用户名: 密码: 验证码:
高效亲CO_2开链冠醚螯合剂的分子设计、合成及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
重金属污染的治理和贵重金属的回收,日益成为世界各国关注的焦点问题之一。传统有机溶剂萃取金属离子易造成环境的二次污染。超临界CO2萃取技术环境友好、清洁绿色,在金属离子处理领域具有巨大的应用潜力。但是,超临界CO2不能直接溶解金属离子,需要借助亲CO2的螯合剂才能达到萃取金属离子的目的。大量实验表明,在超临界CO2萃取金属离子中含氟螯合剂的效率最高,但其高应用成本和强生物毒性阻碍了规模化应用。所以,开发设计高效的无氟螯合剂分子成为当前该领域的研究热点,也是该领域研究的挑战。传统设计无氟螯合剂的思路因过度关注螯合剂分子本身对CO2的亲和能力,所得螯合剂分子往往在超临界CO2中的溶解度很高,但是超临界CO2螯合萃取金属离子的效率低下,甚至不能实现萃取。因此,采用新的设计思路非常必要。
     本文采用量子化学和真实溶剂似导体屏蔽模型(COSMO-RS)计算的方法,研究了金属螯合物La(p-二酮)3与CO2分子间的相互作用规律。结果表明,在含氟体系中,具有强吸电子作用-CF3基团能够有效地分散集中在螯合内核上的极性电子,起到了降低金属螯合物极性的作用;同时,C-F键强偶极矩与CO2四极矩之间发生的强偶极-四极矩相互作用,进一步增强了含氟金属螯合物对CO2的亲和性。在此基础上,提出了新的设计思路:当金属离子与螯合剂形成螯合物时,金属离子上的正电荷能够直接并有效分散在整个金属螯合物体系中以避免形成高极性中心,进而降低整个体系的极性;同时借助不参与配位的供体位点与CO2分子之间的特异作用,如路易斯酸(LA)-路易斯碱(LB)相互作用,进一步提高非氟金属螯合物的亲C02能力。据此构建了系列具有开链冠醚结构的有机磷类螯合剂分子,(MeO)(RO)P(O)-Xn-OP(O)(OR)(OMe),其中,Xn为中间桥链:-(OCH2CH2)n-或-(OCH(CH3)CH2)n-,n=2、3、4;R为端基侧链:正辛基、2-乙基己基或含有醚氧单元的长链基。COSMO-RS计算表明,在La(Ⅲ)的螯合物体系中,桥链能够有效分散La3+的正电荷,并且未参与配位的O原子(P-O-C基团)能够促进与CO2分子的作用,从而提高了螯合物分子对CO2的亲和能力。
     采用溶剂催化法制备了此系列螯合剂,其中以POCl3低聚乙二醇或低聚丙二醇、长链醇、甲醇、三乙胺为反应原料、以甲苯为反应溶剂、以1H-四氮唑为催化剂,经过三步反应,粗产物经硅胶柱层析分离提纯(洗脱剂:丙酮/二氯甲烷),螯合剂的最终收率为22-47%。1H-NMR、13C-NMR、APCI-MS和元素分析等表征结果显示螯合剂分子结构正确。
     采用静态浊点法测定了温度(313.15至333.15K)和压力(10至22MPa)范围内,螯合剂在超临界C02中的浊点压力和溶解度。在实验范围内,新螯合剂的摩尔分率溶解度均在10-3数量级,显示螯合剂具有良好的C02亲和能力。半经验Bartle模型对溶解度数据的拟合结果与实验结果能够良好吻合。另外,利用COSMO-RS计算了C02在以-(OCH2CH2)n-为桥链的螯合剂中的亨利常数(KH,298.15K),1/KH的大小顺序能够反映桥链长度对螯合剂溶解度的影响规律,即n越小,螯合剂在scCO2中的溶解度越高,1/KH越大。在此基础上,进一步计算发现,与含O的结构单元相比,含S的结构单元更有利于增强分子对CO2的亲和性;含N的硝基基团比乙酰基基团更有利于提高分子对CO2的亲和能力。这为设计亲CO2的分子提供了新的重要信息。
     采用静态原位萃取的方式,在313K,20MPa条件下,初步考察了利用超临界CO2和新系列螯合剂从滤纸上萃取La3+、Gd3+和yb3+等三种镧系金属离子的效率。结果表明:(1)在不借助有机改性剂或含氟反离子的条件下,螯合剂萃取效率可达80%,与含氟的螯合剂萃取效率具有一定可比性,例如六氟乙酰丙酮(hfa)对La3+的萃取效率为70%(萃取条件:333K,15MPa,5%甲醇,静态与动态萃取耦合方式);(2)桥链单元数量n=3或4的螯合剂萃取效率高于nn=2的螯合剂萃取效率;(3)此外,桥链对螯合剂的萃取选择性具有重要影响,如n=2时,螯合剂对La展现了高萃取选择性,而n=3或4时,螯合剂对镧系中部的Gd有一定选择性。金属螯合物的FT-IR光谱和量子化学计算结果表明,金属离子对螯合剂分子配位前的优势构象扰动越小,两者的亲和性越强,萃取选择性越高。
The control of heavy metal pollution and the recycling of precious metals have increasingly become a hot issue in the world. Supercritical CO2(scCO?) is a promising alternative to the traditional organic solvents in the treatments of metals, due to its green features. However, the CO2-philic chelating ligands are necessary for scCO2extraction of metal ions. Up to now, it has been acknowledged that the fluorinated chelating ligands are quite superior to the non-fluorinated ones. Unfortunately, the high cost and environmental toxicity hampered their large-scale application. As a result, it is highly desirable to develop new efficient non-fluorinated chelating ligands for scCO2, but it is still a challenge job in this field. It could afford CO2-philic ligands by simply attaching CO2-philic non-fluorinated groups to the chelating heads, however, which generally exhibited low scCO2extraction efficiency of metal ions, because of much more emphasis on the CO2affinity of the free ligands in the designing process. Therefore, the new design methodology is quite necessary.
     A deeper insight into the impact of F-based groups on the interactions between the La((3-diketone)3chelates and CO2has been achieved by quantum chemistry and COSMO-RS calculations. It was clearly found that (1) the most negative F atoms can effectively disperse the trapped electrons in the highly polar chelation core, leading to the reduced polarity of the system;(2) the-CF3groups could enthapically enhance the CO2-philicity of metal chelates through the electrostatic interactions between the highly dipolar C-F bonds and the quadrupolar CO2. Subsequently, a new strategy for designing non-fluorinated ligands for scCO2was proposed by the combination of both concepts:(1) The positive charges on the central metal cation could be dispersed among the metal chelate system, avoiding highly-polar center;(2) The non-chelating donors could interact with CO2molecule, e.g. through the specific Lewis Acid (LA)-Lewis base (LB) interactions, energetically enhanced the CO2-philicity of the metal chelate. Accordingly, a series of new neutral organophosphorous open-chain crown ether analogues was designed,(MeO)(RO)P(O)-Xn-OP(O)(OR)(OMe), where the bridging chains X is-(OCH2CH2)n-or-(OCH(CH3)CH2)n-, n=2、3、4; R is the side chain of the phosphoryl group:n-Octyl,2-ethylhexyl and other long chains containing ether oxygen units. The COSMO-RS calculations suggested that the oxygenated bridging chains and the non-chelating O donors (P-O-C groups) in the new La(Ⅲ) chelate systems can provide the two favorable effects above, and subsequently the new ligands can enhance the CO2-philicity of metal chelates.
     The new series of chelating ligands were prepared by a modified method involving the catalyst,1H-tetrazole. POCl3, oligo(ethylene glcol)(or oligo(propylene glycol)), long-chained alcohol, methanol and triethylamine were employed as the reactants and toluene was as the reaction solvent. After three reactions steps, the crude products were separated and purified by silica gel column chromatography (acetone/dichloromethane). The final yields of the yellow oils were22-47%. The molecules were characterized by1H-NMR,13C-NMR, APCI-MS and element analysis.
     The cloud point pressures and solubilities of chelating ligands in SCCO2were determined by a static method at temperatures from (313.15to333.15) K and over a pressure range of (10to22) MPa. The solubilities of ligands were all high in the10-3orders of magnitude. The values calculated by the Bartle semi-empirical model exhibited good agreement with the experimental data. Additionally, the Henry's constants (KH) of CO2in the new chelating ligands as molecule solvents (298.15K) were calculated by COSMO-RS method. The order of the1/KH was the same with that of the number (n) of oxygenated units in the bridging chains of oligo(ethylene glycol), namely that the smaller n was, the bigger1/KH was, the more CO2-philic the ligands were. Based on the results, COSMO-RS calculations were further performed for the linear molecules containing O, N or S atoms. In terms of the enhancement of the CO2-philicity, the S-based groups were more favorable than O-based groups, and the N-based group,-NO2, was more effective than the acetyl group. This was new important information for designing CO2-philic molecules.
     The extractability of the lanthanides (La3+, Gd3+and Yb3+) from the filter paper using scCO2and the new chelating ligands was preliminarily investigated at313K,20MPa by the static in-situ manner. These ligands exhibited high extraction efficiencies (close to80%) even without organic modifiers or fluorinated counter anions, which were much higher than that of tetraethylene glycol, tributyl phosphate and15-crown-5, encouragely, which reached the level of the fluorinated ones, e.g. the extraction efficiency of La3+by hexafluoroacetone (hfa) was70%under the condition:333K,15MPa,5%methanol by the static-dynamic coupling manner. In addition, these ligands showed different selectivities for lanthanide ions, e.g. X=-(OCH2CH2)n-, when n=2, the higher affinity for La3+; when n=3or4, the moderately higher selectivity for Gd3+. The results of quantum chemistry calculations and FT-IR spectroscopy analysis for the metal chelates demonstrated that if the perturbation effect for the pre-organized conformation of ligand caused by the metal ion was weaker, the ligand would present stronger affinity to the corresponding metal ion.
引文
[1]Jessop P. G., Ikariya T., Noyori R. Homogeneous Catalysis in Supercritical Fluids [J]. Chemical Reviews,1999, 99(2):475-494
    [2]Clifford A., Clifford T. Fundamentals of supercritical fluids [M]. Oxford University Press,1999
    [3]Eric G. Derouane G. J. H., Iain H. Stewart. Catalytic reactions at supercritical conditions [J]. Current Topics in Catalysis,1999,2:17-38
    [4]Elshani S., Smart N. G., Lin Y. H., et al. Application of supercritical fluids to the reactive extraction and analysis of toxic heavy metals from environmental matrices-system optimisation [J]. Separation Science and Technology,2001,36(5-6):1197-1210
    [5]Giddings J. C., Myers M. N., King J. W. Dense gas chromatography at pressures 2000 atmospheres [J]. Journal of Chromatographic Science,1969,7(5):276
    [6]Taylor L. T. Supercritical fluid extraction [M]. University of Michigan:Wiley,1996
    [7]Allen D. L., Oliver J. S. The application of supercritical fluid extraction to cocaine and its metabolites in blood and urine [J]. Journal of Analytical Toxicology,2000,24(3):228-232
    [8]Kiran E., Sengers J. M. H. L., Division N. A. T. O. S. A. Supercritical fluids:fundamentals for application [M]. Kluwer Academic Publishers,1994
    [9]McHugh M. A., Krukonis V. J. Supercritical fluid extraction:principles and practice [M]. Butterworth-Heinemann,1994
    [10]Beckman E. J. Supercritical and near-critical CO2 in green chemical synthesis and processing [J]. Journal of Supercritical Fluids.2004,28(2-3):121-191
    [11]Herrero M., Mendiola J. A., Cifuentes A., et al. Supercritical fluid extraction:Recent advances and applications [J]. Journal of Chromatography A,2010,1217(16):2495-2511
    [12]Laintz K. E., Wai C. M., Yonker C. R., et al. Extraction of metal-ions from liquid and solid materials by supercritical carbon-dioxide [J]. Analytical Chemistry.1992,64(22):2875-2878
    [13]Wai C. M., Wang S. F. Supercritical fluid extraction:metals as complexes [J]. Journal of Chromatography A, 1997,785(1-2):369-383
    [14]Wai C. M., Wang S. F., Yu J. J. Solubility parameters and solubilities of metal dithiocarbamates in supercritical carbon dioxide [J]. Analytical Chemistry,1996,68(19):3516-3519
    [15]Lagalante A. F., Hansen B. N., Bruno T. J., et al. Solubilities of Copper(Ⅱ) and Chromium (Ⅲ) beta-biketones in supercritical carbon dioxide [J]. Inorganic Chemistry,1995,34(23):5781-5785
    [16]Yang H. J. Nonfluorous, highly CO2-soluble chelating ligands for scCO2 metal ion extraction [J]. Chemistry Letters,2006,35(9):1000-1001
    [17]Smart N. G., Carleson T. E., Elshani S., et al. Dioxide containing organophosphorus reagents [J]. Industrial & Engineering Chemistry Research,1997,36(5):1819-1826
    [18]Meguro Y., Iso S., Sasaki T., et al. Solubility of organophosphorus metal extractants in supercritical carbon dioxide [J]. Analytical Chemistry,1998,70(4):774-779
    [19]McAlister D. R., Dietz M. L., Stepinski D., et al. Application of molecular connectivity indices to the design of supercritical carbon dioxide-soluble metal ion extractants:SC-CO2 solubilities of symmetrically substituted alkylenediphosphonic acids [J]. Separation Science and Technology,2004,39(4):761-780
    [20]Powell K. R., McCleskey T. M., Tumas W., et al. Polymers with multiple ligand sites for metal extractions in dense-phase carbon dioxide [J]. Industrial & Engineering Chemistry Research,2001,40(5):1301-1305
    [21]Wang S. F., Elshani S., Wai C. M. Selective extraction of mercury with ionizable crown-ethers in supercritical carbon-dioxide [J]. Analytical Chemistry,1995,67(5):919-923
    [22]Mochizuki S., Wada N., Smith R. L., et al. Perfluorocarboxylic acid counter ion enhanced extraction of aqueous alkali metal ions with supercritical carbon dioxide [J]. Analyst,1999,124(10):1507-1511
    [23]Glennon J. D., Hutchinson S., Harris S. J., et al. Molecular baskets in supercritical CO2 [J]. Analytical Chemistry,1997,69(11):2207-2212
    [24]Glennon J. D., Treacy J., O'Keeffe A. M., et al. Extracting gold in supercritical CO2:Fluorinated molecular baskets and thiourea ligands for Au [J]. Supercritical Carbon Dioxide:Separations and Processes,2003,860:67-79
    [25]Mochizuki S., Smith R. L., Inomata H. Quantitative extraction of aqueous alkali metal ions using supercritical carbon dioxide and polyethylene glycol ligands [J]. Chemical Communications,2000,15:1381-1382
    [26]Yang H. J., Wang W. Solubility comparison of bis(2-hydroxyethyl) ether and tetraethylene glycol before and after end-group modification by ethyl oxalyl chloride in supercritical carbon dioxide [J]. Journal of Chemical and Engineering Data.2010,55(6):2279-2283
    [27]Morley K. S., Marr P. C., Webb P. B., et al. Clean preparation of nanoparticulate metals in porous supports:a supercritical route [J]. Journal of Materials Chemistry,2002,12(6):1898-1905
    [28]Koh M., Yoo J., Park Y., et al. Supercritical CO2 extraction of uranium(VI) from HNO3 solution using N, N, N', N'-tetrabutyl-3-oxapentanediamide [J]. Industrial & Engineering Chemistry Research,2006,45(15):5308-5313
    [29]Yang H. J., Tian J., Kim H. New highly CO2-philic diglycolic acid esters:synthesis and solubility in supercritical carbon dioxide [J]. Journal of Chemical and Engineering Data,2010,55(10):4130-4139
    [30]Dunbar A., Omiatek D. M., Thai S. D., et al. Use of substituted bis(acetylacetone) ethylenediimine and dialkyldithiocarbamate ligands for copper chelation in supercritical carbon dioxide [J]. Industrial & Engineering Chemistry Research,2006,45(26):8779-8787
    [31]Yazdi A. V., Beckman E. J. Design, synthesis, and evaluation of novel, highly CO2-soluble chelating agents for removal of metals [J]. Industrial & Engineering Chemistry Research,1996,35(10):3644-3652
    [32]Beckman E. J., Russell A. J. Further extractions of metals in carbon dioxide and chelating agents therefor [P]. US5872257A,1999
    [33]Li J., Beckman E. J. Affinity extraction into CO2.2. Extraction of heavy metals into CO2 low-pH aqueous solutions [J]. Industrial & Engineering Chemistry Research,1998,37(12):4768-4773
    [34]Powell C. J., Beckman E. J. Design of ligands for the extraction of PtCl62-in introduction to liquid CO2 [J]. Industrial & Engineering Chemistry Research,2001,40(13):2897-2903
    [35]Glennon J. D., Hutchinson S., Walker A., et al. New fluorinated hydroxamic acid reagents for the extraction of metal ions with supercritical CO2 [J]. Journal of Chromatography A,1997,770(1-2):85-91
    [36]McSweeney C. C., Hutchinson S., Harris S., et al. Supercritical fluid chromatography and extraction of Fe(Ⅲ) with hydroxamic acids [J]. Analytica Chimica Acta.1997,346(1):93-99
    [37]Shamsipur M., Ghiasvand A. R., Yamini Y. Solubilities of chelating ligands dibenzoylmethane, 1,10-phenanthroline, and 8-hydroxyquinoline in supercritical carbon dioxide [J]. Journal of Chemical and Engineering Data,2004,49(5):1483-1486
    [38]Chang F., Park S., Kim H. Highly CO2-soluble 5-amido-8-hydroxyquinoline chelating agents for extraction of metals in Sc-CO2 [J]. Bulletin of the Korean Chemical Society,2008,29(7):1327-1331
    [39]Chang F., Kim H., Joo B., et al. Novel CO2-soluble pyridine derivatives and the extraction of heavy metals into Sc-CO2 [J]. Journal of Supercritical Fluids,2008,45(1):43-50
    [40]Chang F., Kim H., Kwon Y. Solubility of novel CO2-soluble pyridine derivatives in supercritical carbon dioxide [J]. Journal of Chemical and Engineering Data,2009,54(4):1262-1265
    [41]Wang W., Yang H. J., Hua J. C., et al. Extraction of metal ions with non-fluorous bipyridine derivatives as chelating ligands in supercritical carbon dioxide [J]. The Journal of Supercritical Fluids,2009,51(2):181-187
    [42]Yang H. J., Kim H., Guo C. Y. Metal ion extraction with bipyridine derivatives as chelating ligands in supercritical carbon dioxide [J]. Clean-Soil Air Water,2010,38(2):159-166
    [43]Bai Y, Yang H. J. Metal ion extraction using newly-synthesized bipyridine derivative as a chelating reagent in supercritical CO2 [J]. Analytical Sciences,2006,22(11):1469-1471
    [44]Bai Y., Yang H. J., Quan C, et al. Solubilities of 2,2'-bipyridine and 4,4'-dimethyl-2,2'-bipyridine in supercritical carbon dioxide [J]. Journal of Chemical and Engineering Data,2007,52(5):2074-2076
    [45]Wai C. M., Waller B. Dissolution of metal species in supercritical fluids-Principles and applications [J]. Industrial & Engineering Chemistry Research,2000,39(12):4837-4841
    [46]Campbell M. L., Apodaca D. L., Yates M. Z., et al. Metal extraction from heterogeneous surfaces using carbon dioxide microemulsions [J]. Langmuir,2001,17(18):5458-5463
    [47]Yates M. Z., Apodaca D. L., Campbell M. L., et al. Metal extractions using water in carbon dioxide microemulsions [J]. Chemical Communications,2001,1:25-26
    [48]Stallone K. B., Bonner F. J. A low cost environmentally benign CO2 based hydrometallurgical process [J]. Green Chemistry,2004,6(6):267-270
    [49]Laintz K. E., Yu J. J., Wai C. M. Separation of metal-ions with sodium bis(trifluoroethyl)dithiocarbamate chelation and supercritical fluid chromatography [J]. Analytical Chemistry.1992,64(3):311-315
    [50]Mekki S., Wai C. M., Billard I., et al. Cu(II) extraction by supercritical fluid carbon dioxide from a room temperature ionic liquid using fluorinated beta-diketones [J]. Green Chemistry,2005,7(6):421-423
    [51]Mekkii S., Wai C. M., Billard I., et al. Extraction of lanthanides from aqueous solution by using room-temperature ionic liquid and supercritical carbon dioxide in conjunction [J]. Chemistry-a European Journal, 2006,12(6):1760-1766
    [52]Wai C. M., Liao Y. J., Liao W. S., et al. Uranium dioxide in ionic liquid with a tri-n-butylphosphate-HNO3 complex-dissolution and coordination environment [J]. Dalton Transactions,2011,40(18):5039-5045
    [53]Laintz K. E., Tachikawa E. Extraction of lanthanides from acidic solution using tributyl-phosphate modified supercritical carbon-dioxide [J]. Analytical Chemistry.1994,66(13):2190-2193
    [54]Lin Y. H., Wai C. M. Supercritical-fluid extraction of lanthanides with fluorinated beta-diketones and tributyl-phosphate [J]. Analytical Chemistry.1994,66(13):1971-1975
    [55]Wang J., Marshall W. D. Recovery of metals from aqueous-media by extraction with supercritical carbon-dioxide [M]. Analytical Chemistry.1994,66(10):1658-1663
    [56]Dehghani F., Wells T., Cotton N. J., et al. Extraction and separation of lanthanides using dense gas CO2 modified with tributyl phosphate and di(2-ethylhexyl)phosphoric acid [J]. The Journal of Supercritical Fluids, 1996,9(4):263-272
    [57]Wai C. M., Wang S. F., Liu Y, et al. Evaluation of dithiocarbamates and beta-diketones as chelating agents in supercritical fluid extraction of Cd,Pb, and Hg from solid samples [J]. Talanta,1996,43(12):2083-2091
    [58]Wang S. F., Wai C. M. Supercritical fluid extraction of bioaccumulated mercury from aquatic plants [J]. Environmental Science & Technology,1996,30(10):3111-3114
    [59]Murphy J. M., Erkey C. Thermodynamics of extraction of copper(II) from aqueous solutions by chelation in supercritical carbon dioxide [J]. Environmental Science & Technology,1997,31(6):1674-1679
    [60]Ozel M. Z., Burford M. D., Clifford A. A., et al. Supercritical fluid extraction of cobalt with fluorinated and non-fluorinated beta-diketones [J]. Analytica Chimica Acta,1997,346(1):73-80
    [61]Laintz K. E., Hale C. D., Stark P., et al. A comparison of liquid and supercritical carbon dioxide as an extraction solvent for plating bath treatment [J]. Analytical Chemistry,1998,70(2):400-404
    [62]Cui Z. J., Liu J. C., Gao L. C., et al. Study on a new method of extraction of metal ions from solid matrices by supercritical fluid [J]. Chinese Chemical Letters,1999,10(6):525-528
    [63]Joung S. N., Yoon S. J., Kim S. Y., et al. Extraction of lanthanide ions from aqueous solution by modified supercritical CO2:tri-n-butylphosphate plus CO2 and bis-2-ethylhexyl phosphoric acid plus CO2 [J]. The Journal of Supercritical Fluids,2000,18(2):157-166
    [64]Kersch C., van Roosmalen M. J. E., Woerlee G. F., et al. Extraction of heavy metals from fly ash and sand with ligands and supercritical carbon dioxide [J]. Industrial & Engineering Chemistry Research,2000,39(12): 4670-4672
    [65]Tai C. Y., You G. S., Chen S. L. Kinetics study on supercritical fluid extraction of zinc(Ⅱ) ion from aqueous solutions [J]. Journal of Supercritical Fluids,2000,18(3):201-212
    [66]Takeshita Y., Sato Y., Nishi S. Study of extraction of metals from CCA-treated wood with supercritical CO2 containing acetylacetone:Extraction of Cu by continuous addition of acetylacetone [J]. Industrial & Engineering Chemistry Research,2000,39(12):4496-4499
    [67]Tomioka O., Enokida Y., Yamamoto I., et al. Cleaning of materials contaminated with metal oxides through supercritical fluid extraction with CO2 containing TBP [J]. Progress in Nuclear Energy,2000,37(1-4):417-422
    [68]Cui H. Y, Wang T., Shen Z. Y. Removal of trace heavy metals from a natural medicine material by supercritical CO2 chelating extraction [J]. Industrial & Engineering Chemistry Research,2001,40(16):3659-3663
    [69]Lin Y. H., Wu H., Smart N. G., et al. Studies on in-situ chelation/supercritical fluid extraction of lanthanides and actinides using a radiotracer technique [J]. Separation Science and Technology,2001,36(5-6):1149-1162
    [70]Liu J. C., Wang W., Li G. Z. A new strategy for supercritical fluid extraction of copper ions [J]. Talanta,2001, 53(6):1149-1154
    [71]Shamsipur M., Ghiasvand A. R., Yamini Y. Extraction of uranium from solid matrices using modified supercritical fluid CO2 [J]. Journal of Supercritical Fluids,2001,20(2):163-169
    [72]Sun Y. C., Chung Y. T., Mierzwa J. Study of matrix influence on supercritical fluid extraction of polar mercury species from solid samples [J]. Analyst,2001,126(10):1694-1699
    [73]Wang T., Ma J. F., Shen Z. Y. Modifier effect on extraction of mercury with sodium diethyldithiocarbamate in supercritical carbon dioxide [J]. Separation Science and Technology,2001,36(14):3267-3275
    [74]Yu J. J., Chiu K. H., Wang S. F. Extraction of leachable metals from soil with supercritical carbon dioxide [J]. Journal of the Chinese Institute of Chemical Engineers,2001,32(3):263-268
    [75]Kersch C., van der Kraan M., Woerlee G. F., et al. Municipal waste incinerator fly ash:supercritical fluid extraction of metals [J]. Journal of Chemical Technology and Biotechnology,2002,77(3):256-259
    [76]Liu J. C., Wang W., Wang Z. W., et al. Complex ation-supercritical carbon dioxide extraction of copper ions from solid matrices with thenoyltrifluoroacetone and modifiers [J]. Separation Science and Technology,2002, 37(11):2691-2700
    [77]Thurbide K., Al-Jabari M., Kowalchuk M. Extraction of transition metals from wood pulp fibers using supercritical carbon dioxide [J]. Chemical Engineering Communications,2002,189(5):675-683
    [78]Tomioka O., Enokida Y, Yamamoto I. Selective recovery of neodymium from oxides by direct extraction method with supercritical CO2 containing TBP-HNO3 complex [J]. Separation Science and Technology,2002, 37(5):1153-1162
    [79]Andersen W. C., Bruno T. J. Application of a gas-liquid entraining rotor to supercritical fluid extraction-removal of iron(Ⅲ) from water [J]. Analytica Chimica Acta,2003,485(1):1-8
    [80]Foy G. P., Pacey G. E. Supercritical fluid extraction of mercury species [J]. Talanta,2003,61(6):849-853
    [81]Hanrahan J. P., Ziegler K, J., Glennon J. D., et al. pH switching for the selective extraction of metal ions into supercritical CO2 [J]. Langmuir,2003,19(8):3145-3150
    [82]Lin Y. H., Liu C. X., Wu H., et al. Supercritical fluid extraction of toxic heavy metals and uranium from acidic solutions with sulfur-containing organophosphorus reagents [J]. Industrial & Engineering Chemistry Research, 2003,42(7):1400-1405
    [83]Wang T., Guan Y. F. Removal of arsenic in the form of anions from solid matrices by supercritical CO2 extraction with ion-pairing [J]. Separation and Purification Technology,2003,31 (2):225-230
    [84]Al-Jabari M. Dynamics of chelation-supercritical fluid extraction from wood fibers [J]. Journal of Separation Science,2004,27(9):686-690
    [85]Cui Z. J., Zhang G. Y., Song W., et al. Supercritical fluid extraction of metal ions from a solid matrix with 8-hydroxyquinoline and carbon dioxide [J]. Journal of Liquid Chromatography & Related Technologies,2004, 27(6):985-994
    [86]Kersch C., Woerlee G. F., Witkamp G. J. Supercritical fluid extraction of heavy metals from fly ash [J]. Industrial & Engineering Chemistry Research,2004,43(1):190-196
    [87]Pourmortazavi S. M., Hajimirsadeghi S. S., Kohsari I., et al. Orthogonal array design for the optimization of supercritical carbon dioxide extraction of different metals from a solid matrix with cyanex 301 as a ligand [J]. Journal of Chemical and Engineering Data,2004,49(6):1530-1534
    [88]Tai C. Y, You G. S. Fractionation of metal ions from water using supercritical carbon dioxide [J]. Aiche Journal,2004,50(7):1627-1630
    [89]Wang J. S., Koh M., Wai C. M. Nuclear laundry using supercritical fluid solutions [J]. Industrial & Engineering Chemistry Research,2004,43(7):1580-1585
    [90]Dang Z., Zhu Z. X., Wen Z., et al. Supercritical CO2 complexing extraction of heavy metals from pogostemon cablin benth [J]. Huanan Ligong Daxue Xuebao, Ziran Kexueban,2005,33(6):59-62
    [91]Du S. Y, Zhang G. Y, Cui Z. J. Supercritical fluid extraction of hazardous metals from urban total suspended particles [J]. Journal of Liquid Chromatography & Related Technologies,2005,28(10):1487-1495
    [92]Koh M. S., Park K. H., Yang D. H., et al. The synergistic effect of organophosphorus and dithiocarbamate ligands on metal extraction in supercritical CO2 [J]. Bulletin of the Korean Chemical Society,2005,26(3):423-427
    [93]Li Q., Liang C., Wu T., et al. Removing heavy metals from Chinese medicines [J]. Huaxue Tongbao,2005, 68(11):845-849
    [94]Liang C., Huang S., Li Q. Progress of supercritical CO2 chelating extraction of heavy metals from Chinese traditional medicines [J]. Huagong Jinzhan,2005,24(6):607-611
    [95]Shimizu R., Sawada K., Enokida Y., et al. Supercritical fluid extraction of rare earth elements from luminescent material in waste fluorescent lamps [J]. Journal of Supercritical Fluids,2005,33(3):235-241
    [96]Wang J. S. F., Wai C. M. Dissolution of precious metals in supercritical carbon dioxide [J]. Industrial & Engineering Chemistry Research,2005,44(4):922-926
    [97]Wang T., Guan Y. F. Extraction of arsenic-containing anions by supercritical CO2 with ion-pairing [J]. Chemical Engineering Journal,2005,108(1-2):145-153
    [98]Dung L. T. K., Imai T., Tomioka O., et al. Extraction of uranium from simulated ore by the supercritical carbon dioxide fluid extraction method with nitric acid-TBP complex [J]. Analytical Sciences,2006,22(11): 1425-1430
    [99]Sawada K., Enokida Y., Yamamoto 1. Extractability of metals in municipal solid wastes fly ash using supercritical CO2 containing Cyanex 302 [J]. Analytical Sciences,2006,22(11):1465-1467
    [100]Shimada T., Ogumo S., Sawada K., et al. Selective extraction of uranium from a mixture of metal or metal oxides by a tri-n-butylphosphate complex with HNO2 and H2O in supercritical CO2 [J]. Analytical Sciences.2006, 22(11):1387-1391
    [101]Wang J. S. F., Chiu K. H. Mass balance of metal species in supercritical fluid extraction using sodium diethyldithiocarbamate and dibutylammonium dibutyldithiocarbamate [J]. Analytical Sciences,2006,22(3): 363-369
    [102]Iwai Y., Okamoto N., Ohta S., et al. Extraction of iron and calcium from low rank coal by supercritical carbon dioxide with entrainers [J]. Journal of Supercritical Fluids,2007,40(2):227-231
    [103]Iwao S., El-Fatah S. A., Furukawa K., et al. Recovery of palladium from spent catalyst with supercritical CO2 and chelating agent [J]. Journal of Supercritical Fluids,2007,42(2):200-204
    [104]Wang J. S., Chiu K. H. Extraction of chromium(Ⅲ) and Chromium(VI) species from solid matrices using green solvent supercritical carbon dioxide [J]. Analytical Sciences.2007,23(11):1337-1341
    [105]Wang J. S. F., Wai C. M. Transporting metal ions using reverse micelles in alcohol modified supercritical carbon dioxide [J]. Journal of Supercritical Fluids,2007,40(2):176-182
    [106]Chou W. L., Wang C. T., Yang K. C., et al. Removal of gallium (III) ions from acidic aqueous solution by supercritical carbon dioxide extraction in the green separation process [J]. Journal of Hazardous Materials,2008, 160(1):6-12
    [107]Chou W. L., Yang K. C. Effect of various chelating agents on supercritical carbon dioxide extraction of indium(III) ions from acidic aqueous solution [J]. Journal of Hazardous Materials,2008,154(1-3):498-505
    [108]Faisal M., Atsuta Y., Daimon H., et al. Recovery of precious metals from spent automobile catalytic converters using supercritical carbon dioxide [J]. Asia-Pacific Journal of Chemical Engineering,2008,3(4): 364-367
    [109]Koh M., Yoo J., Ju M., et al. Surface decontamination of radioactive metal wastes using acid-in-supercritical CO2 emulsions [J]. Industrial,& Engineering Chemistry Research,2008,47(2):278-283
    [110]Kumar P., Pal A., Saxena M. K., et al. Supercritical fluid extraction of uranium and thorium from solid matrices [J]. Desalination,2008,232(1-3):71-79
    [111]Vincent T., Mukhopadhay M., Wattal P. K. Supercritical direct extraction of neodymium using TTA and TBP [J]. Desalination,2008,232(1-3):91-101
    [112]Wang J. S., Chiu K. Extraction of chromated copper arsenate from wood wastes using green solvent supercritical carbon dioxide [J]. Journal of Hazardous Materials,2008,158(2-3):384-391
    [113]Wang T., Debelak K. A., Roth J. A. Extraction of magnesium and copper using a surfactant and water in supercritical carbon dioxide [J]. Journal of Supercritical Fluids,2008,47(1):25-30
    [114]Yamini Y., Saleh A., Khajeh M. Orthogonal array design for the optimization of supercritical carbon dioxide extraction of platinum(IV) and rhenium(VII) from a solid matrix using cyanex 301 [J]. Separation and Purification Technology,2008,61(1):109-114
    [115]Vincent T., Mukhopadhyay M., Wattal P. K. Direct in situ supercritical fluid extraction of neodymium ion from its oxide using thenoyl tri fluoro acetone-tri butyl phosphate-methanol in carbon dioxide [J]. Journal of Supercritical Fluids,2009,48(3):230-237
    [116]Wang J. S., Chiu K. Metal extraction from solid matrices using a two-surfactant microemulsion in neat supercritical carbon dioxide [J]. Microchimica Acta,2009,167(1-2):61-65
    [117]Wang J. S., Sheaff C. N., Yoon B., et al. Extraction of uranium from aqueous solutions by using ionic liquid and supercritical carbon dioxide in conjunction [J]. Chemistry-A European Journal,2009,15(17):4458-4463
    [118]Matsuyama K. Method for recovery of catalyst metals from fuel cells by supercritical fluid treatment [P]. JP2010240542A,2010
    [119]Rao A., Kumar P., Ramakumar K. L. Supercritical carbon dioxide extraction of uranium from acidic medium employing crown ethers [J]. Radiochimica Acta,2010,98(7):403-412
    [120]Tian J., Yang H. J., Wang W., et al. Metal ions extraction from solid matrix in supercritical carbon dioxide with dmbp as chelating ligand [J]. Clean-Soil Air Water,2010,38(5-6):543-547
    [121]Cheng Y, Xue J., Wang J.-m., et al. Research on application of heavy metal removal methods in traditional Chinese medicine [J]. Anhui Nongye Kexue,2011,39(9):5340-5342
    [122]Nejad S. J., Abolghasemi H., Moosavian M. A., et al. Fractional factorial design for the optimization of supercritical carbon dioxide extraction of La3+, Ce3+ and Sm3+ ions from a solid matrix using bis(2,4,4-trimethylpentyl)dithiophosphinic acid plus tributylphosphate [J]. Chemical Engineering Research & Design,2011,89(6A):827-835
    [123]Park I. B., Song I. S., Kim G. H., et al. Simultaneous removal method of petroleum and heavy metals from contaminated soil [P].KR2011092171A,2011
    [124]Wang T., Jin G., Wen C., et al. Method for removing residual heavy metals from rice by supercritical extraction [P]. CN102132799A,2011
    [125]Yu H. Q., Zhang Y., Wu B., et al. Extraction of heavy metals from solid material by supercritical co2 [J]. Chemical Research in Chinese Universities.2011,27(5):850-853
    [126]Roeder J. F., Baum T. H., Healy M., et al. Supercritical fluid-based cleaning compositions and methods [P]. US20040224865A 1,2004
    [127]Tom G. M., Korzenski M. B., Ghenciu E. G., et al. Treatment of supercritical fluid utilized in semiconductor manufacturing applications [P]. US6735978B1,2004
    [128]Wang C.-Y., Tseng J., Lo H. Method for improving low-k dielectrics by supercritical fluid treatments [P]. US20060073697A 1,2006
    [129]Zhang G, Wang H., Yin F., et al. Supercritical separation method and system for treating waste printed circuit board [P]. CN1818100A,2006
    [130]Wagner M. I. Compositions and methods for forming and depositing metal films on semiconductor substrates using supercritical solvents [P]. US20080213999A1,2008
    [131]Baker R. J., Ogilvie H. V. Cleaning method [P]. WO2009109754A1,2009
    [132]Murakami Y. Printed circuit boards and fabrication of printed circuit boards by impregnation of metal complex compounds in supercritical CO2 solution [P]. JP4209459B2,2009
    [133]Zhang X., Wang X., Meng X., et al. Method for recycling noble metal from spent noble metal catalyst by chelation and supercritical extraction [P]. CN101760627A,2010
    [134]Wang J., Hu X., Wang J., et al. Process for extracting and purifying bioactive calcium nervonate and application of calcium nervonate in medicinal composition for treatment of Alzheimer disease [P]. CN101991564A,2011
    [135]Yamagata M. Method for materials with metal-impregnated surfaces [P]. JP2011038161A,2011
    [136]O'Neil A., Watkins J. J. Reactive Deposition of Conformal Metal Oxide Films from Supercritical Carbon Dioxide [J]. Chemistry of Materials,2007,19(23):5460-5466
    [137]Rahman M. M., Sone M., Uchiyama H., et al. Novel porous film by electroplating with an emulsion of supercritical CO2 [J]. Surface & coatings technology,2007,201(16-17):7513-7518
    [138]Smith C. E., Mueller D. W., Matz P. D., et al. Effect of low-k surface roughness on subsequent metal layers [C]. Advanced Metallization Conference, Tokyo, Japan,2006
    [139]Zhang C., Yin J., Hu D., et al. Supercritical cleaning method for MEMS, semiconductor and precision machinery [J]. Qingxi Shijie,2007,23(5):34-41
    [140]Zhang X., Johnston K. P. Supercritical CO2-based solvents in next generation microelectronics processing [J]. Chinese Science Bulletin,2007,52(1):27-33
    [141]Kondoh E., Matsubara M. Deposition of Cu thin films in supercritical fluids and its application to metallization/interconnect formation of semiconductor devices [J]. Journal of the Vacuum Society of Japan,2009, 52(10):544-549
    [142]Belmas M., Tabata I., Hisada K... et al. Application of dithiol compounds in supercritical carbon dioxide to improve the adhesive properties of copper-plated p-aramid fibers [J]. Sen'i Gakkaishi,2010,66(10):229-235
    [143]Darr J. A., Poliakoff M. New directions in inorganic and metal-organic coordination chemistry in supercritical fluids [J]. Chemical Reviews,1999,99(2):495-541
    [144]Erkey C. Supercritical carbon dioxide extraction of metals from aqueous solutions:a review [J]. Journal of Supercritical Fluids,2000,17(3):259-287
    [145]Wang J. S. F., Wai C. M. Supercritical fluid extraction of metal ions-Applications in environmental analysis [J]. Chinese Journal of Analytical Chemistry,2004,32(8):1110-1115
    [146]McAlister D. R. Aggregation, solvent extraction, metal complexation and supercritical carbon dioxide solubility properties of symmetrically-substituted alkylenediphosphonic acids [D]. PhD dissertation, Loyola University Chicago,2002
    [147]Burford M. D., Ozel M. Z., Clifford A. A., et al. Extraction and recovery of metals using a supercritical fluid with chelating agents [J]. Analyst,1999,124(4):609-614
    [148]Ashraf-Khorassani M., Taylor L. T. Supercritical fluid extraction of mercury(II) ion via in situ chelation and pre-formed mercury complexes from different matrices [J]. Analytica Chimica Acta,1999,379(1-2):1-9
    [149]Ohashi A., Hoshino H., Imura H., et al. Association of tris(pentane-2,4-dionato)chromium(Ⅲ) with modifiers of hydrogen-bond donors in supercritical carbon dioxide [J]. Analytical Sciences,2006,22(11): 1399-1401
    [150]Ohashi A., Ohashi K. Supercritical carbon dioxide extraction of metal ions from aqueous solutions:A review of recent studies [J]. Solvent Extraction Research and Development-Japan,2008,15:11-20
    [151]Wai C. M., Kulyako Y., Yak H. K., et al. Selective extraction of strontium with supercritical fluid carbon dioxide [J]. Chemical Communications,1999,24:2533-2534
    [152]Andersen W. C., Sievers R. E., Lagalante A. F., et al. Solubilities of cerium(IV), terbium(Ⅲ), and iron(Ⅲ) ss-diketonates in supercritical carbon dioxide [J]. Journal of Chemical and Engineering Data,2001,46(5): 1045-1049
    [153]Andersen W. C., Noll B. C., Sellers S. P., et al. Characterization and structures of the 2,2,7-trimethyl-3,5-octanedionate chelates of cerium(IV) and terbium(III) [J]. Inorganica Chimica Acta,2002, 336(28):105-110
    [154]Aschenbrenner O., Kemper S., Dahmen N., et al. Solubility of beta-diketonates, cyclopentadienyls, and cyclooctadiene complexes with various metals in supercritical carbon dioxide [J]. Journal of Supercritical Fluids, 2007,41(2):179-186
    [155]Haruki M., Kishimoto K., Kobayashi F., et al. A new correlation and prediction method for the solubility of metal complexes in supercritical carbon dioxide using regular solution theory with the COSMO-RS method [J]. Journal Of Chemical Engineering Of Japan,2009,42(5):309-318
    [156]Haruki M., Kobayashi F., Kishimoto K., et al. Measurement of the solubility of metal complexes in supercritical carbon dioxide using a UV-vis spectrometer [J]. Fluid Phase Equilibria.2009,280(1-2):49-55
    [157]Haruki M., Kobayashi F., Okamoto M., et al. Solubility of beta-diketonate complexes for cobalt(Ⅲ) and chromium(Ⅲ) in supercritical carbon dioxide [J]. Fluid Phase Equilibria,2010,297(2):155-161
    [158]Haruki M., Kobayashi F., Kihara S., et al. Solubility of beta-diketonate complexes of Copper(Ⅱ) and Cobalt(Ⅱ) in supercritical carbon dioxide [J]. Journal of Chemical and Engineering Data,2011,56(5):2230-2235
    [159]Haruki M., Kobayashi F., Kihara S. I., et al. Effect of the chemical structures of iron complexes on the solubilities in supercritical carbon dioxide [J]. Fluid Phase Equilibria,2011,308(1-2):1-7
    [160]Laintz K. E., Wai C. M., Yonker C. R., et al. Solubility of fluorinated metal diethyldithiocarbamates in Supercritical carbon dioxide [J]. Journal of Supercritical Fluids,1991,4(3):194-198
    [161]Cross W., Akgerman A., Erkey C. Determination of metal-chelate complex solubilities in supercritical carbon dioxide [J]. Industrial & Engineering Chemistry Research,1996,35(5):1765-1770
    [162]Wai C. M., Lin Y. H., Brauer R., et al. Supercritical-fluid extraction of organic and inorganic mercury from solid materials [J]. Talanta,1993,40(9):1325-1330
    [163]Weinstein R. D., Grotzinger L. L., Salemo P., et al. Solubility of several short-chain lithium dialkyldithiocarbamates in liquid and supercritical carbon dioxide [J]. Journal of Chemical and Engineering Data, 2005,50(6):2088-2093
    [164]Ozel M. Z., Bartle K. D., Clifford A. A., et al. Extraction, solubility and stability of metal complexes using stainless steel supercritical fluid extraction system [J]. Analytica Chimica Acta,2000,417(2):177-184
    [165]Saito N., Ikushima Y, Goto T. Liquid solid extraction of acetylacetone chelates with supercritical carbon-dioxide [J]. Bulletin of the Chemical Society of Japan,1990,63(5):1532-1534
    [166]AshrafKhorassani M., Combs M. T., Taylor L. T. Solubility of metal chelates and their extraction from an aqueous environment via supercritical CO2 [J]. Talanta,1997,44(5):755-763
    [167]Stroich C. M. The development of a novel technique to measure in-situ solubilities in supercritical carbon dioxide [D]. Master dissertation, University of Alberta,2001
    [168]Guigard S. E. Solubilities in Supercritical Fluids [D]. PhD dissertation, University of Guelph,1999
    [169]M'Hamdi R., Bocquet J. F., Chhor K., et al. Solubility and decomposition studies on metal chelates in supercritical fluids for ceramic precursor powders synthesis [J]. Journal of Supercritical Fluids,1992,5(1):55-59
    [170]Roggeman E. J., Scurto A. M., Brennecke J. F. Spectroscopy, solubility, and modeling of cosolvent effects on metal chelate complexes in supercritical carbon dioxide solutions [J]. Industrial & Engineering Chemistry Research,2001,40(3):980-989
    [171]Yoda S., Mizuno Y., Furuya T., et al. Solubility measurements of noble metal acetylacetonates in supercritical carbon dioxide by high performance liquid chromatography (HPLC) [J]. Journal of Supercritical Fluids,2008,44(2):139-147
    [172]Tsukahara T., Kachi Y., Kayaki Y., et al. Spectrophotometric study on solubility Of UO2(beta-diketonato)2dmso complexes (beta-diketonate=acetylacetonate, trifluoroacetylacetonate, hexafluoroacetylacetonate; dmso=dimethyl sulfoxide) in supercritical carbon dioxide [J]. Journal of Supercritical Fluids,2006,39(1):6-12
    [173]Carrott M. J., Waller B. E., Smart N. G., et al. High solubility of UO2(NO3)·2TBP complex in supercritical CO2 [J]. Chemical Communications,1998,3:373-374
    [174]Smart N. G., Carleson T., Kast T., et al. Solubility of chelating agents and metal-containing compounds in supercritical fluid carbon dioxide [J]. Talanta,1997,44(2):137-150
    [175]Toews K. L., Smart N. G., Wai C. M. Complexation and transport of uranyl nitrate in supercritical carbon dioxide with organophosphorus reagents [J]. Radiochimica Acta,1996,75(4):179-184
    [176]Carrott M. J., Wai C. M. UV-visible spectroscopic measurement of solubilities in supercritical CO2 using high-pressure fiber-optic cells [J]. Analytical Chemistry,1998,70(11):2421-2425
    [177]Murzin A. A., Babain V. A., Shadrin A. Y., et al. Supercritical Fluid Extraction of Actinide Complexes:Ⅱ. SFE of Actinide β-Diketonates [J]. Radiochemistry,2002,44(5):467-471
    [178]Desimone J. M., Guan Z., Elsbernd C. S. Synthesis of fluoropolymers in supercritical carbon-dioxide [J]. Science,1992,257(5072):945-947
    [179]Hoefling T. A., Beitle R. R., Enick R. M., et al. Design and synthesis of highly CO2-soluble surfactants and chelating-agents [J]. Fluid Phase Equilibia,1993,83:203-212
    [180]Harrison K., Goveas J., Johnston K. P., et al. Water-in-carbon dioxide microemulsions with a fluorocarbon-hydrocarbon hybrid surfactant [J]. Langmuir,1994,10(10):3536-3541
    [181]Cooper A. I., Londono J. D., Wignall G., et al. Extraction of a hydrophilic compound from water into liquid CO2 using dendritic surfactants [J]. Nature,1997,389(6649):368-371
    [182]Ghenciu E. G., Russell A. J., Beckman E. J., et al. Solubilization of subtilisin in CO2 using fluoroether-functional amphiphiles [J]. Biotechnology and Bioengineering,1998,58(6):572-580
    [183]Shi C., Huang Z., Kilic S., et al. The gelation of CO2:A sustainable route to the creation of microcellular materials [J]. Science,1999,286(5444):1540-1543
    [184]Xu J. H., Wlaschin A., Enick R. M. Thickening carbon dioxide with the fluoroacrylate-styrene copolymer [J]. SPE Journal,2003,8(2):85-91
    [185]Baradie B., Shoichet M. S. Novel fluoro-terpolymers for coatings applications [J]. Macromolecules,2005, 38(13):5560-5568
    [186]Eastoe J., Gold S., Steytler D. C. Surfactants for CO2 [J]. Langmuir,2006,22(24):9832-9842
    [187]Nasir M. I., Bernards M. A., Charpentier P. A. Acetylation of soybean lecithin and identification of components for solubility in supercritical carbon dioxide [J]. Journal of Agricultural and Food Chemistry,2007, 55(5):1961-1969
    [188]Paik I. H., Tapriyal D., Enick R. M., et al. Fiber formation by highly CO2-soluble bisureas containing peracetylated carbohydrate groups [J]. Angewandte Chemie-International Edition,2007,46(18):3284-3287
    [189]Davies O. R., Lewis A. L., Whitaker M. J., et al. Applications of supercritical CO2 in the fabrication of polymer systems for drug delivery and tissue engineering [J]. Advanced Drug Delivery Reviews,2008,60(3): 373-387
    [190]Chen K. P., Liang L. Y., Tan B. CO2-Philic hydrocarbon polymers and their applications [J]. Progress in Chemistry,2009,21(10):2199-2204
    [191]Erdmenger T., Guerrero-Sanchez C., Vitz J., et al. Recent developments in the utilization of green solvents in polymer chemistry [J]. Chemical Society Reviews,2010,39(8):3317-3333
    [192]Yave W., Car A., Funari S. S., et al. CO2-Philic Polymer Membrane with Extremely High Separation Performance [J]. Macromolecules,2010,43 (1):326-333
    [193]Raveendran P., Ikushima Y, Wallen S. L. Polar attributes of supercritical carbon dioxide [J]. Accounts of Chemical Research,2005,38(6):478-485
    [194]Dai J., Sun Y., Zhang C., et aL Removal of nanoparticles on silica wafer by supercritical fluid carbon dioxide [J]. Nami Jishu Yu Jingmi Gongcheng,2009,7(1):20-24
    [195]Reynolds L., Gardecki J. A., Frankland S. J. V., et al. Dipole solvation in nondipolar solvents:experimental studies of reorganization energies and solvation dynamics[J]. The Journal of Physical Chemistry,1996,100(24): 10337-10354
    [196]Kauffman J. F. Quadrupolar solvent effects on solvation and reactivity of solutes dissolved in supercritical COj [J]. The Journal of Physical Chemistry A,2001,105(14):3433-3442
    [197]Mcfann G. J., Johnston K. P., Howdle S. M. Solubilization in nonionic reverse micelles in carbon-dioxide [J]. AIChE J,1994,40(3):543-555
    [198]Fried J. R., Li W. High-pressure FT-IR studies of gas-polymer interactions [J]. Journal of Applied Polymer Science,1990,41(5-6):1123-1131
    [199]Dobrowolski J. C., Jamroz M. H. Infrared evidence for CO2 electron donor-acceptor complexes [J]. Journal of Molecular Structure,1992,275(0):211-219
    [200]Reilly J. T., Bokis C. P., Donohue M. D. An experimental investigation of Lewis acid-base interactions of liquid carbon dioxide using Fourier Transform Infrared (FT-IR) spectroscopy [J]. International Journal of Thermophysics,1995,16(3):599-610
    [201]Johnston K. P., Harrison K. L., Clarke M. J., et al. Water-in-carbon dioxide microemulsions:an environment forhydrophiles including proteins [J]. Science,1996,271(5249):624-626
    [202]Kazarian S. G., Vincent M. F., Bright F. V., et al. Specific intermolecular interaction of carbon dioxide with polymers [J]. Journal of the American Chemical Society,1996,118(7):1729-1736
    [203]Meredith J. C., Johnston K. P., Seminario J. M., et al. Quantitative equilibrium constants between CO2 and lewis bases from ftir spectroscopy [J]. The Journal of Physical Chemistry,1996,100(26):10837-10848
    [204]Nelson M. R., Borkman R. F. Ab Initio calculations on CO2 binding to carbonyl groups [J]. The Journal of Physical Chemistry A,1998,102(40):7860-7863
    [205]Rivelino R. Lewis acid-base interactions in weakly bound formaldehyde complexes with CO2, HCN, and FCN:Considerations on the cooperative H-bonding effects [J]. The Journal of Physical Chemistry A,2008,112(2): 161-165
    [206]Tsukahara T., Kayaki Y., Ikariya T., et al.13C NMR spectroscopic evaluation of the affinity of carbonyl compounds for carbon dioxide under supercritical conditions [J]. Angewandte Chemie-International Edition,2004, 43(28):3719-3722
    [207]Kachi Y, Tsukahara T., Kayaki Y, et al. Raman spectral shifts of CO2 as measure of CO2-philicity of solutes in supercritical carbon dioxide [J]. Journal of Supercritical Fluids,2007,40(1):20-26
    [208]Tsukahara T., Kachi Y., Kayaki Y., et al.1H,13C and 19F NMR studies on molecular interactions of CO2 with beta-diketones and UO2(beta-diketonato)2dmso complexes in supercritical CO2 [J]. The Journal of Physical Chemistry B,2008,112(51):16445-16454
    [209]Blatchford M. A., Raveendran P., Wallen S. L. Raman spectroscopic evidence for cooperative C-H…0 interactions in the acetaldehyde-CO2 complex [J]. Journal of the American Chemical Society,2002,124(50): 14818-14819
    [210]Raveendran P., Wallen S. L. Cooperative C-H …O hydrogen bonding in CO2-Lewis base complexes: Implications for solvation in supercritical CO2 [J]. Journal of the American Chemical Society,2002,124(42): 12590-12599
    [211]Blatchford M. A., Raveendran P., Wallen S. L. Spectroscopic studies of model carbonyl compounds in CO2: Evidence for cooperative C-H…O interactions [J]. The Journal of Physical Chemistry A,2003,107(48): 10311-10323
    [212]Cece A., Jureller S. H., Kerschner J. L., et al. Molecular modeling approach for contrasting the interaction of ethane and hexafluoroethane with carbon dioxide [J]. The Journal of Physical Chemistry,1996,100(18): 7435-7439
    [213]Dardin A., DeSimone J. M., Samulski E. T. Fluorocarbons dissolved in supercritical carbon dioxide. NMR evidence for specific solute-solvent interactions [J]. The Journal of Physical Chemistry B,1998,102(10): 1775-1780
    [214]Raveendran P., Wallen S. L. Exploring CO2-Philicity:Effects of step wise fluorination [J]. The Journal of Physical Chemistry B,2003,107(6):1473-1477
    [215]Mertdogan C. A., DiNoia T. P., McHugh M. A. Impact of backbone architecture on the solubility of fluorocopolymers in supercritical CO2 and halogenated supercritical solvents:comparison of poly(vinylidene fluoride-co-22 mol% hexafluoropropylene) and poly(tetrafluoroethylene-co-19 mol% hexafluoropropylene) [J]. Macromolecules,1997,30(24):7511-7515
    [216]Rindfleisch F., DiNoia T. P., McHugh M. A. Solubility of polymers and copolymers in supercritical CO2 [J]. The Journal of Physical Chemistry,1996,100(38):15581-15587
    [217]McHugh M. A., Park I.-H., Reisinger J. J.. et al. Solubility of CF2-modified polybutadiene and polyisoprene in supercritical carbon dioxide [J]. Macromolecules,2002,35(12):4653-4657
    [218]Fried J. R., Hu N. The molecular basis of CO2 interaction with polymers containing fluorinated groups: computational chemistry of model compounds and molecular simulation of poly[bis(2,2,2-trifluoroethoxy)phosphazene] [J]. Polymer,2003,44(15):4363-4372
    [219]McHugh M. A., Garach-Domech A., Park I.-H., et al. Impact of fluorination and side-chain length on poly(methylpropenoxyalkylsiloxane) and poly(alkyl methacrylate) solubility in supercritical carbon dioxide [J]. Macromolecules,2002,35(17):6479-6482
    [220]Dalvi V. H., Srinivasan V., Rossky P. J. Understanding the effectiveness of fluorocarbon ligands in dispersing nanoparticles in supercritical carbon dioxide [J]. The Journal of physical chemistry C,2010,114(37):15553-15561
    [221]Diep P., Jordan K. D., Johnson J. K., et al. CO2-Fluorocarbon and CO2-Hydrocarbon Interactions from First-Principles Calculations [J]. The Journal of Physical Chemistry A,1998,102(12):2231-2236
    [222]Costa Gomes M. F., Padua A. A. H. Interactions of carbon dioxide with liquid fluorocarbons [J]. The Journal of Physical Chemistry B,2003,107(50):14020-14024
    [223]Herbert M., Montilla F., Galindo A. The use of pyridine-functionalised polydimethylsiloxane polymers as a supercritical carbon dioxide solubilising support for copper compounds [J]. Inorganic Chemistry Communications, 2007,10(7):735-737
    [224]Dzielawa J. A., Rubas A. V., Lubbers C., et al. Carbon dioxide solubility enhancement through silicone functionalization:"CO2-philic" oligo(dimethylsiloxane)-substituted diphosphonates [J]. Separation Science and Technology,2008,43(9-10):2520-2536
    [225]Kilic S., Michalik S., Wang Y, et al. Effect of grafted Lewis base groups on the phase behavior of model poly(dimethyl siloxanes) in CO2 [J]. Industrial & engineering chemistry research,2003,42(25):6415-6424
    [226]Fink R., Hancu D., Valentine R., et al. Toward the development of "CO2-philic" hydrocarbons.1. Use of side-chain functionalization to lower the miscibility pressure of polydimethylsiloxanes in CO2 [J]. The Journal of Physical Chemistry B,1999,103(31):6441-6444
    [227]Zhao X., Watkins R., Barton S. W. Strategies for supercritical CO2 fractionation of polydimethylsiloxane [J]. Journal of Applied Polymer Science,1995,55(5):773-778
    [228]Tan B., Cooper A. I. Functional oligo(vinyl acetate) CO2-philes for solubilization and emulsification [J]. Journal of the American Chemical Society,2005,127(25):8938-8939
    [229]Fan X., Potluri V. K., McLeod M. C., et al. Oxygenated hydrocarbon ionic surfactants exhibit CO2 solubility [J]. Journal of the American Chemical Society,2005,127(33):11754-11762
    [230]Beckman E. J. A challenge for green chemistry:designing molecules that readily dissolve in carbon dioxide [J]. Chemical Communications,2004,17:1885-1888
    [231]Tan B., Woods H. M., Licence P., et al. Synthesis and CO2 solubility studies of poly(ether carbonate)s and poly(ether ester)s produced by step growth polymerization [J]. Macromolecules,2005,38(5):1691-1698
    [232]Wick C. D., Siepmann J. I., Theodorou D. N. Microscopic origins for the favorable solvation of carbonate ether copolymers in CO2 [J]. Journal of the American Chemical Society,2005,127(35):12338-12342
    [233]Shen Z., McHugh M. A., Xu J., et al. CO2-solubility of oligomers and polymers that contain the carbonyl group [J]. Polymer,2003,44(5):1491-1498
    [234]Hong L., Tapriyal D., Enick R. M. Phase behavior of poly(propylene glycol) monobutyl ethers in dense CO2 [J]. Journal of Chemical and Engineering Data,2008,53(6):1342-1345
    [235]Sarbu T., Styranec T., Beckman E. J. Non-fluorous polymers with very high solubility in supercritical CO2 down to low pressures [J]. Nature,2000,405(6783):165-168
    [236]Da Silva M. S., Temtem M., Henriques S., et al. Phase behavior studies of 2-hydroxyethyl methacrylate and methyl methacrylate in high-pressure carbon dioxide [J]. Journal of Chemical and Engineering Data,2007,52(5): 1970-1974
    [237]Kilic S., Michalik S., Wang Y., et al. Phase behavior of oxygen-containing polymers in CO2 [J]. Macromolecules,2007,40(4):1332-1341
    [238]Sarbu T., Styranec T. J., Beckman E. J. Design and synthesis of low cost, sustainable CO2-philes [J]. Industrial & engineering chemistry research,2000,39(12):4678-4683
    [239]Liu J., Kim Y., McHugh M. A. Phase behavior of diisobutyl adipate-carbon dioxide mixtures [J]. Fluid Phase Equilibria,2006,248(1):44-49
    [240]Ye W. J., DeSimone J. M. Synthesis of sugar-containing amphiphiles for liquid and supercritical carbon dioxide [J]. Industrial & engineering chemistry research,2000,39(12):4564-4566
    [241]Potluri V. K., Xu J., Enick R., et al. Peracetylated Sugar Derivatives Show High Solubility in Liquid and Supercritical Carbon Dioxide [J]. Organic Letters,2002,4(14):2333-2335
    [242]Raveendran P., Wallen S. L. Sugar acetates as novel, renewable CO2-philes [J]. Journal of the American Chemical Society,2002,124(25):7274-7275
    [243]Potluri V. K., Hamilton A. D., Karanikas C. F., et al. The high C02-solubility of per-acetylated alpha-, beta-, and gamma-cyclodextrin [J]. Fluid Phase Equilibria,2003,211(2):211-217
    [244]Raveendran P., Wallen S. L. Dissolving carbohydrates in CO2:Renewable materials as CO2-philes [J]. Supercritical Carbon Dioxide:Separations and Processes,2003,860:270-284
    [245]Bartoli G., Dalpozzo R., De Nino A., et al. Per-O-acetylation of sugars catalyzed by Ce(OTf)3 [J]. Green Chemistry,2004,6(4):191-192
    [246]Chandrika B., Schnackenberg L. K., Raveendran P., et al. High resolution'H NMR structural studies of sucrose octaacetate in supercritical carbon dioxide [J]. Chemistry-A European Journal,2005,11 (21):6266-6271
    [247]Hong L., Thies M. C., Enick R. A. Global phase behavior for CO2-philic solids:the CO2+beta-D-maltose octaacetate system [J]. Journal Supercritical Fluids,2005,34(1):11-16
    [248]Dilek C, Manke C. W., Gulari E. Phase behavior of beta-D galactose pentaacetate-carbon dioxide binary system [J]. Fluid Phase Equilibria,2006,239(2):172-177
    [249]Serhatkulu G K., Dilek C., Gulari E. Supercritical CO2 intercalation of layered silicates [J]. Journal Supercritical Fluids,2006,39(2):264-270
    [250]Kiehna S. E., Laughrey Z. R., Waters M. L. Folding-induced CO2-soluble peptides [J]. Chemical Communication,2007,41:4297-4298
    [251]Haines A. H., Steytler D. C., Rivett C. Solubility dependence of peracylated D-glucopyranoses in supercritical carbon dioxide on the structure of their acyl moieties [J]. Journal Supercritical Fluids,2008,44(1): 21-24
    [252]Hong L., Fisher M., Enick R., et al. Cellulose triacetate oligomers exhibit high solubility in dense CO2 [J]. Green Chemistry,2008,10(7):756-761
    [253]Tapriyal D., Wang Y., Enick R. M., et al. Poly(vinyl acetate), poly((1-O-(vinyloxy) ethyl-2,3,4,6-tetra-0-acetyl-beta-D-glucopyranoside) and amorphous poly (lactic acid) are the most CO2-soluble oxygenated hydrocarbon-based polymers [J]. Journal of Supercritical Fluids,2008,46(3):252-257
    [254]Park Y. Specific interactions between phosphorus compounds and carbon dioxide:Ab initio approach [J]. Journal Supercritical Fluids,2005,36(2):154-159
    [255]Kim K. H., Kim Y. Theoretical studies for the Supercritical CO2 solubility of organophosphorous molecules: Lewis acid-base interactions and C-H…O weak hydrogen bonding [J]. Bulletin of the Korean Chemical Society, 2007,28(12):2454-2458
    [256]Trung N. T., Hung N. P., Hue T. T, et al. Existence of both blue-shifting hydrogen bond and Lewis acid-base interaction in the complexes of carbonyls and thiocarbonyls with carbon dioxide [J]. Physical Chemistry Chemical Physics,2011,13(31):14033-14042
    [257]Hwang H. S., Lim K. T. Non-fluorous random copolymeric stabilizers for dispersion polymerizations of MMA in supercritical CO2 [J]. Macromolecular Rapid Communications,2006,27(9):722-726
    [258]Kilic S., Wang Y., Johnson J. K., et al. Influence of tert-amine groups on the solubility of polymers in CO2 [J]. Polymer,2009,50(11):2436-2444
    [259]Prausnitz J. M., Lichtenthaler R. N., Azevedo E. G. Molecular thermodynamics of fluid-phase equilibria [M]. Upper Saddle River, N.J.:Prentice Hall PTR,1999
    [260]Mohamed A., Sagisaka M., Guittard F., et al. Low fluorine content CO2-philic surfactants [J]. Langmuir, 2011,27(17):10562-10569
    [261]Sagisaka M., Fujii T., Ozaki Y., et al. Interfacial properties of branch-tailed fluorinated surfactants yielding a water/supercritical CO2 microemulsion [J]. Langmuir,2004,20(7):2560-2566
    [262]Bell P. W., Amand M., Fan X., et al. Stable dispersions of silver nanoparticles in carbon dioxide with fluorine-free ligands [J]. Langmuir,2005,21(25):11608-11613
    [263]Dilek C., Manke C. W., Gulari E. Phase behavior of 1,3,5-tri-tert-butylbenzene-carbon dioxide binary system [J]. Journal of Supercritical Fluids,2008,43(3):421-429
    [264]Mohamed A., Trickett K., Chin S. Y, et al. Universal Surfactant for Water, Oils, and CO2 [J]. Langmuir, 2010,26(17):13861-13866
    [265]AspenTechnology Inc. the manual of Aspen physical property system, Burlington, MA,2009
    [266]Anderson KE S. J. Molecular simulation approaches to solubility. In Developments and Applications in Solubility [M]. Cambridge:RSC Publishing,2007
    [267]van Gunsteren WF B. H. Computer simulation of molecular dynamics:methodology, applications, and perspectives in chemistry [J]. Angewandte Chemie International Edition,1990,29(9):992-1023
    [268]Klmat A. Conductor-like screening model for real solvents:a new approach to the quantitative calculation of solvation phenomena [J]. Journal of Physical Chemistry,1995,99(7):2224-2235
    [269]Mu. T. C., Gmehling, J. Conductor-like screening model for real solvents (COSMO-RS) [J]. Progress in Chemistry,2008,20(10):1487-1494
    [270]Spiess A. C., Eberhard W., Peters M., et al. Prediction of partition coefficients using COSMO-RS:solvent screening for maximum conversion in biocatalytic two-phase reaction systems [J]. Chemical Engineering and Processing,2008,47(6):1034-1041
    [271]Buggert M., Cadena C, Mokrushina L., et al. COSMO-RS calculations of partition coefficients:different Tools for conformational Search [J]. Chemical Engineering and Technology,2009,32(6):977-986
    [272]Wittekindt C., Klamt A. COSMO-RS as a predictive tool for lipophilicity [J]. QSAR and Combinatorial Science,2009,28(8):874-877
    [273]Diedenhofen M., Klamt A. COSMO-RS as a tool for property prediction of IL mixtures-a review [J]. Fluid Phase Equilibria,2010,294(1-2):31-38
    [274]Eckert F., Diedenhofen M., Klamt A. Towards a first principles prediction of pK(a):COSMO-RS and the cluster-continuum approach [J]. Molecular Physics,2010,108(3-4):229-241
    [275]Klamt A., Eckert F. COSMO-RS:a novel and efficient method for the a priori prediction of thermophystcal data of liquids [J]. Fluid Phase Equilibria,2000,172(1):43-72
    [276]Schafer A., Klamt A., Sattel D., et al. COSMO implementation in TURBOMOLE:extension of an efficient quantum chemical code towards liquid systems [J]. Physical Chemistry Chemical Physics,2000,2(10):2187-2193
    [277]Klamt A. The COSMO and COSMO-RS solvation models [J]. Wiley Interdisciplinary Reviews: Computational Molecular Science,2011,1(5):699-709
    [278]Andreas Klamt V. J., Thorsten Burger, and John C. W. Lohrenz. Refinement and parameterization of COSMO-RS [J]. The Journal of Physical Chemistry A,1998,102(26):5074-5085
    [279]Lin S. T. S., S. A priori phase equilibrium prediction from a segment contribution solvation model [J]. Industrial and Engineering Chemistry Research,2002,41(5):899-913
    [280]Lin S. T. S., S. Reply to Comments on a priori phase equilibrium prediction from a segment contribution solvation model [J]. Industrial and Engineering Chemistry Research,2002,41 (9):2332-2334
    [281]Klamt A. COSMO-RS:From quantum dhemistry to fluid phase thermodynamics and drug design [M]. Amsterdam:Elsevier,2005
    [282]Mullins E., Oldland R., Liu Y. A., et al. Sigma-profile database for using COSMO-based thermodynamic methods [J]. Industrial and Engineering Chemistry Research,2006,45(12):4389-4415
    [283]Oldland R. J. Predicting phase equilibria using COSMO-based thermodynamic models and the VT-2004 Sigma-Profile Database [D]. PhD dissertation, Virginia State University,2004
    [284]Klamt A., Eckert F., Arlt W. COSMO-RS:An alternative to simulation for calculating thermodynamic properties of liquid mixtures [J]. Annual Review of Chemical and Biomolecular Engineering,2010,1:101-122
    [285]Eckert F., Klamt A. Fast solvent screening via quantum chemistry:COSMO-RS approach [J]. AIChE Journal 2002,48(2):369-385
    [286]Lin S. T. Quantum Mechanical Approaches to the prediction of phase equilibria:Solvation thermodynamics and group contribution methods [D]. PhD dissertation, University of Delaware,2000
    [287]Shimoyama Y., Iwai Y. Development of activity coefficient model based on COSMO method for prediction of solubilities of solid solutes in supercritical carbon dioxide [J]. Journal of Supercritical Fluids,2009,50(3): 210-217
    [288]Accelrys Materials Studio Release Notes, Release 5.0, Accelrys Software, Inc.:San Diego,2008
    [289]Comba P., Hambley T., Martin B. Molecular modeling of inorganic compounds [M]. VCH:Weinheim,2009
    [290]McQuarrie D. A. Quantum chemistry [M]. University Science Books,2008
    [291]Stewart J. J. P. MOPAC2007 manual, Stewart Computational Chemistry:Colorado Springs,2007
    [292]http://www.sparkle.pro.br/
    [293]Freire R. O., Simas A. M. Sparkle/PM6 parameters for all lanthanide trications from La(III) to Lu(III) [J]. Journal of Chemical Theory and Computation,2010,6(7):2019-2023
    [294]Freire R. O., Simas A. M. The lanthanide contraction within the sparkle model [J]. International Journal of Quantum Chemistry,2011,111(7-8):1734-1739
    [295]Frisch M. J. T., G. W.; Schlegel, H. B.; Scuseria, G E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J.; J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.:Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, Revision C.02. Gaussian, Inc.:Wallingford, CT.2004:
    [296]ADF2008, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands, http://www.scm.com. [J]
    [297]AshrafKhorassani M., Combs M. T., Taylor L. T. Supercritical fluid extraction of metal ions and metal chelates from different environments [J]. Journal of Chromatography A,1997,774(1-2):37-49
    [298]Premlatha C., Soundararajan S. Adducts of lanthanide perchlorates with N, N, N', N'-tetramethyloxydiacetamide [J]. Journal of Inorganic and Nuclear Chemistry,1980,42(12):1783-1786
    [299]Casellato U., Tomat G., Di B. P., et al. The crystal structure of tetraethyleneglycoltrinitratolanthanum(Ⅲ):an example of undecacoordination [J]. Inorganica Chimica Acta,1982,61:181-187
    [300]Hirashima Y., Kanetsuki K., Yonezu I., et al. Lanthanoid nitrate complexes with some polyethylene glycols and glymes [J]. Bulletin of the Chemical Society of Japan,1983,56(3):738-743
    [301]Rogers R. D., Voss E. J., Etzenhouser R. D. f-Element crown ether complexes.17. synthetic and structural survey of lanthanide chloride triethylene glycol complexes [J]. Inorganic Chemistry,1988,27(3):533-542
    [302]Rogers R. D., Etzenhouser R. D., Murdoch J. S., et al. Macrocycle complexation chemistry.35. Survey of the complexation of the open-chain 15-crown-5 analog tetraethylene glycol with the lanthanide chlorides [J]. Inorganic Chemistry,1991,30(7):1445-1455
    [303]Rogers R. D., Zhang J. H., Bauer C. B. The effects of choice of anion (X=Cl-, SCN-, NO3-) and polyethylene glycol (PEG) chain length on the local and supramolecular structures of LnX3/PEG complexes [J]. Journal of Alloys and Compounds,1997,249(1-2):41-48
    [304]Willans M. J., Feindel K. W., Ooms K. J., et al. An investigation of lanthanum coordination compounds by using solid-state 139La NMR spectroscopy and relativistic density functional theory [J]. Chemistry-A European Journal,2006,12(1):159-168
    [305]Hines C. C., Bauer C. B., Rogers R. D. Lanthanide polyether complexation chemistry:the interaction of hydrated lanthanide(Ⅲ) nitrate salts with an acyclic 18-crown-6 analog, pentaethylene glycol [J]. New Journal of Chemistry,2007,31(5):762-769
    [306]Tian G. X., Liao W. S., Wai C. M., et aL Extraction of trivalent lanthanides with oxa-diamides in supercritical fluid carbon dioxide [J]. Industrial & engineering chemistry research,2008,47(8):2803-2807
    [307]Saleh M. I., Kusrini E., Saad B., et al. Coordination of trivalent lanthanum with polyethylene glycol in the presence of picrate anion:Spectroscopic and X-ray structural studies [J]. Journal of Alloys and Compounds,2009, 474(1-2):428-440
    [308]Samsonov M. D., Wai C. M., Lee S. C., et al. Dissolution of uranium dioxide in supercritical fluid carbon dioxide [J]. Chemical Communication,2001,18:1868-1869
    [309]Menger F. M., Littau C. A. Gemini surfactants:a new class of self-assembling molecules [J]. Journal of the American Chemical Society,1993,115(22):10083-10090
    [310]Duivenvoorde F. L., Feiters M. C., van der Gaast S. J., et al. Synthesis and Properties of Di-n-dodecyl α,ω-Alkyl Bisphosphate Surfactants [J]. Langmuir,1997,13(14):3737-3743
    [311]王筱梅,杨平.缩合磷酸酯的合成及其阻燃性研究[J].山东建材学院学报,1998,12(1):25-27
    [312]De S., Aswal V. K., Goyal P. S., et al. Characterization of new gemini surfactant micelles with phosphate headgroups by SANS and fluorescence spectroscopy [J]. Chemical Physics Letters,1999,303(3-4):295-303
    [313]范海华,陈烨璞,裘锋.双磷酸酯表面活性剂的合成与性能[J].精细化工,2007,24(10):961-963
    [314]Zhao K., Landry D. W. Tetrazole catalyzed synthesis of phosphonate esters [J]. Tetrahedron,1993,49(2): 363-368
    [315]Stepinski D. C., Herlinger A. W. A facile and selective high yield synthesis of symmetric dialkyl-substituted methylenebisphosphonic acids [J]. Synthetic Communications,2002,32(17):2683-2690
    [316]Scudder P. H. The Electron Flow Pathways:Electron Flow in Organic Chemistry [M]. New York:Wiley & Sons,1992
    [317]Bethell D. Mechanism and Catalysis of Nucleophilic Substitution in Phosphate Esters. In Advances in Physical Organic Chemistry [M]. New York:Academic Press,1999
    [318]J. Nurminen E., K. Mattinen J., Lonnberg H. Alcoholysis of dialkyl tetrazolylphosphonites [J]. Journal of the Chemical Society, Perkin Transactions 2,1999,11:2551-2556
    [319]J. Nurminen E., K. Mattinen J., Lonnberg H. Kinetics and mechanism of tetrazole-catalyzed phosphoramidite alcoholysis [J]. Journal of the Chemical Society, Perkin Transactions 2,1998,7:1621-1628
    [320]McHugh M. A., Seckner A. J., Yogan T. J. High-pressure phase behavior of binary mixtures of octacosane and carbon dioxide [J]. Industrial & Engineering Chemistry Fundamentals,1984,23(4):493-499
    [321]Hojjati M., Yamini Y., Khajeh M., et al. Solubility of some statin drugs in supercritical carbon dioxide and representing the solute solubility data with several density-based correlations [J]. The Journal of Supercritical Fluids,2007,41 (2):187-194
    [322]Bristow S., Shekunov B. Y., York P. Solubility Analysis of Drug Compounds in Supercritical Carbon Dioxide Using Static and Dynamic Extraction Systems [J]. Industrial & Engineering Chemistry Research,200],40(7): 1732-1739
    [323]Montequi I., Alonso E., Martin A., et al. Solubility of Diisopropoxititanium Bis(acetylacetonate) in Supercritical Carbon Dioxide [J]. Journal of Chemical & Engineering Data,2007,53(1):204-206
    [324]Bartle K. D., Clifford A. A., Jafar S. A. Measurement of solubility in supercritical fluids using chromatographic retention:the solubility of fluorene, phenanthrene, and pyrene in carbon dioxide [J]. Journal of Chemical & Engineering Data,1990,35(3):355-360
    [325]Suleiman D., Estevez L. A., Pulido J. C., et al. Solubility of Anti-Inflammatory, Anti-Cancer, and Anti-HIV Drugs in Supercritical Carbon Dioxide [J]. Journal of Chemical & Engineering Data,2005,50(4):1234-1241
    [326]苏宝根.超临界CO2微乳液的热力学性质研究[D].博士学位论文,浙江大学,2007
    [327]闾肖波.苦杏仁苷在超临界二氧化碳反胶团中的增溶性研究[D].硕士学位论文,浙江大学,2006
    [328]Ohmori T. http://hp.vector.co.jp/authors/VA030090/
    [329]McHugh M., Paulaitis M. E. Solid solubilities of naphthalene and biphenyl in supercritical carbon dioxide [J]. Journal of Chemical & Engineering Data,1980,25(4):326-329
    [330]Drohmann C., Beckman E. J. Phase behavior of polymers containing ether groups in carbon dioxide [J]. J Supercrit Fluids,2002,22(2):103-110
    [331]Bartle K. D., Clifford A. A., Jafar S. A., et al. Solubilities of solids and liquids of low volatility in supercritical carbon-dioxide [J]. Journal of Physical and Chemical Reference Data,1991,20(4):713-756
    [332]Zhang X. C., Liu Z. P., Wang W. C. Screening of ionic liquids to capture CO2 by COSMO-RS and experiments [J]. AIChE Journal,2008,54(10):2717-2728
    [333]Miller M. B., Chen D. L., Xie H. B., et al. Solubility of CO2 in CO2-philic oligomers; COSMOtherm predictions and experimental results [J]. Fluid Phase Equilibria,2009,287(1):26-32
    [334]MacroModel. version 9.5, Schrodinger. LLC. New York. NY,2007
    [335]Maestro, version 8.0, Schrodinger, LLC, New York, NY,2007
    [336]Tuemmler B., Maass G., Voegtle F., et al. Open-chain polyethers. Influence of aromatic donor end groups on thermodynamics and kinetics of alkali metal ion complex formation [J]. Journal of the American Chemical Society, 1979,101(10):2588-2598
    [337]Ohto K., Yano M., Inoue K., et al. Effect of coexisting alkaline metal ions on the extraction selectivity of lanthanide ions with calixarene carboxylate derivatives [J]. Polyhedron,1997,16(10):1655-1661
    [338]Daubinet A. Design, synthesis and evaluation of silver-specific ligands [D]. PhD Dissertation, Rhodes University,2001

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700