
    [18] Qian Y., Deng Y., Yi C., Yu H., Qiu X.. Solution behaviors and adsorptioncharacteristics of sodium lignosulfonate under different pH conditions[J].BioResources,2011,6(4):4686-4695.
    [19] Qiu X., Kong Q., Zhou M., Yang D.. Aggregation behavior of sodium lignosulfonatein water solution[J]. The Journal of Physical Chemistry B,2010,114(48):15857-15861.
    [20] Myrvold B.O.. A new model for the structure of lignosulphonates: Part1. Behavior indilute solutions[J]. Industrial Crops and Products,2008,27(2):214-219
    [1] Matsushita Y., Imai M., Tamura T. and Fukushima K.. Preparation and evaluation of adispersant for gypsum paste from acid hydrolysis lignin[J]. Journal of AppliedPolymer Science,2005,98(6):2508-2513.
    [2] Cerrutti B., de Souza C., CastellanA., Ruggiero R., Frollini E.. Carboxymethyl ligninas stabilizing agent in aqueous ceramic suspensions[J]. Industrial Crops and Products,2012,36(1):108-115.
    [3]严明芳.木质素磺酸盐的溶液行为及其在气/液和固/液界面的吸附机理研究.华南理工大学博士学位论文[D],2011.
    [4]汪劲波.水分散石墨体系的制备研究[D].苏州大学硕士学位论文,2006.
    [5]杨南海,岳文海.无机非金属材料图谱手册[M].武汉:武汉工业大学出版社,2000.
    [6] Subrammiant S., Laskowski J.S.. Adsorption of Dextrin onto Graphite[J]. Langmuir,1993,9(5):1330-1333.
    [7] Lagergren S.. Zur theorie der sogenannten adsorption gel ster stoffe[J]. Kungligasvenska vetenskapsakademiens Handlingar,1898,24:1-39.
    [8] Ho Y.S., McKay G., Wase D.A.J., Foster C.F.. Study of the sorption of divalent metalions on to peat[J]. Adsorption Science&Technology,2000,18(7):639-650.
    [9] Sparks D.L.. Kinetics of reaction in pure and mixed systems[J]. Soil PhysicalChemistry,1986,44:83-145.
    [10] Srinivasan K., Balasubramanian N., Ramakrishna T.. Studies on chromium removalby rice husk carbon[J]. Indian Journal of Environmental Health,1988,30(4):376-387.
    [11]赵振国.吸附作用应用原理[M].北京:化学工业出版社,2005.
    [12] Raju G.B., Holmgren A., Forsling W.. Adsorption of dextrin at mineral/waterinterface[J]. Journal of Colloid&Interface Science,1997,193(2):215-222.
    [13] Lee J.H., Paik U., Hackley V.A., Choi Y.M.. Effect of carboxymethyl cellulose onaqueous processing of natural graphite negative electrodes and their electrochemicalperformance for lithium batteries[J]. Journal of the Electrochemical Society,2005,152(9): A1763-A1769.
    [14] Liu Q., Laskowski J.. The role of metal hydroxides at mineral surfaces in dextrinadsorption, I. Studies on modified quartz samples[J]. International Journal of MineralProcessing,1989,26(3-4):297-316.
    [15] Liu Q., Laskowski J.. The interactions between dextrin and metal hydroxides inaqueous solutions[J]. Journal of Colloid&Interface Science,1989,130(1):101-111.
    [16] Liu Q., Laskowski J.. The role of metal hydroxides at mineral surfaces in dextrinadsorption, II. Chalcopyrite-galena separations in the presence of dextrin[J].International Journal of Mineral Processing,1989,27(1):147-155.
    [17] Weisseborn P., Warren L., Dunn J.. Selective flocculation of ultrafine iron ore.1.Mechanism of adsorption of starch onto hematite[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,1995,99(1):11-27.
    [18] Liu Q., Zhang Y., Laskowski J.. The adsorption of polysaccharides onto mineralsurfaces: an acid/base interaction[J]. International Journal of Mineral Processing,2000,60(3):229-245.
    [19]李建平.高等分析化学[M].北京:冶金工业出版社,2007.
    [20] Parks G.A.. The isoelectric points of solid oxides, solid hydroxides, and aqueoushydroxo complex systems[J]. Chemical. Reviews,1965,65(2):177-198.
    [21] F rster S., Hermsdorf N., B ttcher C., Lindner P.. Structure of polyelectrolyte blockcopolymer micelles[J]. Macromolecules,2002,35(10):4096-4105.
    [22] F rster S., Schmidt M., Antonietti M.. Static and dynamic light scattering by aqueouspolyelectrolyte solutions: effect of molecular weight, charge density and addedsalt[J]. Polymer,1990,31(5):781-792.
    [23] Ouyang X., Deng Y., Qian Y., Zhang P., Qiu X.. Adsorption Characteristics ofLignosulfonates in Salt-Free and Salt-Added Aqueous Solutions[J].Biomacromolecules,2011,12(9):3313-3320.
    [1] Matsushita Y., Imai M., Tamura T., Fukushima K.. Preparation and evaluation of adispersant for gypsum paste from acid hydrolysis lignin[J]. Journal of AppliedPolymer Science,2005,98(6):2508-2513.
    [2] Cerrutti B., de Souza C., Castellan A., Ruggiero R., Frollini E.. Carboxymethyl ligninas stabilizing agent in aqueous ceramic suspensions[J]. Industrial Crops and Products,2012,36(1):108-115.
    [3] Yu X., Somasundaran P.. Role of polymer conformation in interparticle-bridgingdominated flocculation[J]. Journal of Colloid and Interface Science,1966,177(2):283-287.
    [4] Runkana V., Somasundaran P., Kapur P.C.. A population balance model forflocculation of colloidal suspensions by polymer bridging[J]. Chemical EngineeringScience,2006,61(1):182-191.
    [5]汪劲波.水分散石墨体系的制备研究[D].苏州大学硕士学位论文,2006.
    [6]王恒飞,黄芸,何伟,张其土.CMC对石墨-H2O分散液稳定性的影响[J].材料科学与工程学报,2009,27(3):460-464.
    [7]陈云,冯其明,张国范,陈远道,卢毅屏,欧乐明.微细鳞片石墨分散性[J].中南大学学报(自然科学版),2004,135(6):955-959.
    [8]阎志华,赵斌,程起林,干路平.黑底石墨浆料的稳定性研究[J].化学世界,2002(3):120-123.
    [9]任俊,沈健,卢寿慈.颗粒分散科学与技术[M].北京:化学工业出版社,2005.
    [10]冯绪胜,刘洪国,郝京诚.胶体化学[M].北京:化学工业出版社,2005.
    [11]任俊,卢寿慈.亲水性及疏水性颗粒在水中的分散行为研究[J].中国粉体技术,1999,5(2):6-9.
    [12]卢开森─闰德斯E.H..表面活性剂作用的物理化学[M].北京:轻工业出版社,1998.
    [13]王果庭.胶体稳定性[M].北京:科学出版社,1990:162-165.
    [14]李荣.木质素磺酸盐在界面上的动态吸附特性及调控.华南理工大学博士学位论文[D],2012.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700