用户名: 密码: 验证码:
纳米微晶纤维素诱导TiO_2纳米晶体及其复合物的可控制备和性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科技的高速发展,工业生产不断扩大,人类的生存环境则日益恶化。如何有效开发利用功能性材料治理环境污染,实现经济的可持续发展,已经成为人类社会亟待解决的共同问题。纳米TiO_2作为一种重要的宽禁带半导体材料,因其化学性质稳定,成本低廉,对生物无毒,光催化活性高,降解污染物无选择性且无二次污染等优点,在过去的几十年里得到了迅速的发展。本文以自制的纳米微晶纤维素为诱导剂,以四氯化钛为主要原料,采用水解法在30-80°C的温度下制备了具有不同形貌和晶体结构的TiO_2纳米晶体。纳米纤维素表面富含大量羟基,可通过氢键相互作用,促进TiO_2生长基元在其表面异质成核,在温和的反应条件下生长发育为形貌规整、结晶完善的纳米晶体。本文具体的研究工作包括以下几个方面。
     首先,采用无机酸水解法、碱再生法和高压均质技术制备了具有不同微观结构和结晶相态的纳米微晶纤维素HNCC、LNCC和RNCC。分别将此三种纤维素和羧甲基纤维素加入四氯化钛的水解体系中,诱导制备TiO_2纳米晶体,研究纤维素的微观结构和结晶相态对TiO_2晶体结构和性能的影响,并通过对比实验对纤维素诱导机理进行了初步探讨。
     其次,选择极具代表性的HNCC纳米纤维素作为诱导剂,通过大量的探索性实验研究了反应温度、时间、反应物浓度、外加无机酸和表面活性剂等因素对TiO_2纳米晶体形貌和晶体结构的影响,制备了具有正方形状、花状、纳米针状、球形、刺球形和板栗球状等各种微观形貌的TiO_2纳米晶体,采用TEM、HRTEM、SEM、XRD、BET比表面积等测试手段对制得的TiO_2样品进行表征,并以甲基橙溶液模拟染料废水,考察了各样品的光催化活性。
     再次,采用光还原法和化学还原法,成功在花状TiO_2晶体表面负载了一层纳米金属银单质,制备了Ag/TiO_2复合物,探讨了负载方法、外加助剂和AgNO3浓度对纳米Ag颗粒在TiO_2晶体表面分散性、均一性及粒径大小的影响。以甲基橙溶液为目标分解物,对各Ag/TiO_2样品进行光催化性能测试,结果表明,以NH3H2O和NaOH为助剂,采用光还原法,在AgNO3浓度为0.2%和0.5%条件下制备的Ag/TiO_2样品,光催化活性提高较为明显。以金黄色葡萄球菌和大肠杆菌为实验菌种,采用抑菌圈法,对制备的Ag/TiO_2复合物进行抗菌性能测试,表明各样品均具有较好的抗菌性能。
     最后,以聚对苯二甲酸乙二醇酯无纺布和玻璃纤维为负载基体,先对其进行表面接枝改性处理,再采用原位生长的方法,在两种基体表面成功沉积上一层TiO_2纳米晶体,分析测试结果表明,TiO_2纳米晶体以化学键的方式牢牢接枝固定在基体表面,光催化降解实验证明,制备的TiO_2/PET和TiO_2/GF复合材料在紫外光照和自然光照下均表现出较好的光催化活性,尤其是TiO_2/GF效果更佳。TiO_2纳米粒子的接枝固定化,解决了悬浮体系中催化剂难以分离回收的问题。
With the development of science and industry, the environment is getting worse andworse. So how to develop useful and efficient functional materials to solve the problems ofenvironmental pollution has been of great importance for all the human beings. As animportant semiconductor with wide forbidden band, TiO_2nanocrystals has attracted greatattention during the past decades, due to its superior performances, such as chemical stability,low-cost, nontoxic, high photoreactivity and causing no secondary pollutions. In the presentdissertation, TiO_2nanocrystals with different morphologies and crystal structure wereprepared by hydrolysis of TiCl4in aqueous solution at a low temperature of30-80°C, usingnanocrystalline cellulose as inducing agent. Nanocrystalline cellulose (NCC) whose surfacepossesses of abundant hydroxyl groups acted as as hydrophilic substrate and morphologyinducing agent to promote the heterogeneous nucleation and crystal growth of TiO_2nanocrystals at low temperatures through strong hydrogen bonding with growth unit of TiO_2.Well-defined TiO_2nanocrystals can be obtained under the mild condition without calcinationsin the presence of NCC.
     The major research contents of this present work were as follows:
     Firstly, nanocrystalline cellulose with different microstructure and crystalline phase wasprepared by degrading natural cotton fiber in strong acid or alkaline environment. Highcrystallinity NCC (HNCC) was prepared by acid degradation process. Low crystallinity NCC(LNCC) was produced via alkali regeneration followed by being homogenized with a highpressure homogenizer. Regenerated nanocrystalline cellulose (RNCC) was obtained by alkaliregeneration of HNCC. The obtained HNCC, LNCC and RNCC were used as inducing agentseparately to make out the influence of crystal phase and microstructure of cellulose on thenucleation and crystal growth of TiO_2crystals. The growth mechanism was discussed on thebasis of the results of comparative experiments.
     Secondly, plenty of experiments were carried out to investigate the effect of temperature,reaction time, the concentration of TiCl4and additive on the morphology and structure ofTiO_2crystals in the presence of high crystallinity NCC. Cubic, flower-like, needle-like,spherical, thorny ball, chestnut-like TiO_2nanocrystals were obtained, and they were characterized by TEM, HRTEM, SEM, XRD and BET surface area analyzer. Thephotocatalytic activity of all the samples was detected by the decolourization of methylorange.
     Thirdly, metallic Ag nanoparticles were deposited on the flower-like TiO_2nanocrystalsby photoreduction and chemical reduction methods, obtaining Ag/TiO_2nanocomposites. Theinfluence of preparation technology, additive and concentration of AgNO3solution on thediameter and decentrality and of Ag particles was discussed. The photodegradationexperiment of MO solution indicated that the photocatalytic activity of Ag/TiO_2nanocomposites prepared by photoreaction method in the presence of NH3H2O and NaOHincreased obviously when the concentration of AgNO3solution was0.2%and0.5%. Theantibacterial performance of Ag/TiO_2samples were tested by inhibition zone method, S.cereus (ATCC29213) and E. coli (ATCC8739) were chosen as the experimental strains.
     Lastly, flower-like and cubic TiO_2nanocrystals were in situ grown on polyethyleneterephthalate (PET) non-woven fabric and glass fiber (GF) by hydrolysis of TiCl4in aqueoussolution in the presence of nanocrystal cellulose grafted PET fabric (HNCC-g-PET) and GF(HNCC-g-GF) at a low temperature of70°C. Characteristic results showed that strongchemical bondings were established between substrates and TiO_2nanocrystals. Thephotocatalytic activity of the obtained TiO_2/PET and TiO_2/GF composites was examined bydegradation of orange methyl under natural solar light and high-pressure mercury lamp. Theresults indicated that the TiO_2/PET composites exhibited good photocatalytic activity, and theTiO_2/GF showed even higher photoactivity. Loading TiO_2nanoparticles on supportingmaterials with large surface area where pollutants can be condensed can solve the difficulty infiltration and separation of fine particles in aqueous solution.
引文
[1] Fujishima A. Electrochemical photolysis of water at a semiconductor electrode[J]. nature.1972,238:37-38.
    [2] Brillas E, Mur E, Sauleda R, et al. Aniline mineralization by AOP's: anodic oxidation,photocatalysis, electro-Fenton and photoelectro-Fenton processes[J]. Applied Catalysis B:Environmental.1998,16(1):31-42.
    [3] Liu G, Wu T, Zhao J, et al. Photoassisted degradation of dye pollutants.8. Irreversibledegradation of alizarin red under visible light radiation in air-equilibrated aqueous TiO2dispersions[J]. Environmental science&technology.1999,33(12):2081-2087.
    [4] Pichat P, Disdier J, Hoang-Van C, et al. Purification/deodorization of indoor air andgaseous effluents by TiO2photocatalysis[J]. Catalysis today.2000,63(2):363-369.
    [5] Dey G R, Belapurkar A D, Kishore K. Photo-catalytic reduction of carbon dioxide tomethane using TiO2as suspension in water[J]. Journal of Photochemistry and photobiology A:Chemistry.2004,163(3):503-508.
    [6]黄惠莉,黄妙良,蔡阿娜,等. TiO2光催化薄膜在陶瓷器具上抗菌效果的研究[J].应用化学.2002(01):48-52.
    [7]杨合,薛向欣,左良,等.二氧化钛光催化机理在建材领域的应用[J].低温建筑技术.2003(04):75-77.
    [8] Gr tzel M. Photoelectrochemical cells[J]. Nature.2001,414(6861):338-344.
    [9] Wagemaker M, Kentgens A, Mulder F M. Equilibrium lithium transport betweennanocrystalline phases in intercalated TiO2anatase[J]. Nature.2002,418(6896):397-399.
    [10] Carotta M C, Ferroni M, Gnani D, et al. Nanostructured pure and Nb-doped TiO2as thickfilm gas sensors for environmental monitoring[J]. Sensors and Actuators B: Chemical.1999,58(1):310-317.
    [11]张青红高濂郑珊.纳米氧化钛光催化材料及应用[M].北京:化学工业出版社,2002:39-46.
    [12] Linsebigler A L, Lu G, Yates Jr J T. Photocatalysis on TiO2surfaces: principles,mechanisms, and selected results[J]. Chemical Reviews.1995,95(3):735-758.
    [13] Herrmann J. Heterogeneous photocatalysis: fundamentals and applications to theremoval of various types of aqueous pollutants[J]. Catalysis today.1999,53(1):115-129.
    [14] Awazu K, Fujimaki M, Rockstuhl C, et al. A plasmonic photocatalyst consisting of silvernanoparticles embedded in titanium dioxide[J]. Journal of the American Chemical Society.2008,130(5):1676-1680.
    [15] Jiang F, Zheng Z, Xu Z, et al. Aqueous Cr (VI) photo-reduction catalyzed by TiO2andsulfated TiO2[J]. Journal of hazardous materials.2006,134(1):94-103.
    [16] Li Q, Easter N J, Shang J K. As (III) removal by palladium-modified nitrogen-dopedtitanium oxide nanoparticle photocatalyst[J]. Environmental science&technology.2009,43(5):1534-1539.
    [17] Ryu J, Choi W. Effects of TiO2surface modifications on photocatalytic oxidation ofarsenite: The role of superoxides[J]. Environmental science&technology.2004,38(10):2928-2933.
    [18] Chen X A S S. Titanium dioxide nanomaterials: Synthesis, properties, modifications, andapplications[J]. Chemical Reviews.2007:2891-2959.
    [19] Jun Y, Casula M F, Sim J, et al. Surfactant-assisted elimination of a high energy facet asa means of controlling the shapes of TiO2nanocrystals[J]. Journal of the American ChemicalSociety.2003,125(51):15981-15985.
    [20] Carp O, Huisman C L, Reller A. Photoinduced reactivity of titanium dioxide[J]. Progressin solid state chemistry.2004,32(1):33-177.
    [21] Ohno T, Haga D, Fujihara K, et al. Unique effects of iron (III) ions on photocatalytic andphotoelectrochemical properties of titanium dioxide[J]. The Journal of Physical Chemistry B.1997,101(33):6415-6419.
    [22] Li Y, Liu J, Jia Z. Morphological control and photodegradation behavior of rutile TiO2prepared by a low-temperature process[J]. Materials Letters.2006,60(13):1753-1757.
    [23] Wang Y, Zhang L, Deng K, et al. Low temperature synthesis and photocatalytic activityof rutile TiO2nanorod superstructures[J]. The Journal of Physical Chemistry C.2007,111(6):2709-2714.
    [24] Zhang Y, Wu L, Zeng Q, et al. Synthesis and characterization of rutile TiO2nano-ellipsoid by water-soluble peroxotitanium complex precursor[J]. Materials Chemistryand Physics.2010,121(1-2):235-240.
    [25] Zhang Q, Gao L, Guo J. Effects of calcination on the photocatalytic properties ofnanosized TiO2powders prepared by TiCl4hydrolysis[J]. Applied Catalysis B: Environmental.2000,26(3):207-215.
    [26] Ohno T, Sarukawa K, Tokieda K, et al. Morphology of a TiO2Photocatalyst (Degussa,P-25) Consisting of Anatase and Rutile Crystalline Phases[J]. Journal of Catalysis.2001,203(1):82-86.
    [27] Hurum D C, Agrios A G, Gray K A, et al. Explaining the enhanced photocatalyticactivity of Degussa P25mixed-phase TiO2using EPR[J]. The Journal of Physical ChemistryB.2003,107(19):4545-4549.
    [28] Yan M, Chen F, Zhang J, et al. Preparation of controllable crystalline titania and study onthe photocatalytic properties[J]. The Journal of Physical Chemistry B.2005,109(18):8673-8678.
    [29] Hurum D C, Gray K A, Rajh T, et al. Recombination pathways in the Degussa P25formulation of TiO2: Surface versus lattice mechanisms[J]. The Journal of Physical ChemistryB.2005,109(2):977-980.
    [30] Nakajima H, Mori T, Shen Q, et al. Photoluminescence study of mixtures of anatase andrutile TiO2nanoparticles: Influence of charge transfer between the nanoparticles on theirphotoluminescence excitation bands[J]. Chemical physics letters.2005,409(1):81-84.
    [31] Zhang J, Xu Q, Feng Z, et al. Importance of the relationship between surface phases andphotocatalytic activity of TiO2[J]. Angewandte Chemie International Edition.2008,47(9):1766-1769.
    [32] Xia Y, Yang P, Sun Y, et al. One-dimensional nanostructures: synthesis, characterization,and applications[J]. Advanced materials.2003,15(5):353-389.
    [33]王俊文,孙彦平,梁镇海,等. RF-PCVD法纳米TiO2的制备及光催化研究[J].稀有金属材料与工程.2004(05):478-481.
    [34] Ding K, Miao Z, Hu B, et al. Shape and Size Controlled Synthesis of AnataseNanocrystals with the Assistance of Ionic Liquid[J]. Langmuir.2009,26(7):5129-5134.
    [35] Yang H G, Sun C H, Qiao S Z, et al. Anatase TiO2single crystals with a large percentageof reactive facets[J]. Nature.2008,453(7195):638-641.
    [36] Wu B, Guo C, Zheng N, et al. Nonaqueous production of nanostructured anatase withhigh-energy facets[J]. Journal of the American Chemical Society.2008,130(51):17563-17567.
    [37] Yang H G, Liu G, Qiao S Z, et al. Solvothermal synthesis and photoreactivity of anataseTiO2nanosheets with dominant {001} facets[J]. Journal of the American Chemical Society.2009,131(11):4078-4083.
    [38] Dai Y, Cobley C M, Zeng J, et al. Synthesis of anatase TiO2nanocrystals with exposed{001} facets[J]. Nano letters.2009,9(6):2455-2459.
    [39] Zheng Z, Huang B, Qin X, et al. Highly efficient photocatalyst: TiO2microspheresproduced from TiO2nanosheets with a high percentage of reactive {001} facets[J].Chemistry-A European Journal.2009,15(46):12576-12579.
    [40] Chen J S, Tan Y L, Li C M, et al. Constructing hierarchical spheres from large ultrathinanatase TiO2nanosheets with nearly100%exposed (001) facets for fast reversible lithiumstorage[J]. Journal of the American Chemical Society.2010,132(17):6124-6130.
    [41] Tahir M N, Theato P, Oberle P, et al. Facile synthesis and characterization offunctionalized, monocrystalline rutile TiO2nanorods[J]. Langmuir.2006,22(12):5209-5212.
    [42] Kolen'Ko Y V, Kovnir K A, Gavrilov A I, et al. Hydrothermal synthesis andcharacterization of nanorods of various titanates and titanium dioxide[J]. The Journal ofPhysical Chemistry B.2006,110(9):4030-4038.
    [43] Das K, Panda S K, Chaudhuri S. Solvent-controlled synthesis of TiO21D nanostructures:Growth mechanism and characterization[J]. Journal of Crystal Growth.2008,310(16):3792-3799.
    [44] Zhang Y, Wu L, Zeng Q, et al. An approach for controllable synthesis of different-phasetitanium dioxide nanocomposites with peroxotitanium complex as precursor[J]. The Journalof Physical Chemistry C.2008,112(42):16457-16462.
    [45] Gao Y, Luo H, Mizusugi S, et al. Surfactant-free synthesis of anatase TiO2nanorods inan aqueous peroxotitanate solution[J]. Crystal Growth and Design.2008,8(6):1804-1807.
    [46] Peng Y, Kansal S K, Deng W. Studies on transformation of titanate nanotubes intonanoribbons[J]. Materials Letters.2009,63(30):2615-2618.
    [47] Yan J, Song H, Yang S, et al. Effect of heat treatment on the morphology andelectrochemical performance of TiO2nanotubes as anode materials for lithium-ion batteries[J].Materials Chemistry and Physics.2009,118(2):367-370.
    [48] Das K, De S K. Optical Properties of the Type-II Core-Shell TiO2@CdS Nanorods forPhotovoltaic Applications[J]. The Journal of Physical Chemistry C.2009,113(9):3494-3501.
    [49] Lv K, Li X, Deng K, et al. Effect of phase structures on the photocatalytic activity ofsurface fluorinated TiO2[J]. Applied Catalysis B: Environmental.2010,95(3):383-392.
    [50] Caruso F, M hwald H. Preparation and characterization of ordered nanoparticle andpolymer composite multilayers on colloids[J]. Langmuir.1999,15(23):8276-8281.
    [51] Caruso F. Hollow capsule processing through colloidal templating and self-assembly[J].Chemistry-A European Journal.2000,6(3):413-419.
    [52] Yin H, Wada Y, Kitamura T, et al. Novel synthesis of phase-pure nano-particulateanatase and rutile TiO2using TiCl4aqueous solutions[J]. Journal of Materials Chemistry.2002,12(2):378-383.
    [53] Yang H G, Zeng H C. Preparation of hollow anatase TiO2nanospheres via Ostwaldripening[J]. The Journal of Physical Chemistry B.2004,108(11):3492-3495.
    [54] Yin S, Hasegawa H, Maeda D, et al. Synthesis of visible-light-active nanosize rutiletitania photocatalyst by low temperature dissolution–reprecipitation process[J]. Journal ofPhotochemistry and Photobiology A: Chemistry.2004,163(1):1-8.
    [55] Zhang K, Zhang X, Chen H, et al. Hollow titania spheres with movable silica spheresinside[J]. Langmuir.2004,20(26):11312-11314.
    [56] Peng B, Meng X, Tang F, et al. General synthesis and optical properties of monodispersemultifunctional metal-ion-doped TiO2hollow particles[J]. The Journal of Physical ChemistryC.2009,113(47):20240-20245.
    [57] Lakshmi B B, Patrissi C J, Martin C R. Sol-gel template synthesis of semiconductoroxide micro-and nanostructures[J]. Chemistry of Materials.1997,9(11):2544-2550.
    [58] Yi D K, Yoo S J, Kim D. Spin-on-based fabrication of titania nanowires using a sol-gelprocess[J]. Nano Letters.2002,2(10):1101-1104.
    [59] Miao Z, Xu D, Ouyang J, et al. Electrochemically induced sol-gel preparation ofsingle-crystalline TiO2nanowires[J]. Nano Letters.2002,2(7):717-720.
    [60] Li D, Xia Y. Fabrication of titania nanofibers by electrospinning[J]. Nano Letters.2003,3(4):555-560.
    [61] Peng J, Mao C, Kim J, et al. From nanodot to nanowire: hybrid Au/titania nanoarrays byblock copolymer templates[J]. Macromolecular rapid communications.2009,30(21):1857-1861.
    [62] Liu C, Yang S. Synthesis of angstrom-scale anatase titania atomic wires[J]. ACS nano.2009,3(4):1025-1031.
    [63] Xie Y, Heo S H, Kim Y N, et al. Synthesis and visible-light-induced catalytic activity ofAg2S-coupled TiO2nanoparticles and nanowires[J]. Nanotechnology.2010,21(1):15703.
    [64] Kasuga T, Hiramatsu M, Hoson A, et al. Formation of titanium oxide nanotube[J].Langmuir.1998,14(12):3160-3163.
    [65] Tian Z R, Voigt J A, Liu J, et al. Large oriented arrays and continuous films ofTiO2-based nanotubes[J]. Journal of the American Chemical Society.2003,125(41):12384-12385.
    [66] Suzuki M, Nakajima Y, Sato T, et al. Fabrication of TiO2using L-lysine-basedorganogelators as organic templates: control of the nanostructures[J]. Chem. Commun.2006(4):377-379.
    [67] Mahajan V K, Misra M, Raja K S, et al. Self-organized TiO2nanotubular arrays forphotoelectrochemical hydrogen generation: effect of crystallization and defect structures[J].Journal of Physics D: Applied Physics.2008,41(12):125307.
    [68] Lai Y, Chen Y, Tang Y, et al. Electrophoretic deposition of titanate nanotube films withextremely large wetting contrast[J]. Electrochemistry communications.2009,11(12):2268-2271.
    [69] Wang H, Wu Y, Xu B. Preparation and characterization of nanosized anatase TiO2cuboids for photocatalysis[J]. Applied Catalysis B: Environmental.2005,59(3):139-146.
    [70] Testino A, Bellobono I R, Buscaglia V, et al. Optimizing the photocatalytic properties ofhydrothermal TiO2by the control of phase composition and particle morphology. Asystematic approach[J]. Journal of the American Chemical Society.2007,129(12):3564-3575.
    [71] Zhao H, Liu X, Tse S D. Effects of pressure and precursor loading in the flame synthesisof titania nanoparticles[J]. Journal of Aerosol Science.2009,40(11):919-937.
    [72] Chen J S, Lou X W. Anatase TiO2nanosheet: An ideal host structure for fast andefficient lithium insertion/extraction[J]. Electrochemistry Communications.2009,11(12):2332-2335.
    [73] D Arienzo M, Scotti R, Wahba L, et al. Hydrothermal N-doped TiO2: Explainingphotocatalytic properties by electronic and magnetic identification of N active sites[J].Applied Catalysis B: Environmental.2009,93(1):149-155.
    [74] Han X, Kuang Q, Jin M, et al. Synthesis of titania nanosheets with a high percentage ofexposed (001) facets and related photocatalytic properties[J]. Journal of the AmericanChemical Society.2009,131(9):3152-3153.
    [75] Sugimoto T, Zhou X, Muramatsu A. Synthesis of uniform anatase TiO2nanoparticles bygel-sol method:3. Formation process and size control[J]. Journal of colloid and interfacescience.2003,259(1):43-52.
    [76] Weng C, Hsu K, Wei K. Synthesis of arrayed, TiO2needlelike nanostructures via apolystyrene-block-poly (4-vinylpyridine) diblock copolymer template[J]. Chemistry ofmaterials.2004,16(21):4080-4086.
    [77] Wang W, Gu B, Liang L, et al. Synthesis of rutile (α-TiO2) nanocrystals with controlledsize and shape by low-temperature hydrolysis: effects of solvent composition[J]. The Journalof Physical Chemistry B.2004,108(39):14789-14792.
    [78] Li Y, Liu J, Jia Z. Morphological control and photodegradation behavior of rutile TiO2prepared by a low-temperature process[J]. Materials Letters.2006,60(13):1753-1757.
    [79] Huang X, Pan C. Large-scale synthesis of single-crystalline rutile TiO2nanorods via aone-step solution route[J]. Journal of crystal growth.2007,306(1):117-122.
    [80] Qiao H, Tao D, Wang Y, et al. Electrochemical charge storage of flowerlike rutile TiO2nanorods[J]. Chemical Physics Letters.2010,490(4):180-183.
    [81] Mao Y, Kanungo M, Hemraj-Benny T, et al. Synthesis and growth mechanism of titanateand titania one-dimensional nanostructures self-assembled into hollow micrometer-scalespherical aggregates[J]. The Journal of Physical Chemistry B.2006,110(2):702-710.
    [82] Hosono E, Fujihara S, Imai H, et al. One-step synthesis of nano-micro chestnut TiO2with rutile nanopins on the microanatase octahedron[J]. Acs Nano.2007,1(4):273-278.
    [83] Dinh C, Nguyen T, Kleitz F, et al. Shape-controlled synthesis of highly crystalline titaniananocrystals[J]. ACS nano.2009,3(11):3737-3743.
    [84] Huang F, Fu Z, Yan A, et al. Several shape-controlled TiO2/TiB2hybrid materials with acombined growth mechanism[J]. Materials Letters.2009,63(30):2655-2658.
    [85] Wang C, Ying J Y. Sol-gel synthesis and hydrothermal processing of anatase and rutiletitania nanocrystals[J]. Chemistry of materials.1999,11(11):3113-3120.
    [86] Yin H, Wada Y, Kitamura T, et al. Hydrothermal synthesis of nanosized anatase andrutile TiO2using amorphous phase TiO2[J]. Journal of Materials chemistry.2001,11(6):1694-1703.
    [87] Wang C, Deng Z, Li Y. The synthesis of nanocrystalline anatase and rutile titania inmixed organic media[J]. Inorganic chemistry.2001,40(20):5210-5214.
    [88] Zhang W, Chen S, Yu S, et al. Experimental and theoretical investigation of the pHeffect on the titania phase transformation during the sol-gel process[J]. Journal of CrystalGrowth.2007,308(1):122-129.
    [89]杨菊香,宋少飞,沈淑坤,等.模板法制备新型有机-无机复合微球材料研究进展[J].材料导报.2007(03):54-58.
    [90]陈彰旭,郑炳云,李先学,等.模板法制备纳米材料研究进展[J].化工进展.2010(01):94-99.
    [91] Turkevych I, Pihosh Y, Goto M, et al. Photocatalytic properties of titanium dioxidesputtered on a nanostructured substrate[J]. Thin Solid Films.2008,516(9):2387-2391.
    [92] Nelson K, Deng Y. The shape dependence of core-shell and hollow titania nanoparticleson coating thickness during layer-by-layer and sol-gel synthesis[J]. Nanotechnology.2006,17(13):3219.
    [93] Zhong Z, Yin Y, Gates B, et al. Preparation of mesoscale hollow spheres of TiO2andSnO2by templating against crystalline arrays of polystyrene beads[J]. Advanced Materials.2000,12(3):206-209.
    [94] Yang Z, Niu Z, Lu Y, et al. Templated synthesis of inorganic hollow spheres with atunable cavity size onto core-shell gel particles[J]. Angewandte Chemie.2003,115(17):1987-1989.
    [95] Choi H, Sofranko A C, Dionysiou D D. Nanocrystalline TiO2photocatalytic membraneswith a hierarchical mesoporous multilayer structure: synthesis, characterization, andmultifunction[J]. Advanced functional materials.2006,16(8):1067-1074.
    [96] Choi H, Stathatos E, Dionysiou D D. So gel preparation of mesoporous photocatalyticTiO2films and TiO2/Al2O3composite membranes for environmental applications[J]. AppliedCatalysis B-Environmental.2006,63(1):60-67.
    [97] Choi H, Stathatos E, Dionysiou D D. Photocatalytic TiO2films and membranes for thedevelopment of efficient wastewater treatment and reuse systems[J]. Desalination.2007,202(1):199-206.
    [98] Adachi M, Murata Y, Takao J, et al. Highly efficient dye-sensitized solar cells with atitania thin-film electrode composed of a network structure of single-crystal-like TiO2nanowires made by the “oriented attachment” mechanism[J]. Journal of the AmericanChemical Society.2004,126(45):14943-14949.
    [99] Joo J, Kwon S G, Yu T, et al. Large-Scale Synthesis of TiO2Nanorods viaNonhydrolytic Sol-Gel Ester Elimination Reaction and Their Application to PhotocatalyticInactivation of E. c oli[J]. The Journal of Physical Chemistry B.2005,109(32):15297-15302.
    [100] Kwon S G, Hyeon T. Colloidal chemical synthesis and formation kinetics of uniformlysized nanocrystals of metals, oxides, and chalcogenides[J]. Accounts of chemical research.2008,41(12):1696-1709.
    [101] Li Y, White T J, Lim S H. Low-temperature synthesis and microstructural control oftitania nano-particles[J]. Journal of solid state chemistry.2004,177(4):1372-1381.
    [102] Mohammadi M R, Cordero-Cabrera M C, Fray D J, et al. Preparation of high surfacearea titania (TiO2) films and powders using particulate sol–gel route aided by polymericfugitive agents[J]. Sensors and Actuators B: Chemical.2006,120(1):86-95.
    [103] Kannaiyan D, Cha M, Jang Y H, et al. Efficient photocatalytic hybrid Ag/TiO2nanodotarrays integrated into nanopatterned block copolymer thin films[J]. New Journal of Chemistry.2009,33(12):2431-2436.
    [104] Zhou Y, Antonietti M. Synthesis of very small TiO2nanocrystals in a room-temperatureionic liquid and their self-assembly toward mesoporous spherical aggregates[J]. Journal of theAmerican Chemical Society.2003,125(49):14960-14961.
    [105] Zhou Y, Schattka J H, Antonietti M. Room-temperature ionic liquids as template tomonolithic mesoporous silica with wormlike pores via a sol-gel nanocasting technique[J].Nano Letters.2004,4(3):477-481.
    [106] Yoo K, Choi H, Dionysiou D D. Ionic liquid assisted preparation of nanostructuredTiO2particles[J]. Chemical Communications.2004(17):2000-2001.
    [107] Yoo K S, Choi H, Dionysiou D D. Synthesis of anatase nanostructured TiO2particles atlow temperature using ionic liquid for photocatalysis[J]. Catalysis Communications.2005,6(4):259-262.
    [108] Choi H, Kim Y J, Varma R S, et al. Thermally stable nanocrystalline TiO2photocatalysts synthesized via sol-gel methods modified with ionic liquid and surfactantmolecules[J]. Chemistry of materials.2006,18(22):5377-5384.
    [109] Stathatos E, Lianos P, Lavrencic-Stangar U, et al. A high-performance solid-statedye-sensitized photoelectrochemical cell employing a nanocomposite gel electrolyte made bythe sol-gel route[J]. Advanced Materials.2002,14(5):354.
    [110] Zhou M, Xu J, Yu H, et al. Low-temperature hydrothermal synthesis of highlyphotoactive mesoporous spherical TiO2nanocrystalline[J]. Journal of Physics and Chemistryof Solids.2010,71(4):507-510.
    [111] Yanagisawa K, Ovenstone J. Crystallization of anatase from amorphous titania usingthe hydrothermal technique: effects of starting material and temperature[J]. The Journal ofPhysical Chemistry B.1999,103(37):7781-7787.
    [112] Beusen J, Van Bael M K, Van den Rul H, et al. Preparation of a porous nanocrystallineTiO2layer by deposition of hydrothermally synthesized nanoparticles[J]. Journal of theEuropean Ceramic Society.2007,27(16):4529-4535.
    [113] Yang X F, Zhuang J L, Li X Y, et al. Hierarchically Nanostructured Rutile Arrays: AcidVapor Oxidation Growth and Tunable Morphologies [J]. ACS NANO.2009,3(5):1212-1218.
    [114] Cozzoli P D, Kornowski A, Weller H. Low-temperature synthesis of soluble andprocessable organic-capped anatase TiO2nanorods[J]. Journal of the American ChemicalSociety.2003,125(47):14539-14548.
    [115] Li X L, Peng Q, Yi J X, et al. Near monodisperse TiO2nanoparticles and nanorods[J].Chemistry-A European Journal.2006,12(8):2383-2391.
    [116] Buonsanti R, Grillo V, Carlino E, et al. Nonhydrolytic synthesis of high-qualityanisotropically shaped brookite TiO2nanocrystals[J]. Journal of the American ChemicalSociety.2008,130(33):11223-11233.
    [117] Mutin P H, Vioux A. Nonhydrolytic processing of oxide-based materials: simple routesto control homogeneity, morphology, and nanostructure[J]. Chemistry of Materials.2009,21(4):582-596.
    [118] Liu C, Sun H, Yang S. From nanorods to atomically thin wires of anatase TiO2:Nonhydrolytic synthesis and characterization[J]. Chemistry-A European Journal.2010,16(14):4381-4393.
    [119]陈德明,王亭杰,雨山江,等.纳米TiO2的性能、应用及制备方法[J].材料工程.2002(11):42-47.
    [120] Serpone N, Lawless D, Disdier J, et al. Spectroscopic, photoconductivity, andphotocatalytic studies of TiO2colloids: naked and with the lattice doped with Cr3+, Fe3+, andV5+cations[J]. Langmuir.1994,10(3):643-652.
    [121] Pottier A, Cassaignon S, Chanéac C, et al. Size tailoring of TiO2anatase nanoparticlesin aqueous medium and synthesis of nanocomposites. Characterization by Ramanspectroscopy[J]. Journal of Materials Chemistry.2003,13(4):877-882.
    [122] Sato S, Nakamura R, Abe S. Visible-light sensitization of TiO2photocatalysts bywet-method N doping[J]. Applied Catalysis A: General.2005,284(1):131-137.
    [123] Yu J C, Ho W, Yu J, et al. Efficient visible-light-induced photocatalytic disinfection onsulfur-doped nanocrystalline titania[J]. Environmental science&technology.2005,39(4):1175-1179.
    [124] Chen C, Long M, Zeng H, et al. Preparation, characterization and visible-light activityof carbon modified TiO2with two kinds of carbonaceous species[J]. Journal of MolecularCatalysis A: Chemical.2009,314(1):35-41.
    [125] Oh S, Park D. Production of ultrafine titanium dioxide by DC plasma jet[J]. Thin SolidFilms.2001,386(2):233-238.
    [126] Yoshitake H, Sugihara T, Tatsumi T. Preparation of wormhole-like mesoporous TiO2with an extremely large surface area and stabilization of its surface by chemical vapordeposition[J]. Chemistry of materials.2002,14(3):1023-1029.
    [127] Vick D, Brett M J, Westra K. Porous thin films for the characterization of atomic forcemicroscope tip morphology[J]. Thin solid films.2002,408(1):79-86.
    [128] Thimsen E, Rastgar N, Biswas P. Nanostructured TiO2films with controlledmorphology synthesized in a single step process: Performance of dye-sensitized solar cellsand photo watersplitting[J]. The Journal of Physical Chemistry C.2008,112(11):4134-4140.
    [129] Lee J E, Oh S, Park D. Synthesis of nano-sized Al doped TiO2powders using thermalplasma[J]. Thin Solid Films.2004,457(1):230-234.
    [130]王传义,刘春艳,沈涛.半导体光催化剂的表面修饰[J].高等学校化学学报.1998(12):138-144.
    [131] Sclafani A, Herrmann J. Influence of metallic silver and of platinum-silver bimetallicdeposits on the photocatalytic activity of titania (anatase and rutile) in organic and aqueousmedia[J]. Journal of Photochemistry and Photobiology A: Chemistry.1998,113(2):181-188.
    [132] Li Y, Lu G, Li S. Photocatalytic transformation of rhodamine B and its effect onhydrogen evolution over Pt/TiO2in the presence of electron donors[J]. Journal ofPhotochemistry and Photobiology A: Chemistry.2002,152(1):219-228.
    [133] Wu G, Chen T, Zong X, et al. Suppressing CO formation by anion adsorption and Ptdeposition on TiO2in H2production from photocatalytic reforming of methanol[J]. Journal ofCatalysis.2008,253(1):225-227.
    [134] Vamathevan V, Amal R, Beydoun D, et al. Photocatalytic oxidation of organics inwater using pure and silver-modified titanium dioxide particles[J]. Journal of Photochemistryand Photobiology A: Chemistry.2002,148(1):233-245.
    [135] Sung-Suh H M, Choi J R, Hah H J, et al. Comparison of Ag deposition effects on thephotocatalytic activity of nanoparticulate TiO2under visible and UV light irradiation[J].Journal of Photochemistry and Photobiology A: Chemistry.2004,163(1):37-44.
    [136] Xu M, Bao S, Zhang X. Enhanced photocatalytic activity of magnetic TiO2photocatalyst by silver deposition[J]. Materials Letters.2005,59(17):2194-2198.
    [137] Gorzkowska Sobas A, Kusior E, Radecka M, et al. Visible photocurrent response ofTiO2anode[J]. Surface science.2006,600(18):3964-3970.
    [138] Wang C, Liu C, Zheng X, et al. The surface chemistry of hybrid nanometer-sizedparticles I. Photochemical deposition of gold on ultrafine TiO2particles[J]. Colloids andSurfaces A: Physicochemical and Engineering Aspects.1998,131(1):271-280.
    [139] Subramanian V, Wolf E, Kamat P V. Semiconductor-metal composite nanostructures.To what extent do metal nanoparticles improve the photocatalytic activity of TiO2films [J].The Journal of Physical Chemistry B.2001,105(46):11439-11446.
    [140]原宇航,戚敏杰,周兴贵,等.丙烯直接环氧化Au/TiO2催化剂助剂对催化性能的影响[J].华东理工大学学报(自然科学版).2005(02):133-136.
    [141]邓培昌.卤族元素掺杂TiO2的制备及光催化性能研究[D].中国海洋大学,2009.
    [142]赵秀峰,孟宪锋,张志红,等. Pb掺杂TiO2薄膜的制备及光催化活性研究[J].无机材料学报.2004(01):140-146.
    [143] Wu J C, Chen C. A visible-light response vanadium-doped titania nanocatalyst by sol–gel method[J]. Journal of Photochemistry and Photobiology A: Chemistry.2004,163(3):509-515.
    [144] Stathatos E, Petrova T, Lianos P. Study of the efficiency of visible-light photocatalyticdegradation of basic blue adsorbed on pure and doped mesoporous titania films[J]. Langmuir.2001,17(16):5025-5030.
    [145] Vogel R, Hoyer P, Weller H. Quantum-sized PbS, CdS, Ag2S, Sb2S3, and Bi2S3particles as sensitizers for various nanoporous wide-bandgap semiconductors[J]. The Journalof Physical Chemistry.1994,98(12):3183-3188.
    [146] Fujii H, Ohtaki M, Eguchi K, et al. Photocatalytic activities of CdS crystallitesembedded in TiO2gel as a stable semiconducting matrix[J]. Journal of materials scienceletters.1997,16(13):1086-1088.
    [147] Fang J, Wu J, Lu X, et al. Sensitization of nanocrystalline TiO2electrode with quantumsized CdSe and ZnTCPc molecules[J]. Chemical physics letters.1997,270(1):145-151.
    [148] Kohtani S, Kudo A, Sakata T. Spectral sensitization of a TiO2semiconductor electrodeby CdS microcrystals and its photoelectrochemical properties[J]. Chemical physics letters.1993,206(1):166-170.
    [149] Bedja I, Kamat P V. Capped semiconductor colloids. Synthesis andphotoelectrochemical behavior of TiO2capped SnO2nanocrystallites[J]. The Journal ofPhysical Chemistry.1995,99(22):9182-9188.
    [150]刘平,周廷云,林华香,等. TiO2/SnO2复合光催化剂的耦合效应[J].物理化学学报.2001(03):265-269.
    [151]成英之,张渊明,唐渝. WO3-TiO2薄膜型复合光催化剂的制备和性能[J].催化学报.2001(02):203-205.
    [152] Li X Z, Li F B, Yang C L, et al. Photocatalytic activity of WOx-TiO2under visiblelight irradiation[J]. Journal of Photochemistry and Photobiology A: Chemistry.2001,141(2):209-217.
    [153] Manr quez M E, Lopez T, Gomez R, et al. Preparation of TiO2–ZrO2mixed oxideswith controlled acid–basic properties[J]. Journal of Molecular Catalysis A: Chemical.2004,220(2):229-237.
    [154]杨少斌,张建博,费学宁. TiO2光催化氧化剂的改性技术研究进展[J].工业用水与废水.2009(02):11-14.
    [155] Clark W, Sutin N. Spectral sensitization of n-type titanium dioxide electrodes bypolypyridineruthenium (II) complexes[J]. Journal of the American Chemical Society.1977,99(14):4676-4682.
    [156] O Regan B, Grftzeli M. A low-cost, high-efficiency solar cell based ondye-sensitized[J]. nature.1991,353:24.
    [157] Ziolkowski L, Vinodgopal K, Kamat P V. Photostabilization of organic dyes on poly(styrenesulfonate)-capped TiO2nanoparticles[J]. Langmuir.1997,13(12):3124-3128.
    [158] Islam A, Sugihara H, Hara K, et al. Sensitization of nanocrystalline TiO2film byruthenium (II) diimine dithiolate complexes[J]. Journal of Photochemistry and PhotobiologyA: Chemistry.2001,145(1):135-141.
    [159] Hara K, Sugihara H, Tachibana Y, et al. Dye-sensitized nanocrystalline TiO2solar cellsbased on ruthenium (II) phenanthroline complex photosensitizers[J]. Langmuir.2001,17(19):5992-5999.
    [160] Hara K, Horiuchi H, Katoh R, et al. Effect of the ligand structure on the efficiency ofelectron injection from excited Ru-phenanthroline complexes to nanocrystalline TiO2films[J].The Journal of Physical Chemistry B.2002,106(2):374-379.
    [161] Sayama K, Tsukagoshi S, Hara K, et al. Photoelectrochemical properties of J aggregatesof benzothiazole merocyanine dyes on a nanostructured TiO2film[J]. The Journal of PhysicalChemistry B.2002,106(6):1363-1371.
    [162]高洁,汤烈贵.纤维素科学[M].科学出版社,1996:193-195.
    [163]李伟,王锐,刘守新.纳米纤维素的制备[J].化学进展.2010(10):2060-2070.
    [164] Ding C R W N, Feng E X. Thermal Degradation Behaviors of Cellulose Whiskers[J].Journal of South China University of Technology (Natural Science Edition).2007,10:13.
    [165]李金玲,陈广祥,叶代勇.纳米纤维素晶须的制备及应用的研究进展[J].林产化学与工业.2010(02):121-125.
    [166]黎国康,丁恩勇,李小芳,等.纳米晶体纤维素Ⅱ的制备与表征研究[J].纤维素科学与技术.2002(02):12-19.
    [167]李小芳,丁恩勇,黎国康.一种棒状纳米微晶纤维素的物性研究[J].纤维素科学与技术.2001(02):29-36.
    [168] Nickerson R F, Habrle J A. Cellulose intercrystalline structure[J]. Industrial&Engineering Chemistry.1947,39(11):1507-1512.
    [169]吕秉峰.纤维素蒸汽闪爆改性的表征及化学反应性能研究[D].华北工学院,2002.
    [170] Aminian M K, Taghavinia N, Iraji-Zad A, et al. Highly porous TiO2nanofibres with afractal structure[J]. Nanotechnology.2006,17(2):520.
    [171] Uddin M J, Cesano F, Bonino F, et al. Photoactive TiO2films on cellulose fibres:synthesis and characterization[J]. Journal of Photochemistry and Photobiology A: Chemistry.2007,189(2):286-294.
    [172] Barata M A, Neves M C, Pascoal Neto C, et al. Growth of BiVO4particles in cellulosicfibres by in situ reaction[J]. Dyes and pigments.2005,65(2):125-127.
    [173] Marques P A, Trindade T, Neto C P. Titanium dioxide/cellulose nanocompositesprepared by a controlled hydrolysis method[J]. Composites science and technology.2006,66(7):1038-1044.
    [174] Spurr R A, Myers H. Quantitative analysis of anatase-rutile mixtures with an X-raydiffractometer[J]. Analytical Chemistry.1957,29(5):760-762.
    [175]黎国康,丁恩勇,李小芳.一种纳米微晶纤维素及制法[P].2002-02-06.
    [176]王能,丁恩勇.酸碱处理后纳米微晶纤维素的热行为分析[J].高分子学报.2004(06):925-928.
    [177]薛彬.微纳米纤维素的制备及在纸张涂布中的应用[D].华南理工大学,2012.
    [178] Battista O A. Microcrystal Polymer Science[M]. New York: McGra-Hill BookCompany,1975.
    [179]雒亚洲,鲁永强,王文磊.高压均质机的原理及应用[J].中国乳品工业.2007(10):55-58.
    [180]唐丽荣,黄彪,戴达松,等.纳米纤维素晶体的制备及表征[J].林业科学.2011(09):119-122.
    [181]吴开丽,徐清华,谭丽萍,等.纳米纤维素晶体的制备方法及其在制浆造纸中的应用前景[J].造纸科学与技术.2010(01):55-60.
    [182] Kamburova K, Radeva T. Electro-optics of colloid–polyelectrolyte complexes:Counterion condensation on free and adsorbed sodium carboxymethyl cellulose[J]. Journal ofcolloid and interface science.2007,313(2):398-404.
    [183]李为.若干生物聚合物/无机盐复合物的形貌调控及生长机理研究[D].复旦大学,2010.
    [184]张青红,高濂,郭景坤.四氯化钛水解法制备二氧化钛纳米晶的影响因素[J].无机材料学报.2000(06):992-998.
    [185] Goncalves G, Marques P A, Pinto R J, et al. Surface modification of cellulosic fibres formulti-purpose TiO2based nanocomposites[J]. Composites Science and Technology.2009,69(7):1051-1056.
    [186] Meldrum F C, Coelfen H. Controlling Mineral Morphologies and Structures inBiological and Synthetic Systems[J]. CHEMICAL REVIEWS.2008,108(11):4332-4432.
    [187] Alivisatos A P. Naturally aligned nanocrystals[J]. Science.2000,289(5480):736-737.
    [188] Banfield J F, Welch S A, Zhang H, et al. Aggregation-based crystal growth andmicrostructure development in natural iron oxyhydroxide biomineralization products[J].Science.2000,289(5480):751-754.
    [189]田清华,赵高凌,韩高荣. HPC对二氧化钛薄膜微观结构影响的机理研究[J].无机材料学报.2004(01):147-152.
    [190] Zhuang J, Dai W, Tian Q, et al. Photocatalytic degradation of RhB over TiO2bilayerfilms: effect of defects and their location[J]. Langmuir.2010,26(12):9686-9694.
    [191] Li Y, Fan Y, Chen Y. A novel method for preparation of nanocrystalline rutile TiO2powders by liquid hydrolysis of TiCl4[J]. Journal of Materials Chemistry.2002,12(5):1387-1390.
    [192] Reddy M V, Jose R, Teng T H, et al. Preparation and electrochemical studies ofelectrospun TiO2nanofibers and molten salt method nanoparticles[J]. Electrochimica Acta.2010,55(9):3109-3117.
    [193]冯怡,马天翼,刘蕾,等.无机纳米晶的形貌调控及生长机理研究[J].中国科学(B辑:化学).2009(09):864-886.
    [194] Imai H, Takei Y, Shimizu K, et al. Direct preparation of anatase TiO2nanotubes inporous alumina membranes[J]. J. Mater. Chem.1999,9(12):2971-2972.
    [195] Cui Y, Liu L, Li B, et al. Fabrication of Tunable Core Shell Structured TiO2Mesoporous Microspheres Using Linear Polymer Polyethylene Glycol as Templates[J]. TheJournal of Physical Chemistry C.2010,114(6):2434-2439.
    [196] Li G, Liu C, Liu Y. Facile Fabrication of Hollow Mono‐Dispersed TiO2Spheres in anAqueous Solution[J]. Journal of the American Ceramic Society.2007,90(8):2667-2669.
    [197]陈彰旭,郑炳云,李先学,等.模板法制备纳米材料研究进展[J].化工进展.2010(01):94-99.
    [198]陈颖,黄英,何倩,等.软模板法制备TiO2纳米棒[J].材料开发与应用.2011(04):46-50.
    [199] Zhang R, Khalizov A, Wang L, et al. Nucleation and growth of nanoparticles in theatmosphere[J]. Chemical Reviews-Columbus.2012,112(3):1957.
    [200] Tian G, Chen Y, Zhou W, et al.3D hierarchical flower-like TiO2nanostructure:morphology control and its photocatalytic property[J]. CrystEngComm.2011,13(8):2994-3000.
    [201]王新,贾振斌,魏雨,等.水热合成金红石型TiO2纳米晶及形成机理[J].人工晶体学报.2003(06):622-625.
    [202] Qiao H, Tao D, Wang Y, et al. Electrochemical charge storage of flowerlike rutile TiO2nanorods[J]. Chemical Physics Letters.2010,490(4):180-183.
    [203]李秀艳,杨贤锋,吴明娒.不同介质中水热合成纳米TiO2粉体及其光催化性能研究[J].无机材料学报.2008(06):1253-1258.
    [204]施尔畏,陈之战,元如林,郑燕青.水热结晶学[M].北京:科学出版社,2004.
    [205] Wu J, Song X, Ma L, et al. Hydrothermal growth of multi-facet anatase spheres[J].Journal of Crystal Growth.2011,319(1):57-63.
    [206] Qu Y, Wang W, Jing L, et al. Surface modification of nanocrystalline anatase withCTAB in the acidic condition and its effects on photocatalytic activity and preferential growthof TiO2[J]. Applied Surface Science.2010,257(1):151-156.
    [207] Tanner R E, Liang Y, Altman E I. Structure and chemical reactivity of adsorbedcarboxylic acids on anatase TiO2(001)[J]. Surface science.2002,506(3):251-271.
    [208] Liu M, Piao L, Lu W, et al. Flower-like TiO2nanostructures with exposed {001} facets:Facile synthesis and enhanced photocatalysis[J]. Nanoscale.2010,2(7):1115-1117.
    [209] Peng X, Manna L, Yang W, et al. Shape control of CdSe nanocrystals[J]. Nature.2000,404(6773):59-61.
    [210] Peng Z A, Peng X. Nearly monodisperse and shape-controlled CdSe nanocrystals viaalternative routes: nucleation and growth[J]. Journal of the American Chemical Society.2002,124(13):3343-3353.
    [211]赵旭,王子忱,赵敬哲,等.球形二氧化钛的制备[J].功能材料.2000(03):303-305.
    [212] Guo C, Cao Y, Xie S, et al. Fabrication of mesoporous core-shell structured titaniamicrospheres with hollow interiors[J]. Chemical Communications.2003(6):700-701.
    [213] Liu J, Sun Y, Li Z. Ag loaded flower-like BaTiO3nanotube arrays: Fabrication andenhanced photocatalytic property[J]. CrystEngComm.2012,14(4):1473-1478.
    [214] Sung-Suh H M, Choi J R, Hah H J, et al. Comparison of Ag deposition effects on thephotocatalytic activity of nanoparticulate TiO2under visible and UV light irradiation[J].Journal of Photochemistry and Photobiology A: Chemistry.2004,163(1):37-44.
    [215]彭子飞,汪国忠,张立德,等.用银氨配离子还原法制备纳米银[J].材料研究学报.1997(01):104-106.
    [216] Guo C, Cao Y, Xie S, et al. Fabrication of mesoporous core-shell structured titaniamicrospheres with hollow interiors[J]. Chemical Communications.2003(6):700-701.
    [217] Zhao B, Chen Y. Ag/TiO2sol prepared by a sol-gel method and its photocatalyticactivity[J]. JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS.2011,72(11):1312-1318.
    [218] Su C, Liu L, Zhang M, et al. Fabrication of Ag/TiO2nanoheterostructures with visiblelight photocatalytic function via a solvothermal approach[J]. CrystEngComm.2012,14(11):3989-3999.
    [219] Zhang H, Liang C, Liu J, et al. Defect-Mediated Formation of Ag Cluster-Doped TiO2Nanoparticles for Efficient Photodegradation of Pentachlorophenol[J]. Langmuir.2012,28(8):3938-3944.
    [220]吴其圣,杨琛,胡秀敏,等.环境因素对纳米二氧化钛颗粒在水体中沉降性能的影响[J].环境科学学报.2012(07):1596-1603.
    [221]吴其圣.纳米二氧化钛在水中沉降及其对菲的吸附特性的研究[D].华南理工大学,2012.
    [222]王岩,赵辉,焦淑红.不同形貌银负载TiO2的制备及其光催化性能研究[J].太阳能学报.2010(10):1269-1274.
    [223]周玉.材料分析方法[M].北京:机械工业出版社,2004.
    [224] Carp O, Huisman C L, Reller A. Photoinduced reactivity of titanium dioxide[J].Progress in solid state chemistry.2004,32(1):33-177.
    [225] Yamamoto O, Komatsu M, Sawai J, et al. Effect of lattice constant of zinc oxide onantibacterial characteristics[J]. Journal of materials science: materials in medicine.2004,15(8):847-851.
    [226] Fu X, Clark L A, Yang Q, et al. Enhanced photocatalytic performance of titania-basedbinary metal oxides: TiO2/SiO2and TiO2/ZrO2[J]. Environmental science&technology.1996,30(2):647-653.
    [227] Li J, Zhu Y, Ke R, et al. Improvement of catalytic activity and sulfur-resistance of Ag/TiO2-Al2O3for NO reduction with propene under lean burn conditions[J]. Applied catalysis.B, Environmental.2008,80(3-4):202-213.
    [228] Medina-Valtierra J, Sánchez-Cárdenas M, Frausto-Reyes C, et al. Formation of smoothand rough TiO2thin films on fiberglass by sol-gel method[J]. J. Mex. Chem. Soc.2006,50(1):8-13.
    [229] Lin C, Lee J, Chang C, et al. Novel TiO2thin films/glass fiber photocatalytic reactors inthe removal of bioaerosols[J]. Surface and Coatings Technology.2010,205: S341-S344.
    [230] Verbruggen S W, Ribbens S, Tytgat T, et al. The benefit of glass bead supports forefficient gas phase photocatalysis: Case study of a commercial and a synthesisedphotocatalyst[J]. Chemical Engineering Journal.2011,174(1):318-325.
    [231] Ichiura H, Kitaoka T, Tanaka H. Removal of indoor pollutants under UV irradiation bya composite TiO2–zeolite sheet prepared using a papermaking technique[J]. Chemosphere.2003,50(1):79-83.
    [232] Sánchez B, Coronado J M, Candal R, et al. Preparation of TiO2coatings on PETmonoliths for the photocatalytic elimination of trichloroethylene in the gas phase[J]. AppliedCatalysis B: Environmental.2006,66(3):295-301.
    [233] Gowri S, Almeida L, Amorim T, et al. Polymer nanocomposites for multifunctionalfinishing of textiles-a review[J]. Textile Research Journal.2010,80(13):1290-1306.
    [234]占长林,雷绍民.负载型纳米二氧化钛光催化剂的研究进展[J].
    [235] Kibanova D, Cervini-Silva J, Destaillats H. Efficiency of clay TiO2nanocompositeson the photocatalytic elimination of a model hydrophobic air pollutant[J]. Environmentalscience&technology.2009,43(5):1500-1506.
    [236]徐甦,周明华,张兴旺,等.金属有机物化学气相沉积法制备负载型纳米TiO2光催化剂及性能评价[J].高校化学工程学报.2005(01):119-123.
    [237]李卫东,郭瑞,原小平,等.纳米纤维素接枝PET纤维织物的制备和表征[J].纤维素科学与技术.2006(04):27-30.
    [238] Li W D, Ding E Y. Preparation and characterization of poly (ethylene terephthalate)fabrics treated by blends of cellulose nanocrystals and polyethylene glycol[J]. Journal ofapplied polymer science.2007,105(2):373-378.
    [239] Han K, Yu M. Study of the preparation and properties of UV‐blocking fabrics of aPET/TiO2nanocomposite prepared by in situ polycondensation[J]. Journal of appliedpolymer science.2006,100(2):1588-1593.
    [240]原位生成法合成PET/纳米TiO2复合材料——Ⅱ.复合纤维的结构和性能研究[C].中国北京·秦皇岛:2004.
    [241]王峰,孟祥福,文斌,等.原位生长法制备PET/TiO2纳米杂化纤维及其光催化活性研究[J].科学通报.2010(19):1873-1878.
    [242]韦军,朱亚伟,彭桃芝.涤纶织物的碱减量和功能性整理[J].丝绸.2002,8:17-19.
    [243]任兆杏,丁振峰.低温等离子体技术[J].自然杂志.1996(04):201-208.
    [244]陈平,李虹,王静,等.等离子体技术对高性能有机纤维表面改性的研究[J].纤维复合材料.2008(03):21-26.
    [245] Peng X, Ding E. Low-temperature synthesis of flower-like TiO2nanocrystals[J].MICRO&NANO LETTERS.2011,6(12):998-1001.
    [246] Li L I, Li-Yi S, Shao-Mei C, et al. Pre-PET Graft Modification of Nano-ZrO2and ItsEffect on Mechanical Property of PC Composites[J].东华大学学报(英文版.2009,26(1).
    [247] Vero N, Hribernik S, Andreozzi P, et al. Homogeneous self-cleaning coatings oncellulose materials derived from TIP/TiO2P25[J]. Fibers and Polymers.2009,10(5):716-723.
    [248] Kusabe M, Kozuka H, Abe S, et al. Sol–gel preparation and properties ofhydroxypropylcellulose–titania hybrid thin films[J]. Journal of Sol-Gel Science andTechnology.2007,44(2):111-118.
    [249] González-Benito J, Baselga J, Aznar A J. Microstructural and wettability study ofsurface pretreated glass fibres[J]. Journal of Materials Processing Technology.1999,92:129-134.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700