用户名: 密码: 验证码:
中空纤维固体氧化物燃料电池的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
固体氧化物燃料电池(Solid oxide fuel cell,SOFC)是一种可以将化学燃料中的化学能直接、环保和高效地转化成电能的装置。外径在毫米级别的微管式固体氧化物燃料电池具有低的运行温度,优异的抗热循环性能,快速启动能力和更高的体积功率密度。到目前为止,制备微管式固体氧化物燃料电池的主要方法有等静压法、挤出成型法和离心浇铸法等。相转化/纺丝最近被用于制备中空纤维固体氧化物燃料电池(Hollow fibersolid oxide fuel cell,HF-SOFC),它可以更快地制备并且可以更好地控制微观结构。本论文利用相转化/纺丝/共烧结工艺和浸涂、刷涂等方法制备出直型电解质支撑HF-SOFCNiO-YSZ/YSZ/YSZ-LSM/LSM,直型阳极支撑HF-SOFC NiO-YSZ/YSZ/PLNCG,直型阳极支撑HF-SOFC NiO-GDC/GDC/PLNCG,U型阳极支撑HF-SOFC NiO-YSZ/YSZ/YSZ-LSM/LSM和直型阳极支撑HF-SOFC NiO-YSZ/YSZ/YSZ-LSM/LSM。将制备好的各HF-SOFC单电池安装好之后,进行电化学性能测试。本论文主要开展的研究内容如下:
     第一,用相转化/纺丝/共烧结技术成功制备出具有非对称结构的直型YSZ电解质中空纤维支撑体,其内侧为指状孔结构,为NiO-YSZ阳极的沉积提供场所,扩大阳极三相区;外侧为非常薄的海绵状孔结构,于一定温度煅烧之后形成很薄的致密层,既可以阻隔阳极氢气和阴极氧气的互相扩散,又可以降低电解质的氧离子传导阻力。在已制备的直型YSZ电解质中空纤维支撑体的基础上,成功制备出直型YSZ电解质支撑HF-SOFC NiO-YSZ/YSZ/YSZ-LSM/LSM,该电池在800oC时的最大功率密度是0.2mWcm-2。
     第二,用相转化/纺丝/共烧结技术成功制备出具有非对称结构的直型NiO-YSZ中空纤维阳极支撑体,其内侧为指状孔结构,外侧为海绵状孔结构。在已制备的直型中空纤维NiO-YSZ阳极支撑体的基础上,成功制备出直型阳极支撑HF-SOFC NiO-YSZ/YSZ/PLNCG。该电池表现出良好的电化学性能,其在750oC下电池最大功率密度为876mWcm-2,极化电阻为0.41Ω cm~2且电池在中温区域运行时,PLNCG阴极表现出良好的抗二氧化碳性能。
     第三,用相转化/纺丝/共烧结技术成功制备出具有非对称结构的直型NiO-GDC中空纤维阳极支撑体,其内侧为指状孔结构,外侧为海绵状孔结构。XRD图谱表明,PLNCG阴极与GDC电解质在温度不高于900oC的条件下,具有良好的化学兼容性。在已制备的直型中空纤维NiO-GDC阳极支撑体的基础上,成功制备出直型阳极支撑HF-SOFCNiO-GDC/GDC/PLNCG。该电池表现出良好的电化学性能,其在550oC下的最大功率密度为109mW cm-2和极化电阻为0.98Ω cm~2。
     第四,用相转化/纺丝/共烧结技术成功制备出U型NiO-YSZ中空纤维阳极支撑体,其内侧为指状孔结构,为阳极燃料气体氢气的输入和产物水蒸气的输出提供良好的传输通道;外侧为海绵状孔结构,其作为阳极三相区,为电池阳极的氢催化氧化反应提供良好的反应场所;在此支撑体的基础上,成功制备出U型阳极支撑HF-SOFCNiO-YSZ/YSZ/YSZ-LSM/LSM。由于YSZ-LSM复合阴极层的使用和LSM阴极集流层的存在,使得电池表现出良好的电化学性能,其在750oC下电池最大功率密度为884mWcm-2,极化电阻为0.36Ω cm~2。该电池表现出良好的热循环性能和稳定性,共经历了65个热循环,并在65个热循环之后又经过了100h的稳定运行,电池稳定运行的总时间达到425h。
Solid oxide fuel cell (SOFC) is a kind of device that convert the chemical energy in thechemical fuels into electrical energy directly, environmentally friendly and efficiently. Themicro tubular solid oxide fuel cell with outer diameter at the millimeter scale possesses lowoperation temperature, excellent performance of resistance of thermal cycling, rapid start-upability and higher volume power density. Up to now, the most common techniques forpreparation micro tubular SOFCs are cold isostatic pressing, extrusion and casting. Phaseinversion/spinning has been recently employed for the fabrication of hollow fber SOFCs(HF-SOFCs), which provides a rapid fabrication process and better control of themicrostructure. In this dissertation, we adopt the phase inversion/spinning/co-sinteringprocess and the dip-coating and brush painting method to prepare the linearelectrolyte-supported HF-SOFC NiO-YSZ/YSZ/YSZ-LSM/LSM, linear anode-supportedHF-SOFC NiO-YSZ/YSZ/PLNCG, linear anode-supported HF-SOFC NiO-GDC/GDC/PLNCG, U-shaped anode-supported HF-SOFC NiO-YSZ/YSZ/YSZ-LSM/LSM and linearanode-supported HF-SOFC NiO-YSZ/YSZ/YSZ-LSM/LSM。After fixing all kinds of theHF-SOFC single cells, we conduct the test of their electrochemical performance. The mainresearch contents of this dissertation are displayed as follows:
     Firstly, we successfully fabricate the linear YSZ electrolyte hollow fiber support withasymmetric structure by phase inversion/spinning/co-sintering method. The inner side of theYSZ electrolyte hollow fiber is the finger-like structure, proving the deposition location of theNiO-YSZ anode and enlarging the anode triple phase boundries. The outer side of the YSZelectrolyte hollow fiber is the sponge-like structure, after sintering at certain temperature, itcan form a very thin layer, which both prevent the mutual diffusion of the H2at anode and theO2at cathode and reduce the resistance of the conductivity of O2-. Based on the YSZelectrolyte support, we successfully fabricated the linear electrolyte-supported HF-SOFCNiO-YSZ/YSZ/YSZ-LSM/LSM. The maximum power density of the cell is0.2mW cm-2at750oC.
     Secondly, we successfully fabricate the linear NiO-YSZ anode hollow fiber support withasymmetric structure by phase inversion/spinning/co-sintering method, the inner side ofwhich is the finger-like structure and the outer side of which is the sponge-like structure.Based on the NiO-YSZ anode support, we successfully fabricate the linear anode-supportedHF-SOFC NiO-YSZ/YSZ/PLNCG. The cell manifests good electrochemical performance, themaximum power density is876mW cm-2and the polarization resistance is0.41Ω cm~2at750 oC. Moreover, the PLNCG cathode shows good CO2resistance in the intermediatetemperature range.
     Thirdly, we successfully fabricate the linear NiO-GDC anode hollow fiber support withasymmetric structure by phase inversion/spinning/co-sintering method, the inner side ofwhich is the finger-like structure and the outer side of which is the sponge-like structure. TheXRD patterns reveal that the PLNCG cathode shows good chemical compatibility with theGDC electrolyte when the temperature is not higher than900oC. Based on the NiO-GDCanode support, we successfully fabricate the linear anode-supported HF-SOFCNiO-GDC/GDC/PLNCG. The cell manifests good electrochemical performance, themaximum power density is109mW cm-2and the polarization resistance is0.98Ω cm~2at550oC.
     Fourthly, we successfully fabricate the U-shaped NiO-YSZ anode hollow fiber supportby phase inversion/spinning/co-sintering method, the inner side of which is the finger-likestructure, providing the deliver channels for the importing of the H2fuel gas and exporting ofthe product vapor; the outer side of which is the sponge-like structure, containing the anodetriple phase boundries, providing the reaction sites for the catalytic oxidation of the H2in theanode. Based on the support, we successfully fabricated the U-shaped anode-supportedHF-SOFC NiO-YSZ/YSZ/YSZ-LSM/LSM. By using of the YSZ-LSM composite cathodelayer and existing of the LSM cathode current collection layer, the cell manifests goodelectrochemical performance, the maximum power density is884mW cm-2and thepolarization resistance is0.36Ω cm~2at750oC. Moreover, the cell shows good thermalcycling performance and stability, undergoing65thermal cycles; after the65thermal cycles,the cell works for additional100h. The total stabilized operation time of the cell is425h.
引文
[1]衣宝廉.燃料电池—原理·技术·应用[M].北京:化学工业出版社,2003,8.
    [2] James L.,Andrew D.著,朱红译,衣宝廉校.燃料电池系统—原理·设计·应用[M].北京:科学出版社,2005(可再生能源开发应用技术丛书).
    [3] Subhash C. S,Kevin K.著,韩敏芳,蒋先锋译.高温固体氧化物燃料电池—原理、设计和应用[M].北京:科学出版社,2007.
    [4]韩敏芳,彭苏萍.固体氧化物燃料电池材料及其制备[M].北京:科学出版社,2004,2.
    [5]毛宗强等.燃料电池[M].北京:化学工业出版社,2005,3.
    [6] Ishihara T.著,王崇臣,冯利利,汪长征等译.用于制造固体氧化物燃料电池的钙钛矿型氧化物[M].北京:机械工业出版社,2012,8.
    [7] Sarantaridis D., Atkinson A. Redox cycling of Ni-based solid oxide fuel cell anodes: areview[J]. Fuel Cells,2007,7(3)246-258.
    [8] Lankin M., Du Y.H., Finnerty C. A review of the implications of silica in solid oxidefuel cells[M]. Journal of Fuel Cell Science and Technology,2011,8(5):054001-1-054001-7.
    [9] Kordesch K.V., Simader G.R. Environmental impact of fuel cell technology[J].Chemical Reviews,1995,95(1):191-207.
    [10] Pe a M.A., Fierro J.L.G. Chemical structures and performance of perovskite oxides[J].Chemical Reviews,2001,101(7):1981-2018.
    [11] Wang K., Hissel D., Péra M.C. et al. A Review on solid oxide fuel cell models[J].International Journal of Hydrogen Energy,2011,36(12):7212-7228.
    [12] Ahmad Hajimolana S., Azlan Hussain M., Ashri Wan Daud W.M. et al. Mathematicalmodeling of solid oxide fuel cells: a review[J]. Renewable and Sustainable EnergyReviews,2011,15(4):1893-1917.
    [13] Huang Q.A., Hui R., Wang B.W. et al. A review of AC impedance modeling andvalidation in SOFC diagnosis[J]. Electrochimica Acta,2007,52(28):8144-8164.
    [14] Malzbender J., Steinbrech R.W., Singheiser L. A review of advanced techniques forcharacterising SOFC behaviour[J]. Fuel Cells,2009,9(6)785-793.
    [15] Jasinski P. Micro solid oxide fuel cells and their fabrication methods[J].Microelectronics International,2008,25(2):42-48.
    [16] Colpan C.O., Dincer I., Hamdullahpur F. A review on macro-level modeling of planarsolid oxide fuel cells[J]. International Journal of Energy Research,2008,32(4):336-355.
    [17] Kuhn M., Napporn T.W. Single-chamber solid oxide fuel cell technology-from itsorigins to today’s state of the art[J]. Energies,2010,3(1):57-134.
    [18] Zhu B. Solid oxide fuel cell (SOFC) technical challenges and solutions fromnano-aspects[J]. International Journal of Energy Research,2009,33(13):1126-1137.
    [19] Kee R.J., Zhu H.Y., Sukeshini A.M. et al. Solid oxide fuel cells: operating principles,current challenges, and the role of syngas[J]. Combustion Science and Technology,2008,180(6):1207-1244.
    [20] Albert Tarancón, Strategies for lowering solid oxide fuel cells operating temperature[J].Energies,2009,2(4):1130-1150.
    [21] Grove W.R. On voltaic series and the combination of gases by platinum[J]. London andEdinburgh Philosophical Magazine and Journal of Science, Series3,1839,(14):127-130.
    [22] Rayleigh L. On a new form of gas battery[J]. Proceeding of the CambridgePhilosophical Society,1882,(17):198.
    [23] Mond L. Langer C. A new form of gas battery[J]. Proceedings of the Royal Society ofLondon,1889,(46):296-304.
    [24] Nernst W. Ueber die elektrolytische leitung fester koerper bei sehr hohentemperaturen[J]. Zeitschrift füer Elektrochemie,1899,6(2):41-43.
    [25] Baur E., Preis H. Ueber Brennstoff-ketten mit Festleitern[J]. Zeitschrift füerElektrochemie,1937,43(9):727-732.
    [26]刘建国,孙公权.燃料电池概述[J].物理.2004,33(2):79-84.
    [27] EG&G Technical Services, Fuel cell handbook (Seventh Edition)[M]. US Departmentof Energy, Morgantown, West Virginia.2004.
    [28] Costamagna P., Arato E. Parameter design optimisation of a planar SOFC[C].Proceedings of1st European Solid Oxide Fuel Cell Conference, Lucerne Switzerland,1994,287-96Vol.1:1054.
    [29] Prica M., Copcutt R., Kilbride I. Contoured PEN plates for improved thermomechanicalperformance in SOFCs[C]. Proceedings of2nd European Solid Oxide Fuel Cell Forum,Oslo Norway,1996, Vol.1:393-402.
    [30] Brett D.J.L., Atkinson A., Brandon N.P. et al. Intermediate temperature solid oxide fuelcells[J]. Chemical Society Reviews,2008,37(8):1568-1578.
    [31] Yang Y.Z., Wang G.L., Zhang H. et al. Comparison of heat and mass transfer betweenplanar and MOLB-type SOFCs[J]. Journal of Power Sources,2008,177(2):426-433.
    [32] Achenbach E., Bleise C.H., Divisek J. Modelling of planar SOFC[C]. Proceedings ofthe Fourth International Symposium on Solid Oxide Fuel Cells (SOFC-IV), YokohamaJapan,1995:1095-1104.
    [33] Ni M., Leung M.K.H., Leung D.Y.C. Modeling of electrochemistry and heat/masstransfer in a tubular solid oxide steam electrolyzer for hydrogen production[J].Chemical Engineering&Technology,2008,31(9):1319-1327.
    [34] Suzuki M., Sasaki H., Otoshi S. et al. High-power density solid oxide electrolytefuel-cells using Ru/Y2O3stabilized zirconia cermet anodes[J]. Solid State Ionics,1993,62(1-2):125-130.
    [35] Li C.X., Xie Y.X., Li C.J. et al. Characterization of atmospheric plasma-sprayedLa0.8Sr0.2Ga0.8Mg0.2O3electrolyte[J]. Journal of Power Sources,2008,184(2):370-374.
    [36] Li C.J., Li C.X., Long H.G. et al. Performance of tubular solid oxide fuel cell assembledwith plasma-sprayed Sc2O3-ZrO2electrolyte[J]. Solid State Ionics,2008,179(27-32):1575-1578.
    [37] Gruner H., Moens J. The monolithic VPS-fabricated SOFC[C]. Proceedings of2ndEuropean Solid Oxide Fuel Cell Forum, Oslo Norway,1996, Vol.1:261-267.
    [38] Tompsett G.A., Brown M.S., Finnerty C. et al. Design of a tubular micro-SOFCdemonstration system[C]. Fourth European Solid Oxide Fuel Cell Forum Proceedings,Lucern Switzerland,2000, Vol.1:13-18.
    [39] Sarkar P., Yamarte L., Rho H.S. et al. Anode-supported tubular micro-solid oxide fuelcell[J]. International Journal of Applied Ceramic Technology,2007,4(2):103-108.
    [40] Yamaguchi T., Shimizu S., Suzuki T. et al. Fabrication and characterization of highperformance cathode supported small-scale SOFC for intermediate temperatureoperation[J]. Electrochemistry Communications,2008,10(9):1381-1383.
    [41] Hayashi K., Yamamoto O., Minoura H. Portable solid oxide fuel cells using butane gasas fuel[J]. Solid State Ionics,2000,132(3-4):343-345.
    [42] Dokiya M. SOFC system and technology[J]. Solid State Ionics,2002,152-153:383-392.
    [43] Weber A., Ivers-Tiffée E. Materials and concepts for solid oxide fuel cells (SOFCs) instationary and mobile applications[J]. Journal of Power Sources,2004,127(1-2):273-283.
    [44] Hibino T., Hashimoto A., Suzuki M. et al. A solid oxide fuel cell using Y-doped BaCeO3with Pd-loaded FeO anode and Ba0.5Pr0.5CoO3cathode at low temperatures[J]. Journalof the Electrochemical Society,2002,149(11): A1503-A1508.
    [45] Suzuki T., Yamaguchi T., Fujishiro Y. et al. Fabrication and characterization of microtubular SOFCs for operation in the intermediate temperature[J]. Journal of PowerSources,2006,160(1):73-77.
    [46] Yamaguchi T., Suzuki T., Shimizu S. et al. Examination of wet coating and co-sinteringtechnologies for micro SOFCs fabrication[J]. Journal of Membrane Science,2007,300(1-2):45-50.
    [47] Liu Y., Hashimoto S., Nishino H. et al. Fabrication and characterization of micro tubularcathode supported SOFC for intermediate temperature operation[J]. Journal of PowerSources,2007,174(1):95-102.
    [48] Yamaguchi T., Shimizu S., Suzuki T. et al. Fabrication and evaluation of cathodesupported small scale SOFCs[J]. Materials Letters,2008,62(10-11):1518-1520.
    [49] Liu Y., Hashimoto S., Nishino H. et al. Fabrication and characterization of a co-firedLa0.6Sr0.4Co0.2Fe0.8O3cathode supported Ce0.9Gd0.1O1.95thin film for IT-SOFCs[J].Journal of Power Sources,2007,164(1):56-64.
    [50] Yamahara K., Jacobson C.P., Visco S.J. et al. High performance lanthanum-ferrite basedcathode for SOFC[J]. Solid State Ionics,2005,176(5-6):451-456.
    [51] Ohrui H., Matsushima T., Hirai T. Performance of a solid oxide fuel cell fabricated byco-firing[J]. Journal of Power Sources,1998,71(1-2):185-189.
    [52] Waldbillig D., Wood A., Ivey D.G. Thermal analysis of the cyclic reduction andoxidation behaviour of SOFC anodes[J]. Solid State Ionics,2005,176(9-10):847-859.
    [53] George R.A. Status of tubular SOFC field unit demonstrations[J]. Journal of PowerSources,2000,86(1-2):134-139.
    [54] Huang K. Gas-diffusion process in a tubular cathode substrate of an SOFC-I theoreticalanalysis of gas-diffusion process under cylindrical coordinate system[J]. Journal of theElectrochemical Society,2004,151(5): A716-A719.
    [55] Saunders G.J., Kendall K. Reactions of hydrocarbons in small tubular SOFCs[J].Journal of Power Sources,2002,106(1-2):258-263.
    [56] Basch J.2007fuel cell seminar&exposition[C]. San Antonio, TX,2007, Oct.,15-19.
    [57] Bujalski W., Dikwal C.M., Kendall K. Cycling of three solid oxide fuel cell types[J].Journal of Power Sources,2007,171(1):96-100.
    [58]粱立明,简弃非.固体氧化物燃料电池技术进展及其在汽车上的应用[J].能源工程,2005,(5):9-12.
    [59] Aguiar P., Brett D.J.L., Brandon N.P. Feasibility study and techno-economic analysis ofan SOFC/battery hybrid system for vehicle applications[J]. Journal of Power Sources,2007,171(1):186-197.
    [60] Zhu W.Z. Deevi S.C. A review on the status of anode materials for solid oxide fuelcells[J]. Materials Science and Engineering: A,2003,362(1-2):228-239.
    [61] Jiang S.P. Chan S.H. A review of anode materials development in solid oxide fuelcells[J]. Journal of Materials Science,2004,39(14):4405-4439.
    [62] Atkinson A., Barnett S., Gorte R.J. et al. Advanced anodes for high-temperature fuelcells[J]. Nature Materials,2004,3(1):17-27.
    [63] Goodenough J.B., Huang Y.H. Alternative anode materials for solid oxide fuel cells[J].Journal of Power Sources,2007,173(1):1-10.
    [64] Kendall K. Hydrocarbon fuels: hopes for a flame-free future[J]. Nature,2000,404(6775):233-235.
    [65] Murray E.P., Tsai T., Barnett S.A. A direct-methane fuel cell with ceria-based anode[J].Nature,1999,400(6745):649-651.
    [66] Park S., Vohs J.M., Gorte R.J. Direct oxidation of hydrocarbons in a solid-oxide fuelcell[J]. Nature,2000,404(6745):265-267.
    [67] Wang J.B., Jang J.C., Huang T.J. Study of Ni-samaria-doped ceria anode for directoxidation of methane in solid oxide fuel cells[J]. Journal of Power Sources,2003,122(2):122-131.
    [68] Hibino T., Hashimoto A., Yano M. et al. Ru-catalyzed anode materials for directhydrocarbon SOFCs[J]. Electrochimica Acta,2003,48(17):2531-2537.
    [69] Nikooyeh K., Clemmer R., Alzate-Restrepo V. et al. Effect of hydrogen on carbonformation on Ni/YSZ composites exposed to methane[J]. Applied Catalysis A: General,2008,347(1):106-111.
    [70] Rasmussen J.F.B, Hagen A. The effect of H2S on the performance of Ni–YSZ anodes insolid oxide fuel cells[J]. Journal of Power Sources,2009,191(2):534-541.
    [71] Iwata T. Characterization of Ni-YSZ anode degradation for substrate-type solid oxidefuel cells[J]. Journal of the Electrochemical Society,1996,143(5):1521-1525.
    [72] Cassidy M., Lindsay G., Kendall K. The reduction of nickel-zirconia cermet anodes andthe effects on supported thin electrolytes[J]. Journal of Power Sources,1996,61(1-2):189-192.
    [73] Benyoucef A., Klein D., Coddet C. et al. Development and characterisation of (Ni, Cu,Co)-YSZ and Cu-Co-YSZ cermets anode materials for SOFC application[J]. Surfaceand Coatings Technology,2008,202(10):2202-2207.
    [74] Grgicak C.M., Pakulska M.M., O’Brien J.S. et al. Synergistic effects of Ni1xCox-YSZand Ni1xCux-YSZ alloyed cermet SOFC anodes for oxidation of hydrogen and methanefuels containing H2S[J]. Journal of Power Sources,2008,183(1):26-33.
    [75] Faes A., Nakajo A., Hessler-Wyser A. et al. Redox study of anode-supported solid oxidefuel cell[J]. Journal of Power Sources,2009,193(1):55-64.
    [76] Laurencin J., Delette G., Morel B. et al. Solid oxide fuel cells damage mechanisms dueto Ni-YSZ re-oxidation: case of the anode aupported cell[J] Journal of Power Sources,2009,192(2):344-352.
    [77] Kim S.D., Moon H., Hyun S.H. et al. Performance and durability of Ni-coated YSZanodes for intermediate temperature solid oxide fuel cells[J]. Solid State Ionics,2006,177(9-10):931-938.
    [78] Xu S., Wang X. Highly active and coking resistant Ni/CeO2–ZrO2catalyst for partialoxidation of methane[J]. Fuel,2005,84(5):563-567.
    [79] Huang T.J., Wang C.H. Methane decomposition and self de-coking overgadolinia-doped ceria-supported Ni catalysts[J]. Chemical Engineering Journal,2007,132(1-3):97-103.
    [80] Marina O.A., Canfield N.L., StevensonJ.W. Thermal, electrical, and electrocatalyticalproperties of lanthanum-doped strontium titanate[J]. Solid State Ionics,2002,149(1-2):21-28.
    [81] Tao S.W., Irvine J.T.S. A redox-stable efficient anode for solid-oxide fuel cells[J] NatureMaterials,2003,2(5):320-323.
    [82] Huang Y.H., Dass R.I., Xing Z.L. et al. Double perovskites as anode materials forsolid-oxide fuel cells[J]. Science,2006,312(5771):254-257.
    [83] Minh N.Q. Ceramic fuel cells[J]. Journal of the American Ceramic Society,1993,76(3):563-588.
    [84] Tao S.W., Irvine J.T.S. Synthesis and characterization of (La0.75Sr0.25)Cr0.5Mn0.5O3, aredox-stable, efficient perovskite anode for SOFCs[J]. Journal of the ElectrochemicalSociety,2004,151(2): A252-A259.
    [85] Bastidas D.M., Tao S.W., Irvine J.T.S. A symmetrical solid oxide fuel celldemonstrating redox stable perovskite electrodes[J]. Journal of Materials Chemistry,2006,16(17):1603-1605.
    [86] Zha S., Tsang P., Cheng Z. et al. Electrical properties and sulfur tolerance ofLa0.75Sr0.25Cr1xMnxO3under anodic conditions[J]. Journal of Solid State Chemistry,2005,178(6):1844-1850.
    [87] Slater P.R., Fagg D.P., Irvine J.T.S. Synthesis and electrical characterisation of dopedperovskite titanates as potential anode materials for solid oxide fuel cells[J] Journal ofMaterials Chemistry,1997,7(12):2495-2498.
    [88] Mukundan R., Brosha E.L., Garzon F.H. Sulfur tolerant anodes for SOFCs[J].Electrochemical and Solid-State Letters,2004,7(1): A5-A7.
    [89] Balachandran U., Eror N.G. Electrical conductivity in strontium titanate[J]. Journal ofSolid State Chemistry,1981,39(3):351-359.
    [90] Kolodiazhnyi T., Petric A. The applicability of Sr-deficient n-type SrTiO3for SOFCanodes[J]. Journal of Electroceramics,2005,15(1):5-11.
    [91] Li X., Zhao H., Shen W. et al. Synthesis and properties of Y-doped SrTiO3as an anodematerial for SOFCs[J]. Journal of Power Sources,2007,166(1):47-52.
    [92] Tao S.W., Irvine J.T.S. Study on the structural and electrical properties of the doubleperovskite oxide SrMn0.5Nb0.5O3[J]. Journal of Materials Chemistry,2002,12(8):2356-2360.
    [93] Tao S.W., Canales-Vázquez J., Irvine J.T.S. Structural and electrical properties of theperovskite oxide Sr2FeNbO6[J]. Chemistry of Materials,2004,16(11):2309-2316.
    [94] Bernuy-Lopez C., Allix M., Bridges C.A. et al. Sr2MgMoO6-: structure, phase stability,and cation site order control of reduction[J]. Chemistry of Materials,2007,19(5):1035-1043.
    [95] Huang Y.H., Dass R.I., Denyszyn J.C. et al. Synthesis and characterization ofSr2MgMoO6: an anode material for the solid oxide fuel cell[J]. Journal of theElectrochemical Society,2006,153(7): A1266-A1272.
    [96] Kim G., Lee S., Shin J.Y. et al. Investigation of the structural and catalytic requirementsfor high-performance SOFC anodes formed by infiltration of LSCM[J].Electrochemical and Solid-State Letters,2009,12(3): B48-B52.
    [97] Smith B.H., Gross M.D. A highly conductive oxide anode for solid oxide fuel cells[J].Electrochemical and Solid-State Letters,2011,14(1): B1-B5.
    [98] Ji Y., Huang Y.H., Ying J.R. et al. Electrochemical performance of La-dopedSr2MgMoO6in natural gas[J]. Electrochemistry Communications,2007,9(8):1881-1885.
    [99] Marrero-López D., Pe a-Martínez J., Ruiz-Morales J.C. et al. High temperature phasetransition in SOFC anodes based on Sr2MgMoO6[J]. Journal of Solid State Chemistry,2009,182(5):1027-1034.
    [100] Slater P.R., Irvine J.T.S. Niobium based tetragonal tungsten bronzes as potential anodesfor solid oxide fuel cells: synthesis and electrical characterisation[J]. Solid State Ionics,1999,120(1-4):125-134.
    [101] Slater P.R., Irvine J.T.S. Synthesis and electrical characterisation of the tetragonaltungsten bronze type phases,(Ba/Sr/Ca/La)06MxNb1xO3(M=Mg, Ni, Mn, Cr, Fe, In,Sn): evaluation as potential anode materials for solid oxide fuel cells[J]. Solid StateIonics,1999,124(1-2):61-72.
    [102] Porat O., Heremans C., Tuller H.L. Stability and mixed ionic electronic conduction inGd2(Ti1xMox)2O7under anodic conditions[J]. Solid State Ionics,1997,94(1-4):75-83.
    [103] Sprague J.J., Tuller H.L. Mixed ionic and electronic conduction in Mn/Mo dopedgadolinium titanate[J]. Journal of the European Ceramic Society,1999,19(6-7):803-806.
    [104] Kaiser A., Bradley J.L., Slater P.R. Tetragonal tungsten bronze type phases(Sr1xBax)0.6Ti0.2Nb0.8O3: material characterisation and performance as SOFCanodes[J]. Solid State Ionics,2000,135(1-4):519-524.
    [105] Holtappels P., Poulsen F.W., Mogensen M. Electrical conductivities and chemicalstabilities of mixed conducting pyrochlores for SOFC applications[J]. Solid State Ionics,2000,135(1-4):675-679.
    [106] Hui S., Petric A. Conductivity and stability of SrVO3and mixed perovskites at lowoxygen partial pressures[J]. Solid State Ionics,2001,143(3-4):275-283.
    [107] Fukui T., Murata K., Ohara S. et al. Morphology control of Ni–YSZ cermet anode forlower temperature operation of SOFCs[J]. Journal of Power Sources,2004,125(1):17-21.
    [108] Chen X.J., Khor K.A., Chan S.H. et al. Influence of microstructure on the ionicconductivity of yttria-stabilized zirconia electrolyte[J] Materials Science andEngineering: A,2002,335(1-2):246-252.
    [109] Zhu Q., Fan B. Low temperature sintering of8YSZ electrolyte film for intermediatetemperature solid oxide fuel cells[J]. Solid State Ionics,2005,176(9-10):889-894.
    [110] Gaudon M., Djurado E., Menzler N.H. Morphology and sintering behaviour of yttriastabilised zirconia (8-YSZ) powders synthesised by spray pyrolysis[J]. CeramicsInternational,2004,30(8):2295-2303.
    [111] Lee D., Lee I., Jeon Y. et al. Characterization of scandia stabilized zirconia prepared byglycine nitrate process and its performance as the electrolyte for IT-SOFC[J]. SolidState Ionics,2005,176(11-12):1021-1025.
    [112] Politova T.I., Irvine J.T.S. Investigation of scandia–yttria–zirconia system as anelectrolyte material for intermediate temperature fuel cells–influence of yttria content insystem (Y2O3)x(Sc2O3)(11x)(ZrO2)89[J]. Solid State Ionics,2004,168(1-2):153-165.
    [113] Haering C., Roosen A., Schichl H. et al. Degradation of the electrical conductivity instabilised zirconia system: part II: scandia-stabilised zirconia[J]. Solid State Ionics,2005,176(3-4):261-268.
    [114] Varanasi C., Juneja C., Chen C. et al. Electrical conductivity enhancement inheterogeneously doped scandia-stabilized zirconia[J] Journal of Power Sources,2005,147(1-2):128-135.
    [115] Lei Z., Zhu Q. Low temperature processing of dense nanocrystalline scandia-dopedzirconia (ScSZ) ceramics[J]. Solid State Ionics,2005,176(37-38):2791-2797.
    [116] Wang S., Kato T., Nagata S. et al. Electrodes and performance analysis of a ceriaelectrolyte SOFC[J]. Solid State Ionics,2002,152-153:477-484.
    [117] Steele B.C.H. Materials for IT-SOFC stacks:35years R&D: the inevitability ofgradualness[J]. Solid State Ionics,2000,134(1-2):3-20.
    [118] Steele B.C.H. Appraisal of Ce1yGdyO2y/2electrolytes for IT-SOFC operation at500°C[J]. Solid State Ionics,2000,129(1-4):95-110.
    [119] Zhang T.S., Ma J., Kong L.B. et al. Preparation and mechanical properties of denseCe0.8Gd0.2O2ceramics[J]. Solid State Ionics,2004,167(1-2):191-196.
    [120] Zhang T.S., Ma J., Luo L.H. et al. Preparation and properties of dense Ce0.9Gd0.1O2-deltaceramics for use as electrolytes in IT-SOFCs[J]. Journal of Alloys and Compounds,2006,422(1-2):46-52.
    [121] Leng Y.J., Chan S.H., Jiang S.P. et al. Low-temperature SOFC with thin film GDCelectrolyte prepared in situ by solid-state reaction[J]. Solid State Ionics,2004,170(1-2):9-15.
    [122] Hatchwell C., Sammes N.M., Brown I.W.M. Fabrication and properties ofCe0.8Gd0.2O1.9electrolyte-based tubular solid oxide fuel cells[J]. Solid State Ionics,1999,126(3-4):201-208.
    [123] Sammes N.M., Cai Z. Ionic conductivity of ceria/yttria stabilized zirconia electrolytematerials[J]. Solid State Ionics,1997,100(1-2):39-44.
    [124] Kang H.S., Sohn J.R., Kang Y.C. et al. The characteristics of nano-sized Gd-dopedCeO2particles prepared by spray pyrolysis[J]. Journal of Alloys Compounds,2005,398(1-2):240-244.
    [125] Bieberle A., Gauckler L.J. Ni-based SOFC anodes: microstructure andelectrochemistry[J]. Zeitschrift fur Metallkunde,2001,92(7):796-802.
    [126] Ishihara H.M.T, Takita Y. Doped LaGaO3perovskite type oxide as a new oxide ionicconductor[J]. Journal of the American Chemical Society,1994,116(9):3801-3803.
    [127] Ishihara T., Hiei Y., Takita Y. Oxidative reforming of methane using solid oxide fuel cellwith LaGaO3-based electrolyte[J]. Solid State Ionics,1995,79:371-375.
    [128] Yang N., D’Epifanio A., Di Bartolomeo E. et al. La0.8Sr0.2Ga0.8Mg0.2O3-thin flms forIT-SOFCs: microstructure and transport properties correlation[J]. Journal of PowerSources,2013,222:10-14.
    [129] Yamaji K., Horita T., Ishikawa M. et al. Compatibility of La0.9Sr0.1Ga0.8Mg0.2O2.85as theelectrolyte for SOFCs[J]. Solid State Ionics,1998,108(1-4):415-421.
    [130] Yamaji K., Horita T., Ishikawa M. et al. Chemical stability of theLa0.9Sr0.1Ga0.8Mg0.2O2.85electrolyte in a reducing atmosphere[J]. Solid State Ionics,1999,121(1-4):217-224.
    [131] Matraszek A., Singheiser L., Kobertz D. et al. Phase diagram study in theLa2O3–Ga2O3–MgO–SrO system in air[J]. Solid State Ionics,2004,166(3-4):343-350.
    [132] Huang K., Feng M., Goodenough J.B. et al. Electrode performance test on singleceramic fuel cells using as electrolyte Sr-and Mg-doped LaGaO3[J]. Journal of theElectrochemical Society,1997,144(10):3620-3624.
    [133] Pe a-Martínez J., Marrero-López D., Ruiz-Morales J.C. et al. Anodic performance andintermediate temperature fuel cell testing of La0.75Sr0.25Cr0.5Mn0.5O3-at lanthanumgallate electrolytes[J]. Chemistry of Materials,2006,18(4):1001-1006.
    [134] Pe a-Martínez J., Marrero-López D., Ruiz-Morales J.C. et al. Fuel cell studies ofperovskite-type materials for IT-SOFC[J]. Journal of Power Sources,2006,159(2):914-921.
    [135] Goodenough J.B., Ruiz-Diaz J.E., Zhen Y.S. Oxide-ion conduction in Ba2In2O5andBa3In2MO8(M=Ce, Hf, or Zr)[J]. Solid State Ionics,1990,44(1-2):21-31.
    [136] Yao T., Uchimoto Y., Kinuhata M. et al. Crystal structure of Ga-doped Ba2In2O5and itsoxide ion conductivity[J]. Solid State Ionics,2000,132(3-4):189-198.
    [137] Fischer W., Reck G., Schober T. Structural transformation of the oxygen and protonconductor Ba2In2O5in humid air: an in-situ X-ray powder diffraction study[J]. SolidState Ionics,1999,116(3-4):211-215.
    [138] Yamamura H., Hamazaki H., Kakinuma K. Order-disorder transition and electricalconductivity of the brownmillerite solid-solutions system Ba2(In, M)2O5(M=Ga, Al)[J].Journal of the Korean Physical Society,1999,35(92): S200-S204.
    [139] Shimura T., Yogo T. Electrical properties of the tungsten-doped Ba2In2O5[J]. Solid StateIonics,2004,175(1-4):345-348.
    [140] Gregory D.H., Weller M.T. Phases in the system Ba2M2-xCuxO4+, M=In, Sc: structureand oxygen stoichiometry[J]. Journal of Solid State Chemistry,1993,107(1):134-148.
    [141] Kambe S., Shime I., Ohshima S. et al. Structure of Ba2InCuOy: a new layered cupratewith a blocking layer of BaInOyperovskite[J]. Physica C: Superconductivity,1994,220(1-2):119-126.
    [142] Yamamura H., Yamada Y., Mori T. et al. Order–disorder transition of oxygen vacancy inthe brownmillerite system[J]. Solid State Ionics,1998,108(1-4):377-381.
    [143] Kendall K.R., Navas C., Thomas J.K. et al. Recent developments in perovskite-basedoxide ion conductors[J]. Solid State Ionics,1995,82(3-4):215-223.
    [144] Manthiram A., Kuo J.F., Goodenough J.B. Characterization of oxygen-deficientperovskites as oxide-ion electrolytes[J]. Solid State Ionics,1993,62(3-4):225-234.
    [145] Jayaraman V., Magrez A., Caldes M. et al. Characterization of perovskite systemsderived from Ba2In2O5□: Part I: the oxygen-deficient Ba2In2(1x)Ti2xO5+x□1x(0x1)compounds[J]. Solid State Ionics,2004,170(1-2):17-24.
    [146] Schober T. Protonic conduction in BaIn0.5Sn0.5O2.75[J]. Solid State Ionics,1998,109(1-2):1-11.
    [147] Berastegui P., Hull S., García-García F.J. et al. The crystal structures, microstructureand ionic conductivity of Ba2In2O5and Ba(InxZr1x)O3x/2[J]. Journal of Solid StateChemistry,2002,164(1):119-130.
    [148] Goodenough J.B., Manthiram A., Kuo J.F. Oxygen diffusion in perovskite-relatedoxides[J]. Materials Chemistry and Physics,1993,35(3-4):221-224.
    [149] Rolle A., Vannier R.N., Giridharan N.V. et al. Structural and electrochemicalcharacterisation of new oxide ion conductors for oxygen generating systems and fuelcells[J]. Solid State Ionics,2005,176(25-28):2095-2103.
    [150] Kakinuma K., Yamamura H., Haneda H. et al. Oxide-ion conductivity of theperovskite-type solid-solution system,(Ba1x ySrxLay)2In2O5+y[J]. Solid State Ionics,2002,154-155:571-576.
    [151] Uchimoto T.Y.Y., Takagi H., Inagaki T. et al. Crystal structure of (Ba1-xLax)2In2O5+xandits oxide ion conductivity[J]. Electrochemistry,2000,68(6):531-533.
    [152] Kakinuma K., Yamamura H., Haneda H. et al. Oxide-ion conductivity of(Ba1xLax)2In2O5+xsystem based on brownmillerite structure[J]. Solid State Ionics,2001,140(3-4):301-306.
    [153] Goodenough J.B. Ceramic solid electrolytes[J]. Solid State Ionics,1997,94(1-4):17-25.
    [154] Liu Y., Withers R.L., Gerald J.F. A TEM, XRD, and crystal chemical investigation ofoxygen/vacancy ordering in (Ba1xLax)2In2O5+x,0x0.6[J]. Journal of Solid StateChemistry,2003,170(2):247-254.
    [155] Kuramochi H., Mori T., Yamamura T. et al. Preparation and conductivity of Ba2In2O5ceramics[J]. Journal of the Ceramic Society of Japan,1994,102(1192):1159-1162.
    [156] Kakinuma K., Arisaka T., Yamamura H. et al. Solid oxide fuel cell using(Ba0.3Sr0.2La0.5)InO2.75electrolyte[J]. Solid State Ionics,2004,175(1-4):139-143.
    [157] Kakinuma K., Machida S., Arisaka T. et al. Cathodic characteristics of(La0.6Sr0.4)(Mn1xFex)O3for a solid oxide fuel cell with a (Ba0.3Sr0.2La0.5)InO2.75electrolyte[J]. Solid State Ionics,2005,176(31-34):2405-2410.
    [158] Kakinuma K., Takahashi N., Yamamura H. et al. Electrical conductivity and localdistortion of (Ba0.5La0.5)2In2O5.5doped with divalent or tetravalent cation in in-site[J].Solid State Ionics,2004,168(1-2):69-74.
    [159] Lacorre P., Goutenoire F., Bohnke O. et al. Designing fast oxide-ion conductors basedon La2Mo2O9[J]. Nature,2000,404(6780),856-858.
    [160] Georges S., Goutenoire F., Lacorre P. et al. Sintering and electrical conductivity in fastoxide ion conductors La2xRxMo2yWyO9(R: Nd, Gd, Y)[J]. Journal of the EuropeanCeramic Society,2005,25(16):3619-3627.
    [161] Georges S., Skinner S.J., Lacorre P. et al. Oxide ion diffusion in optimised LAMOXmaterials[J]. Dalton Transactions,2004,(19):3101-3105.
    [162] Georges S., Goutenoire F., Bohnke O. et al. The LAMOX family of fast oxide-ionconductors: overview and recent results[J]. Journal of New Materials ElectrochemicalSystems,2004,7(1):51-57.
    [163] Georges S., Goutenoire F., Altorfer F. et al. Thermal, structural and transport propertiesof the fast oxide-ion conductors La2xRxMo2O9(R=Nd, Gd, Y)[J]. Solid State Ionics,2003,161(3-4):231-241.
    [164] Georges S., Goutenoire F., Laligant Y. et al. Reducibility of fast oxide-ion conductorsLa2xRxMo2yWyO9(R=Nd, Gd)[J]. Journal of Materials Chemistry,2003,13(9):2317-2321.
    [165] Kersen U., Keiski R. Characterization of La2Mo2O9aerogels synthesized by the sol–gelchemistry and high-temperature supercritical drying[J]. Journal of Nanoscience andNanotechnology,2005,5(10):1734-1736.
    [166] Mizusaki J. Nonstoichiometry, diffusion, and electrical properties of perovskite-typeoxide electrode materials[J]. Solid State Ionics,1992,52(1-3):79-91.
    [167] Kuo J.H., Anderson H.U., Sparlin D.M. Oxidation-reduction behavior of undoped andSr-doped LaMnO3nonstoichiometry and defect structure[J]. Journal of Solid StateChemistry,1989,83(1):52-60.
    [168] Nowotny J., Rekas M. Defect chemistry of (La,Sr)MnO3[J]. Journal of the AmericanCeramic Society,1988,81(1):67-80.
    [169] Ralph J.M., Schoeler A.C., Krumpelt M. Materials for lower temperature solid oxidefuel cells[J]. Journal of Materials Science,2001,36(5):1161-1172.
    [170] Minh N.Q., Takahashi T. Science and technology of ceramic fuel cells[M]. Amsterdam,Elsevier,1995.
    [171] Jiang S.P., Love J.G., Zhang J.P. et al. The electrochemical performance ofLSM/zirconia–yttria interface as a function of a-site non-stoichiometry and cathodiccurrent treatment[J]. Solid State Ionics,1999,121(1-4):1-10.
    [172] Clausen C., Bagger C., Bilde-S rensen J.B. et al. Microstructural and microchemicalcharacterization of the interface between La0.85Sr0.15MnO3and Y2O3-stabilized ZrO2[J].Solid State Ionics,1994,70-71:59-64.
    [173] Stochniol G., Syskakis E., Naoumidis A. Chemical compatibility betweenstrontium-doped lanthanum manganite and yttria-stabilized zirconia[J]. Journal of theAmerican Ceramic Society,1995,78(4):929-932.
    [174] Ishihara T., Kudo T., Matsuda H. et al. Doped perovskite oxide, PrMnO3, as a newcathode for solid-oxide fuel cells that decreases the operating temperature[J]. Journal ofthe American Ceramic Society,1994,77(6):1682-1684.
    [175] Sakaki Y., Takeda Y., Kato A. et al. Ln1xSrxMnO3(Ln=Pr, Nd, Sm and Gd) as thecathode material for solid oxide fuel cells[J]. Solid State Ionics,1999,118(3-4):187-194.
    [176] Kostogloudis G.Ch., Ftikos Ch. Characterization of Nd1-xSrxMnO3SOFC cathodematerials[J]. Journal of the European Ceramic Society,1999,19(4):497-505.
    [177] Kojima I., Adachi H., Yasumori I. Electronic structures of the LaBO3(B=Co, Fe, Al)perovskite oxides related to their catalysis[J]. Surface Science,1983,130(1):50-62.
    [178] Petrov A.N., Kononchuk O.F., Andreev A.V. et al. Crystal structure, electrical andmagnetic properties of La1xSrxCoO3y[J]. Solid State Ionics,1995,80(3-4):189-199.
    [179] Takeda Y., Kanno R., Noda M. et al. Perovskite electrodes for high temperature solidelectrolyte fuel cells[J]. Bulletin of the Institute for Chemical Research,1986,64(4):157-169.
    [180] Yasumoto K., Inagaki Y., Shiono M. et al. An (La,Sr)(Co,Cu)O3cathode for reducedtemperature SOFCs[J]. Solid State Ionics,2002,148(3-4):545-549.
    [181] Ralph J.M., Rossignol C., Kumar R. Cathode materials for reduced-temperatureSOFCs[J]. Journal of the Electrochemical Society,2003,150(11): A1518-A1522.
    [182] Zhou X.D., Anderson H.U. SOFC-IX: solid oxide fuel cells IX, electrochemical societyproceedings[C].. Quebec PQ, Canada,2005:1479-1486.
    [183] Simner S.P., Bonnett J.F., Canfield N.L. et al. Optimized lanthanum ferrite-basedcathodes for anode-supported SOFCs[J]. Electrochemical and Solid-State Letters,2002,5(7): A173-A175.
    [184] Dusastre V., Kilner J.A. Optimisation of composite cathodes for intermediatetemperature SOFC applications[J]. Solid State Ionics,1999,126(1-2):163-174.
    [185] Kindermann L., Dos D., Nickel H. et al. Chemical compatibility of(La0.6Ca0.4)xFe0.8M0.2O3with yttria-stabilized zirconia[J]. Journal of the ElectrochemicalSociety,1997,144(2):717-720.
    [186] Kostogloudis G.Ch., Ftikos Ch. Properties of A-site-deficientLa0.6Sr0.4Co0.2Fe0.8O3-based perovskite oxides[J]. Solid State Ionics,1999,126(1-2):143-151.
    [187] Shao Z.P., Haile S.M. A high-performance cathode for the next generation ofsolid-oxide fuel cells[J]. Nature,2004,431(7005):170-173.
    [188] Wei B., Lv Z., Huang X.Q. et al. Crystal structure, thermal expansion and electricalconductivity of perovskite oxides BaxSr1xCo0.8Fe0.2O3(0.3x0.7)[J]. Journal of theEuropean Ceramic Society,2006,26(13):2827-2832.
    [189] Zinkevich M., Aldinger F. Thermodynamic analysis of the ternary La–Ni–O system[J].Journal of Alloys and Compounds,2004,375(1-2):147-161.
    [190] Tsipis E.V., Kiselev E.A., Kolotygin V.A. et al. Mixed conductivity, M ssbauer spectraand thermal expansion of (La,Sr)(Fe,Ni)O3perovskites[J]. Solid State Ionics,2008,179(38):2170-2180.
    [191] Munnings C.N., Skinner S.J., Amow G. et al. Oxygen transport in the La2Ni1xCoxO4+system[J]. Solid State Ionics,2005,176(23-24):1895-1901.
    [192] Vashook V.V., Ullmann H., Olshevskaya O.P. et al. Composition and electricalconductivity of some cobaltates of the type La2xSrxCoO4.5x/2[J]. Solid State Ionics,2000,138(1-2):99-104.
    [193] Al Daroukh M., Vashook V.V., Ullmann H. Oxides of the AMO3and A2MO4-type:structural stability, electrical conductivity and thermal expansion[J]. Solid State Ionics,2003,158(1-2):141-150.
    [194] Skinner S.J., Kilner J.A. Oxygen diffusion and surface exchange in La2xSrxNiO4+[J].Solid State Ionics,2000,135(1-4):709-712.
    [195] Zhao F., Wang X.F., Wang Z.Y. et al. K2NiF4type La2xSrxCo0.8Ni0.2O4+as the cathodesfor solid oxide fuel cells[J]. Solid State Ionics,2008,179(27-32):1450-1453.
    [196] Aguadero A., Alonso J.A., Esudero M.J. et al. Evaluation of the La2Ni1xCuxO4+systemas SOFC cathode material with8YSZ and LSGM as electrolytes[J]. Solid State Ionics,2008,179(11-12):393-400.
    [197] Jin C., Liu J. Preparation of Ba1.2Sr0.8CoO4+K2NiF4-type structure oxide and cathodicbehavioral of Ba1.2Sr0.8CoO4+–GDC composite cathode for intermediate temperaturesolid oxide fuel cells[J]. Journal of Alloys and Compounds,2009,474(1-2):573-577.
    [198] Sammes N.M., Du Y.H. The mechanical properties of tubular solid oxide fuel cells[J].Journal of Materials Science,2003,38(24):4811-4816.
    [199] Yamamoto O. Solid oxide fuel cells: fundamental aspects and prospects[J].Electrochimica Acta,2000,45(15-16):2423-2435.
    [200] Huang Y.Y., Vohs J.M., Gorte R.J. Fabrication of Sr-doped LaFeO3YSZ compositecathodes[J]. Journal of the Electrochemical Society,2004,151(4): A646-A651.
    [201] Ciacchi F.T., Badwal S.P.S., Zelizko V. Tubular zirconia-yttria electrolyte membranetechnology for oxygen separation[J]. Solid State Ionics,2002,152-153:763-768.
    [202] Staniforth J., Kendall K. Biogas powering a small tubular solid oxide fuel cell[J].Journal of Power Sources,1998,71(1-2):275-277.
    [203] Liu L.H., Tan X.Y., Liu S.M. Yttria stabilized zirconia hollow fiber membranes[J].Journal of the American Ceramic Society,2006,89(3):1156-1159.
    [204] Liu Y., Chen O.Y., Wei C.C. et al. Preparation of yttria stabilised zirconia (YSZ) hollowfibre membranes[J]. Desalination,2006,199(1-3):360-362.
    [205] Virkar A.V., Fung K.Z., Tanner C.W. Electrode design for solid state devices, fuel cellsand sensors[P]. U.S. Patent,5543239,1996.
    [206] Wei C.C., Li K. Yttria-stabilized zirconia (YSZ)-based hollow fiber solid oxide fuelcells[J]. Industrial&Engineering Chemistry Research,2008,47(5):1506-1512.
    [207] Singhal S.C., Kendall K. High-temperature solid oxide fuel cells: fundamentals, designand applications[M]. Elsevier Ltd.,2003.
    [208] Wei B., Lü Z., Wei T.S. et al. Nanosized Ce0.8Sm0.2O1.9infiltrated GdBaCo2O5+cathodes for intermediate-temperature solid oxide fuel cells[J]. International Journal ofHydrogen Energy,2011,36(10):6151-6159.
    [209] Yang Z.B., Yang C.H., Jin C. et al. Ba0.9Co0.7Fe0.2Nb0.1O3as cathode material forintermediate temperature solid oxide fuel cells[J]. Electrochemistry Communications,2011,13(8):882-885.
    [210] Lee K.T., Manthiram A. LaSr3Fe3-yCoyO10-(0y1.5) intergrowth oxide cathodes forintermediate temperature solid oxide fuel cells[J]. Chemistry of Materials,2006,18(6):1621-1626.
    [211] Kim J.H., Cassidy M., Irvine J.T.S. et al. Electrochemical investigation of compositecathodes with SmBa0.5Sr0.5Co2O5+cathodes for intermediate temperature-operatingsolid oxide fuel cell[J]. Chemistry of Materials,2010,22(3):883-892.
    [212] Sholklapper T.Z., Kurokawa H., Jacobson C.P. et al. Nanostructured solid oxide fuelcell electrodes[J]. Nano Letters,2007,7(7):2136-2141.
    [213] Wang Y.F., Cheng J.G., Jiang Q.M. et al. Preparation and electrochemical performanceof Pr2Ni0.6Cu0.4O4cathode materials for intermediate-temperature solid oxide fuelcells[J]. Journal of Power Sources,2011,196(6):3104-3108.
    [214] Li Q., Zeng X., Sun L.P. et al. Electrochemical performance of La2Cu1-xCoxO4cathodematerials for intermediate-temperature SOFCs[J]. International Journal of HydrogenEnergy,2012,37(3):2552-2558.
    [215] Sun C.W., Hui R., Roller J. Cathode materials for solid oxide fuel cells: a review[J].Journal of Solid State Electrochemistry,2010,14(7):1125-1144.
    [216] Duan Z.S., Yang M., Yan A.Y. et al. Ba0.5Sr0.5Co0.8Fe0.2O3as a cathode for IT-SOFCswith a GDC interlayer[J]. Journal of Power Sources,2006,160(1):57-64.
    [217] Zhou W., Ran R., Shao Z.P. Progress in understanding and development ofBa0.5Sr0.5Co0.8Fe0.2O3-based cathodes for intermediate-temperature solid-oxide fuelcells: a review[J]. Journal of Power Sources,2009,192(2):231-246.
    [218] Pe a-Martínez J., Marrero-López D., Ruiz-Morales J.C. et al. On Ba0.5Sr0.5Co1-yFeyO3-(y=0.1-0.9) oxides as cathode materials for La0.9Sr0.1Ga0.8Mg0.2O2.85basedIT-SOFCs[J]. International Journal of Hydrogen Energy,2009,34(23):9486-9495.
    [219] Wang Y.S., Nie H.W., Wang S.R. et al. A2A′BO4-type oxides as cathode materials forIT-SOFCs (A=Pr, Sm; A′=Sr; B=Fe, Co)[J]. Materials Letters,2006,60(9-10):1174-1178.
    [220] Yan A.Y., Cheng M.J., Dong Y.L. et al. Investigation of a Ba0.5Sr0.5Co0.8Fe0.2O3-basedcathode IT-SOFC: I. The effect of CO2on the cell performance[J]. Applied Catalysis B:Environmental,2006,66(1-2):64-71.
    [221] Zhao F., Wang X.F., Wang Z.Y. et al. K2NiF4type La2-xSrxCo0.8Ni0.2O4+as the cathodesfor solid oxide fuel cells[J]. Solid State Ionics,2008,179(27-32):1450-1453.
    [222] Escudero M.J., Aguadero A., Alonso J.A. et al. A kinetic study of oxygen reductionreaction on La2NiO4cathodes by means of impedance spectroscopy[J]. Journal ofElectroanalytical Chemistry,2007,611(1-2):107-116.
    [223] Escudero M.J., Fuerte A., Daza L. La2NiO4+potential cathode material onLa0.9Sr0.1Ga0.8Mg0.2O2.85electrolyte for intermediate temperature solid oxide fuel cell[J].Journal of Power Sources,2011,196(17):7245-7250.
    [224] Ferkhi M., Khelili S., Zerroual L. et al. Synthesis, structural analysis andelectrochemical performance of low-copper content La2Ni1xCuxO4+materials as newcathodes for solid oxide fuel cells[J]. Electrochimica Acta,2009,54(26):6341-6346.
    [225] Sayers R., Liu J., Rustumji B. et al. Novel K2NiF4-type materials for solid oxide fuelcells: compatibility with electrolytes in the intermediate temperature range[J]. FuelCells,2008,8(5):338-343.
    [226] Huang J.H., Jiang X.Y., Li X.B. et al. Preparation and electrochemical properties ofLa1.0Sr1.0FeO4+as cathode material for intermediate temperature solid oxide fuelcells[J]. Journal of Electroceramics,2009,23(1):67-71.
    [227] Amow G., Skinner S.J. Recent developments in ruddlesden–popper nickelate systemsfor solid oxide fuel cell cathodes[J]. Journal of Solid State Electrochemistry,2006,10(8):538-546.
    [228] Huang J.B., Gao R.F., Mao Z.Q. et al. Investigation of La2NiO4+-based cathodes forSDC–carbonate composite electrolyte intermediate temperature fuel cells[J].International Journal of Hydrogen Energy,2010,35(7):2657-2662.
    [229] Aguadero A., Alonso J.A., Escudero M.J. et al. Evaluation of the La2Ni1-xCuxO4+system as SOFC cathode material with8YSZ and LSGM as electrolytes[J]. Solid StateIonics,2008,179(11-12):393-400.
    [230] Peng B., Chen G., Wang T. et al. Hydride reduced LaSrCoO4-as new cathode materialfor Ba(Zr0.1Ce0.7Y0.2)O3based intermediate temperature solid oxide fuel cells[J].Journal of Power Sources,2012,201:174-178.
    [231] Yashima M., Sirikanda N., Ishihara T. Crystal structure, diffusion path, and oxygenpermeability of a Pr2NiO4-based mixed conductor (Pr0.9La0.1)2(Ni0.74Cu0.21Ga0.05)O4+[J].Journal of the American Chemical Society,2010,132(7):2385-2392.
    [232] Howe K.S., Kendall K. Transient performance of micro-tubular solid oxide fuel cells[J].Journal of Fuel Cell Science and Technology,2011,8(3):034502-1-034502-4.
    [233] Yang C.L., Li W., Zhang S.Q. et al. Fabrication and characterization of ananode-supported hollow fber SOFC[J]. Journal of Power Sources,2009,187(1):90-92.
    [234] Escudero M.J., Fuerte A., Daza L. La2NiO4+potential cathode material onLa0.9Sr0.1Ga0.8Mg0.2O2.85electrolyte for intermediate temperature solid oxide fuel cell[J].Journal of Power Sources,2011,196(17):7245-7250.
    [235] Zhao Z., Liu L., Zhang X.M. et al. A comparison on effects of CO2on La0.8Sr0.2MnO3-and La0.6Sr0.4CoO3-cathodes[J]. Journal of Power Sources,2013,222:542-553.
    [236] Ormerod R.M. Solid oxide fuel cells[J]. Chemical Society Reviews,2003,32(1):17-28.
    [237] de Souza S., Visco S.J., De Jonghe L.C. Thin-film solid oxide fuel cell with highperformance at low-temperature[J]. Solid State Ionics,1997,98(1-2):57-61.
    [238] de Souza S., Visco S.J., De Jonghe L.C. Reduced-temperature solid oxide fuel cellbased on YSZ thin-film electrolyte[J]. Journal of the Electrochemical Society,1997,144(3): L35-L37.
    [239] Doshi R., Richards V., Carter J. et al. Development of solid-oxide fuel cells that operateat500oC[J]. Journal of the Electrochemical Society,1999,146(4):1273-1278.
    [240] Steele B.C.H. Appraisal of Ce1yGdyO2y/2electrolytes for IT-SOFC operation at500oC[J]. Solid State Ionics,2000,129(1-4):95-110.
    [241] Huang H., Nakamura M., Su P.C. et al. High-performance ultrathin solid oxide fuelcells for low-temperature operation[J]. Journal of the Electrochemical Society,2007,154(1): B20-B24.
    [242] Tsuchiya M., Lai B.K., Ramanathan S. Scalable nanostructured membranes forsolid-oxide fuel cells[J]. Nature Nanotechnology,2011,6(5):282-286.
    [243] Beckel D., Bieberle-Hütter A., Harvey A. et al. Thin flms for micro solid oxide fuelcells[J]. Journal of Power Sources,2007,173(1):325-345.
    [244] Cassir M., Ringuede A., Niinisto L. Input of atomic layer deposition for solid oxide fuelcell applications[J]. Journal of Materials Chemistry,2010,20(41):8987-8993.
    [245] Fergus JW. Electrolytes for solid oxide fuel cells[J]. Journal of the ElectrochemicalSociety,2006,162(1):30-40.
    [246] Kharton V.V., Marques F., Atkinson A. Transport properties of solid oxide electrolyteceramics: a brief review[J]. Solid State Ionics,2004,174(1-4):135-149.
    [247] Dalslet B., Blennow P., Hendriksen P.V. et al. Assessment of doped ceria aselectrolyte[J]. Journal of Solid State Electrochemistry,2006,10(8):547-561.
    [248] Mogensen M., Lybye D., Kammer K. et al. Electrochemical Society Proceedings,2005-07, SOFC IX[C].2005:1068-1074.
    [249] Kharton V.V., Figueiredo F.M., Navarro L. et al. Ceria-based materials for solid oxidefuel cells[J]. Journal of Materials Science,2001,36(5):1105-1117.
    [250] Wang S.R., Koyabashi T., Dokiya M. et al. Electrical and ionic conductivity ofGd-doped ceria[J]. Journal of the Electrochemical Society,2000,147(10):3606-3609.
    [251] Zhang T.S., Ma J., Luo L.H. et al. Preparation and properties of dense Ce0.9Gd0.1O2ceramics for use as electrolytes in IT-SOFCs[J]. Journal of Alloys and Compounds,2006,422(1-2):46-52.
    [252] Jud E., Gauckler L.J. The effect of cobalt oxide addition on the conductivity ofCe0.9Gd0.1O1.95[J]. Journal of Electroceramics,2005,15(2):159-166.
    [253] Sin A., Dubitsky Yu., Zaopo A. et al. Preparation and sintering of Ce1xGdxO2x/2nanopowders and their electrochemical and EPR characterization[J]. Solid State Ionics,2004,175(1-4):361-366.
    [254] Seo D.J., Ryu K.O., Park S.B. et al. Synthesis and properties of Ce1xGdxO2x/2solidsolution prepared by flame spray pyrolysis[J]. Materials Research Bulletin,2006,41(2):359-366.
    [255] Ji B.F., Wang J.B., Chu W.L. et al. Acrylic acid and electric power cogeneration in anSOFC reactor[J]. Chemical Communications,2009,(15):2038-2040.
    [256] Steele B.C.H., Heinzel A. Materials for fuel-cell technologies[J]. Nature,2001,414(6861):345-352.
    [257] Wachsman E.D., Lee K.T. Lowering the temperature of solid oxide fuel cells[J]. Science,2011,334(6058):935-939.
    [258] Murray E.P., Barnett S.A.(La,Sr)MnO3–(Ce,Gd)O2-xcomposite cathodes for solidoxide fuel cells[J]. Solid State Ionics,2001,143(3-4):265-273.
    [259] Singhal S.C. Advances in solid oxide fuel cell technology[J]. Solid State Ionics,2000,135(1-4):305-313.
    [260] Yang L., Wang S.Z., Blinn K. et al. Enhanced sulfur and coking tolerance of a mixedion conductor for SOFCs: BaZr0.1Ce0.7Y0.2–xYbxO3–[J]. Science,2009,326(5949):126-129.
    [261] Song C.S. Fuel processing for low-temperature and high-temperature fuel cells:challenges, and opportunities for sustainable development in the21st century[J].Catalysis Today,2002,77(1-2):17-49.
    [262] Zhou W., Shao Z.P., Liang F.L. et al. A new cathode for solid oxide fuel cells capable ofin situ electrochemical regeneration[J]. Journal of Materials Chemistry,2011,21(39):15343-15351.
    [263] McIntosh S., Gorte R.J. Direct hydrocarbon solid oxide fuel cells[J]. Chemical Reviews,2004,104(10):4845-4865.
    [264] Cowin P.I., Petit C.T.G., Lan R. et al. Recent progress in the development of anodematerials for solid oxide fuel cells[J]. Advanced Energy Materials,2011,1(3):314-332.
    [265] de Souza S., Visco S.J., De Jonghe L.C. Thin-flm solid oxide fuel cell with highperformance at low-temperature[J]. Solid State Ionics,1997,98(1-2):57-61.
    [266] Barfod R., Hagen A., Ramousse S. et al. Break down of losses in thin electrolyteSOFCs[J]. Fuel Cells,2006,6(2):141-145.
    [267] Mai A., Haanappel V.A.C., Uhlenbruck S. et al. Ferrite-based perovskites as cathodematerials for anode-supported solid oxide fuel cells: Part I. Variation of composition[J].Solid State Ionics,2005,176(15-16):1341-1350.
    [268] Pan W.P., LüZ., Chen K.F. et al. Paper-fibres used as a pore-former for anode substrateof solid oxide fuel cell[J]. Fuel Cells,2011,11(2):172-177.
    [269] Zhang L., He H.Q., Kwek W.R. et al. Fabrication and characterization ofanode-supported tubular solid-oxide fuel cells by slip casting and dip coatingtechniques[J]. Journal of the American Ceramic Society,2009,92(2):302-310.
    [270] Gil V., Gurauskis J., Campana R. et al. Anode-supported microtubular cells fabricatedwith gadolinia-doped ceria nanopowders[J]. Journal of Power Sources,2011,196(3):1184-1190.
    [271] Jin C., Liu J., Li L.H. et al. Electrochemical properties analysis of tubular NiO–YSZanode-supported SOFCs fabricated by the phase-inversion method[J]. Journal ofMembrane Science,2009,341(1-2):233-237.
    [272] Lozano C.A., Ohashi M., Shimpalee S. et al. Comparison of hydrogen and methane asfuel in micro-tubular SOFC using electrochemical analysis[J]. Journal of theElectrochemical Society,2011,158(10): B1235-B1245.
    [273] Santori G., Brunetti E., Polonara F. Experimental characterization of an anode-supportedtubular SOFC generator fueled with hydrogen, including a principal componentanalysis and a multi-linear regression[J]. International Journal of Hydrogen Energy,2011,36(14):8435-8449.
    [274] Sammes N.M., Du Y., Bove R. Design and fabrication of a100W anode supportedmicro-tubular SOFC stack[J]. Journal of Power Sources,2005,145(2):428-434.
    [275] Droushiotis N., Othman M.H.D., Doraswami U. et al. Novel co-extrudedelectrolyte–anode hollow fbres for solid oxide fuel cells[J]. ElectrochemistryCommunications,2009,11(9):1799-1802.
    [276] Yang C.H., Jin C., Chen F.L. Micro-tubular solid oxide fuel cells fabricated byphase-inversion method[J]. Electrochemistry Communications,2010,12(5):657-660.
    [277] Kendall K. Progress in microtubular solid oxide fuel cells[J]. International Journal ofApplied Ceramic Technology,2010,7(1):1-9.
    [278] Dikwal C.M., Bujalski W., Kendall K. Characterization of the electrochemicalperformance of micro-tubular SOFC in partial reduction and oxidation conditions[J].Journal of Power Sources,2008,181(2):267-273.
    [279] Sin Y.W., Galloway K., Roy B. et al. The properties and performance of micro-tubular(less than2.0mm O.D.) anode supported solid oxide fuel cell (SOFC)[J]. InternationalJournal of Hydrogen Energy,2011,36(2):1882-1889.
    [280] Suzuki T., Funahashi Y., Hasan Z. et al. Fabrication of needle-type micro SOFCs formicro power devices[J]. Electrochemistry Communications,2008,10(10):1563-1566.
    [281] Campana R., Larrea A., Pe a J.I. et al. Ni–YSZ cermet micro-tubes with texturedsurface[J]. Journal of the European Ceramic Society,2009,29(1):85-90.
    [282] Calise F., Restucccia G., Sammes N. Experimental analysis of micro-tubular solid oxidefuel cell fed by hydrogen[J]. Journal of Power Sources,2010,195(4):1163-1170.
    [283] Dong D.H., Liu M.F., Xie K. et al. Improvement of cathode–electrolyte interfaces oftubular solid oxide fuel cells by fabricating dense YSZ electrolyte membranes withindented surfaces[J]. Journal of Power Sources,2008,175(1):201-205.
    [284] Kanawka K., Dal Grande F., Wu Z.T. et al. Microstructure and performanceinvestigation of a solid oxide fuel cells based on highly asymmetric YSZ microtubularelectrolytes[J]. Industrial&Engineering Chemistry Research,2010,49(13):6062-6068.
    [285] Zhang X.Z., Lin B., Ling Y.H. et al. An anode-supported micro-tubular solid oxide fuelcell with redox stable composite cathode[J]. International Journal of Hydrogen Energy,2010,35(16):8654-8662.
    [286] Zhao L., Zhang X.Z., He B.B. et al. Micro-tubular solid oxide fuel cells with gradedanodes fabricated with a phase inversion method[J]. Journal of Power Sources,2011,196(3):962-967.
    [287] Othman M.H.D., Droushiotis N., Wu Z.T. et al. High-performance, anode-supported,microtubular SOFC prepared from single-step-fabricated, dual-layer hollow fibers[J].Advanced Materials,2011,23(21):2480-2483.
    [288] Othman M.H.D., Droushiotis N., Wu Z.T. et al. Novel fabrication technique of hollowfbre support for micro-tubular solid oxide fuel cells[J]. Journal of Power Sources,2011,196(11):5035-5044.
    [289] Yang N.T., Tan X.Y., Ma Z.F. et al. Fabrication and characterization of Ce0.8Sm0.2O1.9microtubular dual-structured electrolyte membranes for application in solid oxide fuelcell technology[J]. Journal of the American Ceramic Society,2009,92(11):2544-2550.
    [290] Wei Y.Y., Liu H.F., Xue J. et al. Preparation and oxygen permeation of U-shapedperovskite hollow-fiber membranes[J]. AIChE Journal,2011,57(4):975-984.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700