用户名: 密码: 验证码:
环已烷亚硝化一步法制备已内酰胺新型催化剂制备、表征及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
己内酰胺是一种非常重要的石油化工产品和化学纤维原料,是制造聚酰胺纤维和树脂的主要中间体原料。目前在工业生产己内酰胺工艺中使用的主要有环己酮-羟胺法、环己烷光亚硝化法及甲苯法。在这些工艺中,最普遍的是以苯或者苯酚为原料制备得到环己酮,环己酮经过环己酮-羟胺路线制备环己酮肟,接着在烟酸中发生贝克曼重排得到己内酰胺的工艺。这些工艺的过程都很复杂,包含许多个反应步骤,原子的经济利用率很低,且对设备的腐蚀严重,环境压力非常大。因此在己内酰胺的生产研究中,研究人员将绿色工艺的开发、工艺路线的简化、能耗及生产成本的降低,环境污染的减少作为了研究的重点。在本课题组前人提出的亚硝化一步法制备己内酰胺新路线的基础上,本工作制备并研究了几种新型催化剂,考察了这一系列催化剂应用于环己烷亚硝化一步法制备己内酰胺反应中的催化性能,通过优化得到了较适宜的反应条件,考察了各种制备因素对催化剂的结构性能及催化性能的影响,对催化剂进行了表征,研究了催化剂的结构性能和催化性能之间的“构-效”关系。
     首先采用水热合成法及浸渍法制备了结晶态SiO_2-Al_2O_3催化剂及其金属负载型催化剂,得到了在发烟硫酸介质中环己烷亚硝化反应最优条件,并通过对制备催化剂的模板剂、硅源、铝源、硅铝比、焙烧温度以及焙烧时间进行考察,得到了较优的催化剂制备条件。随着过渡金属的引入,催化剂显示出了较高的酸性,出现了Brnsted强酸中心,其中Mn/SiO_2-Al_2O_3催化剂的催化效果最好,己内酰胺选择性达到50.59%,同时环己烷的转化率为7.34%。
     采用水热合成法制备了一系列AlPO-5及其取代型催化剂SAPO-5、CoAPO-5、MnAPO-5、CrAPO-5,并且考察了其在环己烷亚硝化反应中的催化性能。在引入Si或者过渡金属之后,不仅使得催化剂的热稳定性增强,而且催化剂还拥有了更多的Lewis弱酸中心及Brnsted强酸中心。结果表明,环己烷的转化率随着催化剂比表面积的增加而增加,而己内酰胺的选择性则跟催化剂表面的酸性位点有一定的联系,其中CrAPO-5催化环己烷亚硝化反应的催化效果较好,己内酰胺的选择性达到了68.17%,同时环己烷的转化率为8.16%。
     采用沉淀法和共沉淀法制备了SO_4~(2-)/ZrO_2类固体酸催化剂并采用浸渍法制备其负载型催化剂,考察了这些固体酸催化剂在环己烷亚硝化反应中的催化性能。结果表明,单独使用固体超强酸来代替发烟硫酸制备己内酰胺效果不好,在这几种固体酸催化剂催化下,环己烷的转化率及己内酰胺的选择性都没有超过30%。
     采用离子交换法和浸渍法制备了HY分子筛及其负载型催化剂,并考察了其在环己烷亚硝化反应中的催化性能。得到了HY分子筛在硫酸反应介质中环己烷亚硝化反应的最优条件。随着磷钨酸和过渡金属引入到HY分子筛骨架中,负载型催化剂显示出了较高的酸性,出现了Brnsted强酸中心,其中PW/HY分子筛的催化活性及己内酰胺的选择性较高,己内酰胺的选择性达到75.9%,同时环己烷的转化率为9.9%。
     采用溶胶-凝胶法制备了非晶态的SiO_2-Al_2O_3及其负载型催化剂,并考察了负载量及焙烧温度对催化剂结构性能的影响和对其催化性能的影响。Co_3O_4/SiO_2-Al_2O_3催化剂在500°C焙烧时颗粒达到最小且最均一,催化剂表面的Co_3O_4的分散度较好并出现了两种强度的Brnsted酸中心;Cr_2O_3/SiO_2-Al_2O_3催化剂在400°C焙烧时催化剂的颗粒达到最小并产生较多的较强Brnsted酸中心。400°C焙烧20%Cr_2O_3/SiO_2-Al_2O_3催化剂催化反应,己内酰胺的选择性达到79.9%,环己烷的转化率为10.8%;500°C焙烧20%Co_3O_4/SiO_2-Al_2O_3催化剂催化反应,己内酰胺的选择性则达到83.3%,环己烷的转化率达到11.2%。通过对催化剂的结构性能及催化性能之间的相互关系进行考察,认为Brnsted酸中心可能是环己烷亚硝化反应的选择性位点,己内酰胺的选择性随着Brnsted酸含量的增加而增加。此外,本工作通过高效液相色谱仪(HPLC)、液-质联用仪(LC-MS)、气-质联用
     仪(GC-MS)、红外光谱仪(FT-IR)等对产物及可能的中间产物进行了定性或定量分析,并结合量子化学理论计算对环己烷亚硝化可能的反应机理进行了合理的解释。并在此基础上提出了在不同反应介质中发生的环己烷亚硝化反应的反应机理。本工作制备和研究了几种应用于环己烷催化亚硝化一步法合成己内酰胺中的
     新型的催化剂,结合各种表征方法对这一系列的催化剂进行了表征,并对其催化性能进行了研究,研究结果较以前有较大的提升,具有潜在的应用前景。
ε-Caprolactam is a very important intermediate materials for nylon-6synthesis. All current commercial ε-caprolactam synthesis processes are based on phenol, benzene or toluene and the production methods include the reaction of cyclohexanone and hydroxylamine, the photonitrosation of cyclohexane and the nitrosation of cyclohexanecarboxylic acid, which is obtained from toluene as the raw material. Nowadays, most of the ε-caprolactam synthesis is still based on the classical technologies. The cyclohexanone reacts with hydroxylamine sulfate to form cyclohexanone oxime, which can be concverted to ε-caprolactam through Beckmann rearrangement in the presence of oleum. However, these methods of ε-caprolactam synthesis have several disadvantages such as complex routes, low atom efficiency, reactor corrosion, environmental pollution and large amounts of ammonium sulphate are formed as by-products. Therefore, to overcome the former mentioned disadvantages, it is very attractive to simplify the traditional ε-caprolactam synthesis processes and develop a green chemistry method for ε-caprolactam production. Based on the previous works of our research group, we prepared and characterized a series of catalysts and their catalytic properties in the one-step nitrosation of cyclohexane to ε-caprolactam were performed.
     Mesoporous crystalline SiO2-Al2O3and its supported catalysts were designed and prepared by hydrothermal synthesis and impregnation method and their catalytic properties in the one-step nitrosation of cyclohexane to ε-caprolactam were performed. The different resources of template, Si and Al and preparation conditions were discussed in detail. The optimum reaction conditions in the reaction medium of oleum were obtained under the catalysis of SiO2-Al2O3. It is revealed that the catalyst with middle Si/Al molar ratio, calcined at600℃for6h with resources of triethylamine, silicasol and pseudoboehmite exhibits larger surface areas and has more uniform meosoporous structure, shows better cyclohexane conversion and selectivity toε-caprolactam. It indicates that both Br(?)nsted and Lewis acid sites exist on the supported transition metal catalysts and Mn/SiO2-Al2O3with stronger acidity and relatively larger BET surface area gives the result of conversion of7.34%and ε-caprolactam selectivity of50.59%.
     Crystallization of AlPO-5and its metal substituted catalysts were prepared by hydrothermal method and characterized. Their catalytic properties were studied in cyclohexane nitrosation for the production of ε-caprolactam. The metal substituted catalysts show stronger Br(?)nsted acid sites when the Si or metals are introduced into the framework of AlPO-5and the number of Lewis acid sites increase simultaneously. The results show that the catalytic activity increases with the increment of the BET surface area and the Br(?)nsted acid sites are helpful to cyclohexane nitrosation to give better selectivity to the ε-caprolactam. Among these catalysts, the CrAPO-5with larger BET surface area, more Lewis acid sites and stronger Br(?)nsted acid sites gives better result of conversion of8.16%and ε-caprolactam selectivity of68.17%.
     A series of SO42-/ZrO2and its supported catalysts were prepared by precipitation and co-precipitation method and their catalytic properties were studied in cyclohexane nitrosation for the production of ε-caprolactam. The results indicate that there is no ε-caprolactam obtained in the absence of oleum under catalysis of SO42-/ZrO2. When the reaction was carried out in the presence of oleum under these catalysts, the selectivity to ε-caprolactam is less than30%.
     The HY and its supported catalysts were prepared by ion exchange method and impregnation method and and their catalytic properties were studied in cyclohexane nitrosation for the production of ε-caprolactam. The optimum reaction conditions in the reaction medium of concentrated sulfuric acid were obtained under the catalysis of HY. The results indicate that the stronger Br(?)nsted acid sites appear when the metals and phosphotungstic acid are introduced into the HY and the increment of the Br(?)nsted acid sites has positive effect on the cyclohexane nitrosation to ε-caprolactam. Among these catalysts, the PW/HY gives better result of cyclohexane conversion9.9%and selectivity to ε-caprolactam75.9%.
     The amorphous SiO2-Al2O3and its supported catalysts were prepared by sol-gel method and impregnation method, and the influences of the preparation conditions including the loading content of cobalt and the calcination temperature were studied in detail. The20%Co3O4/SiO2-Al2O3calcinated at500℃has the smallest particle size, highest content of cobalt and most Br(?)nsted acid sites and the20%CrO3/SiO2-Al2O3catalyst calcinated at400℃has the smallest particle size, largest surface area and most Br(?)nsted acid sites. The Cr2O3/SiO2-Al2O3gives the better result of conversion of10.8%and ε-caprolactam selectivity of79.9%and the Co3O4/SiO4-Al2O3gives the best result of conversion of11.2%and ε-caprolactam selectivity of83.3%. The catalytic performances as well as the physical properties of the catalysts suggest that the Br(?)nsted acid sites are supposed to be the selective sites for the cyclohexane nitrosation to ε-caprolactam.
     In addition, liquid chromatography, liquid chromatograph-mass spectrometer, gas chromatograph-mass spectrometer and fourier transform infrared were used for the quantitative and qualitative analysis of the products of cyclohexane nitrosation. Combined with the quantum mechanical methods, a possible mechanism for liquid phase nitrosation of cyclohexane in different reaction medium was proposed.
     In this work, we prepared and studied several new catalysts for one-step cyclohexane nitrosation to ε-caprolactam and the results have been improved greatly compared with the previous works.
引文
[1]张万欣,侯芙生等.当代中国的石油化学工业,北京,中国社会科学院出版社,1987,251-257.
    [2]杨杏生.ε-己内酰胺发展概况[J].岳化科技,2002,189(4):1-10.
    [3]陈冠荣.化工百科全书第7卷[M].北京:化学工业出版社,1994:877-880.
    [4]朱明乔.己内酰胺的绿色化[J].合成纤维工业,2002,25(2):38-41.
    [5]汪家铭.己内酰胺的生产现状及发展建议[J].川化,2011,4(4):1-5.
    [6]张从容.己内酰胺生产技术及进展[J].化学工业工程技术,2000,21(3):33-38.
    [7]栗洪道.ε-己内酯的合成[J].江苏石油化学学院学报,2002,14(2):11-13.
    [8]晓铭.我国己内酰胺生产技术进展及市场分析[J].精细化工中间体,2012,34(01):34-39.
    [9]中国行业研究网.2014年国内己内酰胺表现需求量统计预测分析[EB/OL].[2012-3-14]http://www.chinairn.com
    [10]Yamamoto S, Sakaguchi S, Ishii Y. Noncatalytic beckmann and pinacol rearrangements [J]. Green chemistry,2003,5,300-302.
    [11]Ichihashi H, Sato H. The development of new heterogeneous catalytic processes for the production of [var epsilon]-caprolactam[J]. Appl. Catal. A:Gen.2001,221(1-2):359-366.
    [12]Chaudhari K, Rajaram Bal, Chandwadkar A. J, Sivasanker S. Beckmann rearrangement of cyclohexanone oxime over mesoporous Si-MCM-41and Al-MCM-41molecular sieves. Journal of Molecular Catalysis A:Chemical,2002,177,247-253.
    [13]朱凌皓.环己酮肟的生产方法[J].化工设计,1994,(4):17-20.
    [14]刘辉.当代己内酰胺工业及技术[J].化学工业与工程,1996,13(1):53-60.
    [15]王洪波,傅送保,吴魏.环己酮氨肟化与HPO法工艺技术及经济对比分析[J].合成纤维工业,2004,27(3):40-42.
    [16]范冰.己内酰胺生产的现状与展望.石油化工,1994,23(10):678-686.
    [17]聂颖.世界己内酰胺生产技术研究新进展[J].化工文摘,2005,(6):50-52.
    [18]杨军.己内酰胺生产工艺及其新进展.合成技术及应用,1996,11(4):24-31.
    [19]Masaya I, Tatsuya S, Hiroshi I, et al. Theoretical study on vapour phase Beckmann rearrangement of cyclohexanone oxime over a high silica MFI zeolite. Catalysis Today,2003,87,187-194.
    [20]Prasad R, Vashisht S. Ammoximation of Cyclohexanone by Nitric Oxide and Ammonia:A One-Step Process for Synthesis of Polycaprolactam [J]. J. Catal.1996,161(1):373-376.
    [21]Raja R, Thomas J M. Bifunctional molecular sieve catalysts for the benign ammoximation of cyclohexanone:one-Step, solvent-free production of oxime and ε-caprolactam with a mixture of air and ammonia [J]. J Am Chem Soc,2001,123:8153-8154.
    [22]Thomas J M, Raja R. Design of a "green" one-step catalytic production of epsilon-caprolactam (precursor of nylon-6)[J]. Proc Natl Acad Sci U S A.2005,102(39):13732-13736.
    [23]闵恩泽,吴巍.石油化工绿色化学与化工的进展.中国化工学会2001年石油化工学术年会.北京,2001.
    [24]程时标,汪顺祖,吴巍等.一种ε-己内酰胺的制备方法.中国,CN1415607A,2001
    [25]汪顺祖,程时标等.环己酮肟在RBS-1催化剂上的气相Beckmann重排反应[J].石油炼制与化工,2002,33(11):1-5.
    [26]Curtin T, McMonagle J B, Hodnett B K. Beckmann Rearrangement Over Solid Acid Catalysts. Study in Surface Science Catalysis,1993,75:2609-2612.
    [27]Curtin T, McMonagle J B, Ruwet M, et al. Deactivation and Regeneration of Alumina Catalysts for the Rearrangement of Cyclohexanone Oxime into Caprolactam. Journal of Catalysis,1993,142:172-181.
    [28]Sato S, Hasebe S, Sakurai H, et al. Arenesulfonic acid functionalized mesoporous silica as a novel aicd catalyst for the liquid phase Beckmann rearrangement of cyclohexanone oxime to caprolactam. Applied Catalysis A:General,1987,29:107
    [29]Sato S, Urabe K, Izumi Y. Vapor-phase Beckmann rearrangement over silica-supported boria catalyst prepared by vapor decomposition method[J]. J. Catal.1986,102(1):99-108.
    [30]朱泽华.钛硅分子筛在己内酰胺工业中的应用研究进展[J].合成纤维工业,2000,(4):27-30.
    [31]汤立新,季锦林.己内酰胺生产工艺的研究进展[J].化学工程师,2008,(11):37.
    [32]陈百军.己内酰胺生产技术进展.合成纤维工业,2001,24(5):37-41
    [33]程立泉,傅送保,刘郁东.丁二烯/合成气路线制己内酰胺的技术进展[J].合成纤维工业,2005,28(4):37-39.
    [34]金栋,吕效平.己内酰胺生产技术及国内外市场前景[J].化学工业,2007,25(10):20-27.
    [35]刘华锋.己内酰胺生产中贝克曼重排工序分析及优化[J].合成纤维工业,2002,25(3):31-33.
    [36]刘力.己内酰胺生产中贝克曼转位工艺的改进[J].化学工业与工程技术,2001,22(3):40-43.
    [37]毛东森,卢冠忠,陈庆龄,等.环己酮肟气相贝克曼重排制己内酰胺催化剂研究进展[J].工业催化,1999,3:3-8.
    [38]高焕新,舒祖斌,曹静,等.钛硅分子筛TS-1催化环己酮氨氧化制环己酮肟[J].催化学报,1998,19(4):329-333.
    [39]李平,卢冠忠,罗勇等.TS分子筛的催化性能研究Ⅴ.环己酮氨肟化反应[J].化学学报,2000,58(2):204-208.
    [40]Wu Chengtian, Wang Yaquan, Mi Zhentao, et al. Effects of organic solvents on the structure stability of TS-1for the ammoximation of cyclohexanone. React Kinet Catal Lett,2002,77(1):73-81.
    [41]孙斌,朱丽.钛硅TS-1分子筛催化环己酮氨肟化制环己酮肟工艺的研究[J].石油炼制与化工,2001,32(7):22-24.
    [42]David C. Process for manufacturing caprolactam. US2,634,269,1953.
    [43]Hiraoka H, Nagahama S, Shimada K, et al. Process for preparation of lactams. US3,527,754,1970.
    [44]Donaruma L G, Woodbury N G. Process for the production of cyclohexanone oxime. US2,816,142,1957.
    [45]Hopff H, Kawara M. Production of cyclohexanone oxime and caprolactam. US3,136,756,1964.
    [46]肖艳娟.硝基环己烷部分加氢制备环己酮肟过程的研究[硕士学位论文].湖南湘潭:湖南湘潭大学,2011.
    [47]Nishiwaki O, Sakaguchi S, Ishii Y. An efficient nitration of light alkane and the alkyl side-chain of aromatic compounds with nitrogen dioxide and nitric acid catalyzed by N-Hydroxyphalimide. J. Org. Chem.2002,67:5663-5668.
    [48]罗和安,吴剑,夏珺等.一种己内酰胺的制备方法.中国,CNl01168525,2007.
    [49]游奎一.环己烷亚硝化一步合成己内酰胺的研究[博士学位论文].湖南湘潭:湘潭大学化工学院,2008.
    [50]谢欢.钻锰负载型催化剂制备、表征及在环己烷亚硝化中应用[硕士学位论文].湖南湘潭:湘潭大学化工学院,2009.
    [51]陈蕾.复合催化剂在环己烷亚硝化一步制己内酰胺中的催化性能[硕士学位论文].湖南长沙:湖南师范大学,2008.
    [52]戚行时.环己烷一步亚硝化反应中的催化作用研究[硕士学位论文].湖南长沙:湖南师范大学,2011.
    [53]Goves J T, Nemo T E, Myers R S. Hydroxylation and epoxidation catalyzed by iron-poorphine complexes oxygen transfer form iodosylbenzene[J]. J Am Chem Soc,1979,101:1032-1033.
    [54]罗和安,王良芥,刘平乐.工业反应过程的模拟与优化[J].湘潭大学自然科学学报,1999,21(3):50-54.
    [55]李海生,吴剑,王良芥等.环己酮肟贝克曼重排反应动力学[J].湘潭大学自然科学学报,2002,24(1):52-56.
    [56]Amore D, Ellefson M B. Manufacture of butanedicarboxylic acid esters[P]. US4,618,702,1986.
    [57]彭家建,邓友全.离子液体系中催化环己酮肟重排制己内酰胺.石油化工,2001,30(2):91-92.
    [58]张伟,吴巍,张树忠等.1-丁基-3-甲基咪唑六氟磷酸盐中PCl5催化的两相贝克曼重排反应.石油炼制与与化工,2004,35(1):47-50
    [59]张伟,吴巍,张树忠等[bmim][BF4]离子液体中PCl3催化的液相贝克曼重排.过程工程学报,2004,14(3):261-264.
    [60]李曹龙,王洪林,刘光恒.离子液体系中催化环己酮肟重排反应的研究.云南化工.2004,31(2):4-6.
    [61]王镇堃.迎接21世纪超临界流体新技术的产业革命[J].化工进展,2001,3:21-22.
    [62]徐兆瑜.己内酰胺生产工艺技术新进展[J].杭州化工,2007,27(3):5-10.
    [63]Ikushina Y, Sato H K, et al. Acceleration of Synthetic Organic Reactions Using Supercritical Water:Noncatalytic Beckmann and Pinacol Rearrangements. Journal of American Chemical Society,2000,122:1908-1918.
    [64]Xu B-Q, Cheng S-B, Jiang S, et al. Gas phase beckmann rearrangement of cyclohexanone oxime over zirconia-supported boria catalyst[J]. Applied Catalysis A:General,1999,188(1-2):361-368.
    [65]Mao D, Lu G, Chen Q. Vapor-phase Beckmann rearrangement of cyclohexanone oxime over B203/TiO2-ZrO2:the effect of catalyst calcination temperature and solvent[J]. Applied Catalysis A:General,2005,279(1-2):145-153.
    [66]Mao D, Lu G, Chen Q. Influence of calcination temperature and preparation method of TiO2-ZrO2on conversion of cyclohexanone oxime to ε-caprolactam over B203/TiO2-ZrO2: catalyst[J]. Appl. Catal. A:Gen.2004,263(1):83-89.
    [67]毛东森,卢冠忠,陈庆龄B203/TiO2-ZrO2催化环己酮肟气相Beckmann重排反应中的溶剂效应.催化学报,2005,26(4):271-276.
    [68]Pillai S K, Gheevarghese O, Sugunan S. Catalytic properties of V2O5/SnO2towards vapour-phase Beckmann rearrangement of cyclohexanone oxime [J]. Applied Catalysis A: General,2009,353(1):130-136.
    [69]You Kuiyi, Wu Bohua, Mao Liqiu, etal. A novel route to one-step formation of ε-caprolactam from cyclohexane and nitrosyl sulfuric acid catalyzed by VPO composite [J]. Catal Lett,2007,118:129-133.
    [70]You K, Mao L, Chen L, et al. One-step synthesis of ε-caprolactam from cyclohexane and nitrosyl sulfuric acid catalyzed by VPO supported transition metal composites [J]. Catal. Commun.2008,9(11-12):2136-2139.
    [71]Shinohara Y, Mae S, Shouro D, et al. A quantum chemical study of vapor-phase Beckmann rearrangement mechanisms on oxide catalysts[J]. Journal of Molecular Structure: THEOCHEM.2000,497(1-3):1-9.
    [72]El-Sharkawy E A, Al-Shihry S S, Youssef A M. Physicochemical properties of the CO3O4/Al2O3, Ag2O/Al2O3and Ag2O-Co3O4/Al2O3systems and their catalytic activities towards acid-base and redox reactions[J].2006,24(8):657-672.
    [73]Liu P, Xie H, You K, et al. Preparation of SiO2-Al2O3and Its Supported CO3O4Catalysts for Nitrosation of Cyclohexane [J]. Catal. Lett.2010,136(1-2):150-154.
    [74]Sato H, Ishii N, Hirose K, et al. New Development in Zeolite Science and Technology, Elsevier and Kodansha, Amsterdam and Tokyo,1986, p.755.
    [75]Komatsu T, Maeda T, Yashima T. Kinetic study on the effect of solvent in'vapor-phase' Beckmann rearrangement of cyclohexanone oxime on silicalite-l[J]. Microporous Mesoporous Mater.2000,35-36(0):173-180.
    [76]Bu Y, Wang Y, Zhang Y, et al. Influences of ethylenediamine treatment of Silicalite-1on the catalytic vapor-phase Beckmann rearrangement of cyclohexanone oxime [J]. Catal. Commun.2007,8(1):16-20.
    [77]Cesana A, Palmery S, Buzzoni R, et al. Silicalite-1deactivation in vapour phase Beckmann rearrangement of cyclohexanone oxime to caprolactam[J]. Catal. Today.2010,154(3-4): 264-270.
    [78]Meng F, Wang Y, Wang L, et al. Influence of Br and Na+in synthesis of Silicalite-1on catalytic performance in vapor phase Beckmann rearrangement of cyclohexanone oxime[J]. J. Mol. Catal. A:Chem.2011,335(1-2):105-111.
    [79]Dai L X, Raita H, Yoshihide Ⅰ, et al. Vapour Phase Beckmann Rearrangement of Cyclohexanone Oxime Catalyzed by Hβ Zeolite. Chemical Communications,1996,1071-1072.
    [80]Heitmann G P, Dahlhoff G, Holderich W F. Modified Beta Zeolites as Catalysts for the Beckmann Rearrangement of Cyclohexanone Oxime. Applied Catalysis A:General,1999,185:99-108.
    [81]Landis P S, Venuto P B. Organic Reaction Catalyzed by Crystalline Aluminosilicates: Beckmann Rearrangement of Ketoximes to Amides. Journal of Catalysis,1996,6:245-252.
    [82]Dai L X, Katsuyuki K, Mitsunori M, et al. Highly Selective Vapor Phase Beckmann Rearrangement over H-USY Zeolites. Applied Catalysis A:General,1999,189:237-242.
    [83]Chaudhari K, Rajaram B, Chandwadkar A J, et al. Beckmann Rearrangement of Cyclohexanone Oxime over Mesoporous Si-MCM-41and Al-MCM-41Molecular Sieves. Journal of Molecular Catalysis A,2002,177:247-253.
    [84]Dai L X, Kayama K, Tatsumi T. Synthesis of porous catalysts for Beckmann rearrangement of oximes, Catalysis Letters,1998,53(3-4):211-214.
    [85]Forni L, Tosi C, Fornasari G, et al. Vapour-phase Beckmann rearrangement of cyclohexanone-oxime over Al-MCM-41type mesostructured catalysts[J]. J. Mol. Catal. A: Chem.2004,221(1-2):97-103.
    [86]Anilkumar M, Holderich W F. Highly active and selective Nb modified MCM-41catalysts for Beckmann rearrangement of cyclohexanone oxime to [epsilon]-caprolactam[J]. J. Catal.2008,260(1):17-29.
    [87]Thangaraj A, Sivasanker S, Ratnasamy P. Catalytic properties of titanium silicalites:IV. Vapour phase beckmann rearrangement of cyclohexanone oxime. Journal of Catalysis,1992,137:252-256
    [88]Palkovits R, Schmidt W, Ilhan Y, et al. Crosslinked TS-1as stable catalyst for the Beckmann rearrangement of cyclohexanone oxime [J]. Microporous Mesoporous Mater.2009,117(1-2):228-232.
    [89]Sato H. Characteristics of Ultrasonic Dispersion of Carbon Nanotubes Aided by Antifoam, Catalysis Review Science Engineering,1997,39(4):395-424.
    [90]Nasution M N A, Takahashi T, Kai T. Evaluation of catalyst deactivation on beckmann rearrangement over indiosilicate modified with noble metals, Study Surface Science Catalysis,1997,105B:1173-1180.
    [91]Heitmann G P, Dahlhoff G, Niederer J P M, et al. Active Sites of a [B]-ZSM-5Zeolite Catalyst for the Beckmann Rearrangement of Cyclohexanone Oxime to Caprolactam[J]. J. Catal.2000,194(1):122-129.
    [92]Singh P S, Bandyopadhyay R, Hegde S G, et al. Aniline methylation over AEL type molecular sieves. Applied Catalysis A:General,1996,136:249-263.
    [93]Conesa T D, Mokaya R, Yang Z, et al. Novel mesoporous silicoaluminophosphates as highly active and selective materials in the Beckmann rearrangement of cyclohexanone and cyclododecanone oximes[J]. J. Catal.2007,252(1):1-10.
    [94]Palkovits R, Yang C-M, Olejnik S, et al. Active sites on SBA-15in the Beckmann rearrangement of cyclohexanone oxime to ε-caprolactam[J]. J. Catal.2006,243(1):93-98.
    [95]刘自力,林维明等.固体超强酸研究新进展[J].广东化工,1997,4:9-12.
    [96]田京城,缪娟等.固体超强酸催化剂的应用与进展[J].焦作大学学报,2005,2:49-51.
    [97]刘桂荣,王洪章等.固体超强酸催化剂的研究进展[J].江西化工,2005,3:23-27.
    [98]Ghiaci M, Abbaspur A, Kalbasi R J. Vapor-phase Beckmann rearrangement of cyclohexanone oxime over H3P04/Zr02-Ti02[J]. Appl. Catal. A:Gen.2005,287(1):83-88.
    [99]刘新河,马善和,邵明然.水合硫酸铁催化合成苯甲酸异戊酯[J].淮海工学院学报(自然科学版).1998,(01):50-51.
    [100]邵作范,李明阳.硫酸铁水合物催化合成乙酸酯[J].辽宁化工.1997,(5):48-49.
    [101]夏泽斌,闫建中,付旭峰,et al.水合硫酸铁在丙烯酸酯化反应中的催化作用[J].中南工业大学学报.1996,(05):117-119.
    [102]邹新禧.固体超强酸AlCl3·Fe2(SO4)3的研究[J].化学通报.1992,(12):23-26.
    [103]张晋芬,高翔,徐华龙.微波辐射下活性炭负载杂多酸催化合成尼泊金丁酯[J].实验室研究与探索.2010,(11):217-218+266.
    [104]张灏.以大孔阳离子交换树脂为催化剂合成水杨酸异戊酯[J].精细石油化工.1995,(03):32-34.
    [105]张铁成.丙烯酸丁酯催化合成与丙烯酸酯乳液压敏胶的制备.In,ed.^eds.(浙江大学),(2003).
    [106]荣峻峰,景振华,洪晓宇.粘土矿物用于乙烯聚合催化剂的研究Ⅰ.以凹凸棒石粘土为载体的乙烯聚合催化剂[J].石油化工.2003,(12):1032-1036.
    [107]蒋平平,王琪.固体超强酸SO42-/ZrO2催化合成偏苯三酸三(2-乙基)己酯[J].精细化工.1996,(05):38-41.
    [108]于世涛,高根之,杨锦宗.复合固体超强酸SO42-/Ti02-Al203催化合成DOP的研究[J].精细化工.1996,(06):48-51.
    [109]姚楠,熊国兴,杨维慎.硅铝催化材料合成的新进展[J].化学进展,2000,12(4):376-384.
    [110]Wang Jianying, Zhao Fengyun, Liu Runjing, et al. Oxidation of cyclohexane catalyzed by metal-containing ZSM-5in ionic liquid[J]. J Mol Catal A:Chem,2008,279(2):153-158.
    [111]吴伯华.环己烷液相亚硝化反应的研究[硕士学位论文].湖南长沙:湖南师范大学,2007.
    [112]Mao Liqiu, Chen Lei, Wu Bohua, etal. One-step synthesis of ε-caprolactam by the liquid phase nitrosation of cyclohexane over the catalysts containing CH3COO-or-COOH[J]. Chem Res Chinese U,2008,24:246-248.
    [113]Yu Q, Pan H, Zhao M, et al. Influence of calcination temperature on the performance of Pd-Mn/SiO2-Al2O3catalysts for ozone decomposition[J]. J Hazard Mater.2009,172(2-3):631-634.
    [114]Ren T-Z, Yuan Z-Y, Su B-L. Surfactant-assisted preparation of hollow microspheres of mesoporous TiO2[J]. Chem. Phys. Lett.2003,374(1-2):170-175.
    [115]Krishna Priya G, Padmaja P, Warrier K, et al. Dehydroxylation and high temperature phase formation in sol-gel boehmite characterized by Fourier transform infrared spectroscopy[J]. J. Mater. Sci. Lett.1997,16(19):1584-1587.
    [116]Barrett P A, Sankar G, Catlow C R A, et al. X-ray Absorption Spectroscopic Study of Br(?)nsted, Lewis, and Redox Centers in Cobalt-Substituted Aluminum Phosphate Catalysts[J]. J. Phys. Chem.1996,100(21):8977-8985.
    [117]Fritz P O, Lunsford J H. The effect of sodium poisoning on dealuminated Y-type zeolites [J]. J. Catal.1989,118(1):85-98.
    [118]Beran S. Comparison of factors influencing acidity of hydroxyl groups in zeolites:quantum chemical study[J]. J. Phys. Chem.1990,94(1):335-337.
    [119]Chambellan A, Chevreau T, Khabtou S, et al. Acidic sites of steamed HY zeolites, active for benzene self-alkylation and hydrogenation[J]. Zeolites.1992,12(3):306-314.
    [120]Lonyi F, Lunsford J H. The development of strong acidity in hexafluorosilicate-modified Y-type zeolites[J]. J. Catal.1992,136(2):566-577.
    [121]Makarova M A, Garforth A, Zholobenko V L, et al. Bronsted acidity in US-Y zeolites. Stud. Surf. Sci. Catal.1994,84:365-372.
    [122]Lischke G, Parlitz B, Lohse U, et al. Acidity and catalytic properties of MeAPO-5molecular sieves[J]. Appl. Catal. A:Gen.1998,166(2):351-361.
    [123]Moulder J F, Stickle W F, Sobol P E, et al. Handbook of X-ray Photoelectron Spectroscopy, Perkin-Elmer Corp, Eden Prairie,1992, p78-83.
    [124]Wagner C D, Naumkin A V, Kraut-Vass A, et al. NIST Standard Reference Database20, Version3.5(web version)(http://srdata.nist.gov/xps/)(2003).
    [125]Nesbitt H W, Banerjee D. Interpretation of XPS Mn(2p) spectra of Mn oxyhydroxides and constraints on the mechanism of MnO2precipitation[J]. Am. Mineral.1998,83(3-4):305-315.
    [126]Biesinger M C, Payne B P, Grosvenor A P, et al. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides:Cr, Mn, Fe, Co and Ni[J]. Appl. Surf. Sci.2011,257(7):2717-2730.
    [127]汪哲明,阎子峰.新型ZrAPO-11分子筛的合成与表征[Jl.燃料化学学报,2001,29(21):9-11.
    [128]Akolekar D B. Acidity and catalytic properties of A1PO4-11, SAPO-11, MAPO-11, NiAPO-11, MnAPO-11and MnAPSO-11molecular-sieves[J]. J Mol Catal A,1995,104:95-102.
    [129]Weckhuysen B M, Rao R R, Martens J A, et al. Transition metal ions in miempomus crystalline aluminophosphates:Isomorphous substitution[J]. Eur J Inorg Chem,1999,(4):565-577.
    [130]Wang S, Wang Y, Gao Y, et al. Preparation of SAPO-5and Its Catalytic Synthesis of p-Aminophenol[J]. Chinese Journal of Catalysis.2010,31(6):637-644.
    [131]Feng L, Qi X, Li Z, et al. Synthesis and Characterization of Magnesium-Substituted Aluminophosphate Molecular Sieves (MgAPO-11) and Their Kinetic Study of Catalytic Cracking of n-Hexane[J]. Chinese Journal of Catalysis.2009,30(4):340-346.
    [132]Lok B M, Messina C A, Patton R L, et al. Silieoalti minophosphate molecular sieves: another new class of miempomus crystalline inorganic solids[J]. J Am Chem Soc,1984,106:6092-6093.
    [133]Sybrahmanyam C, Louis B, Rainone F, et al. Partial oxidation of touluene by0-2over mesoporous Cr-AlPO [J]. Catal Commun,2002,3(2):45-50.
    [134]韩淑芸,杨春才,魏诠,等.两价金属磷酸铝分子筛的结构与性能表征[J].高等学校化学学报,1990,11(4):331-335.
    [135]Yang Xiaomei, Xu Zhusheng, Tian Zhijian, et al. Performanee of Pt/MsAPO-11catalysts in the hydroisomerization of ndodecane[J]. Catal Lett,2006,109:139-145.
    [136]Wilson S T, Lok B M, Messina C A, et al. Aluminophosphate molecular sieves:a new class of microporous crystalline inorganic solids[J]. J. Am. Chem. Soc.1982,104(4):1146-1147.
    [137]Wilson S T, Lok B M, Flanigen E M. Crystalline, miemporoalumino:phosphate compsns.-pmpd by hydrothermal erystallisation of gels eontg. organic template and useful as catalysts and adsorbents[P]. US:4,310,440. A,1982.
    [138]Meriaudeau P, Tuan V A, Lefebvre F. Isomorphous substitution of silicon in the A1PO4framework with AEL structure:noctane hydroconversion[J]. Micropomus Mesoporous Mater,1998,22:435-449.
    [139]Jhung SH, Jin T, Kim YH, et al. Phase-selective crystallization of cobalt-incorporated aluminophosphate molecular sieves with large pore by microwave irradiation [J]. Microporous Mesoporous Mater.2008,109(1-3):58-65.
    [140]Jhung S H, Chang J-S, Hwang J S, et al. Selective formation of SAPO-5and SAPO-34molecular sieves with microwave irradiation and hydrothermal heating[J]. Microporous Mesoporous Mater.2003,64(1-3):33-39.
    [141]Davis M E, Montes C, Hathaway P E, et al. Physicochemical properties of VPI-5[J]. J. Am. Chem. Soc.1989,111(11):3919-3924.
    [142]Zhang Y, Wei D, Hammache S, et al. Effect of Water Vapor on the Reduction of Ru-Promoted Co/Al2O3[J]. J. Catal.1999,188(2):281-290.
    [143]Schanke D, Vada S, Blekkan E A, et al. Study of Pt-Promoted Cobalt CO Hydrogenation Catalysts[J]. J. Catal.1995,156(1):85-95.
    [144]Panpranot J, Goodwin JG, Sayari A. Synthesis and characteristics of MCM-41supported CoRu catalysts[J]. Catal. Today.2002,77(3):269-284.
    [145]Ilieva L Ⅰ, Andreeva D H. Investigation of the chromium oxide system by means of temperature-programmed reduction[J]. Thermochim. Acta.1995,265:223-231.
    [146]Liu P, Xie H, You K, et al. Preparation of SiO2-Al2O3and Its Supported Co3O4Catalysts for Nitrosation of Cyclohexane[J]. Catal. Lett.2010,136(1-2):150-154.
    [147]Hao F, Zhong J, Liu P-L, et al. Preparation of mesoporous SiO2-AlO3supported Co or Mn catalysts and their catalytic properties in cyclohexane nitrosation to ε-caprolactam[J]. J. Mol. Catal. A:Chem.2011,351(0):210-216.
    [148]但悠梦,孙浩.固体超强酸催化剂的研究进[Jl.湖北民族学学报,2001,19(2):6-9.
    [149]Jack T M. TiO2-Al2O3Solid superadd catalysts [P]. U.S.5,012,021/W.O.9111417,1999.
    [150]夏勇德,华伟明,高滋.A1促进SO42-/MxOy (M=Zr, Ti, Fe)固体强酸的研究[J].化学学报,2000,1(58):86-91.
    [151]廖世军,胡纪华,梁路一.催化齐(?)SO427ZrO2与S042-/Zr02-Si02结构及性能比较[J].华南理工大学学报,1998,10(26):47-53.
    [152]林强,范丽娟.SO42-/ZrO2固体超强酸的结构表征[J].北京联合大学学报,2000,10(14):24-26.
    [153]Saidina Amin N A, Anggoro D D. Dealuminated ZSM-5zeolite catalyst for ethylene oligomerization to liquid fuels[J]. J Nat Gas Chem,2002,11(1):79-86.
    [154]Me Intyre N S, Johnston D D, Coatsworth L L, et al. Surf. Interface Anal.1990,15:265-272.
    [155]Dolle P, Alnot M, Ehrhardt J J, Cassuto A. J. Electron Spectrosc. Relat. Phenom.1979,17:299
    [156]Mischle S, Mathieu H J, Landolt D. Surf. Interface Anal.11,182(1988)
    [157]Ngamcharussrivichai C, Wu P, Tatsumi T. Active and selective catalyst for liquid phase Beckmann rearrangement of cyclohexanone oxime[J]. J. Catal.2005,235(1):139-149.
    [158]Ngamcharussrivichai C, Wu P, Tatsumi T. Catalytically active and selective centers for production of-caprolactam through liquid phase Beckmann rearrangement over H-USY catalyst[J]. Appl. Catal. A:Gen.2005,288(1-2):158-168
    [159]Bertoluzza A, Fagnano C, Antonietta Morelli M, et al. Raman and infrared spectra on silica gel evolving toward glass[J]. J. Non-Cryst. Solids.1982,48(1):117-128.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700