用户名: 密码: 验证码:
CaSO_4载氧体应用于CaO再生过程的热力学分析与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
将煤气化与CaO吸收体集成,可实现气化反应器内在碳分离。本文研究CaSO4载氧体再生CaCO3的过程,揭示其化学反应平衡、反应速率、含硫气体排放以及钙基物质共熔等。
     本文的主要工作及结果如下:
     1. CaSO4载氧体应用于CaO再生过程的热力学分析
     基于化学反应平衡,研究了采用CaSO4载氧体的CaO再生过程的反应条件,获得了使CaCO3完全分解的最小水蒸气入口量和碳入口量;与应用纯O2燃烧供热的再生反应器相比,其最小水蒸气和碳需求更多;提高反应温度降低反应压力会减少含硫气体排放量;降低CaO再生反应器与CaS氧化反应器的温差、降低反应压力者会使反应器间传递的热量和循环固体质量减小,但Gs增大。
     2. CaSO4载氧体与煤焦反应的加压热重实验
     利用加压热重对再生反应器中煤焦与CaSO4及水蒸气的反应进行了对比实验研究,结果表明:氮气气氛下煤焦和CaSO4载氧体的固固反应失重在反应初期较快,但反应进行到一定程度后,其反应失重曲线变得平缓,最终碳转化率低于煤焦与水蒸气的气化反应;通入水蒸气后煤焦与CaSO4的反应失重在初期比上述两个反应都要快,但反应继续进行其失重速度快速下降,最终载氧体转化率和碳转化率比CaSO4与煤焦的固固反应更低,且提高水蒸气分压,最终载氧体转化率和碳转化率还会进一步降低。
     3.应用CaSO4载氧体的CaO再生过程加压固定床实验
     通过加压固定床实验,研究了反应条件对含硫气体排放的影响,结果表明:从降低H2S排放的角度看,升高反应温度、减小水蒸气分压是有利的;反应温度从900℃增大到950℃,H2S产率的峰值由2635ppmv降低到2174ppmv;水蒸气分压从2.4MPa降低至1.67MPa,H2S产率峰值从2635ppmv降低至165ppmv。
     4.钙基物质共熔实验
     利用常压综合热分析仪的DTA和TG分析技术,对CaS-CaSO4、 CaO-CaS-CaSO4样品进行共熔实验研究,结果表明:在700~1300℃的温度范围内,不存在CaS与CaSO4的共熔现象;各种摩尔配比的CaO-CaS-CaSO4三元钙基混合物在700~1500℃的温度范围内的不发生共熔。
     5. CaSO4载氧体应用于煤直接制氢过程的热力学分析
     进行了应用CaSO4载氧体进行CaO再生的煤直接制氢过程热力学分析,3.0MPa的压力条件下模拟结果表明:提高再生反应器温度会增加气化产H2量,且再生反应器含硫气体排放量减少;随着气化反应器钙碳比的增大,气化产H2量减少,再生反应器出口含硫气体排放量下降;再生反应器出口固体物流中CaO和CaS不作分离时的模拟结果与假设二者可以完全分离相比,气化产H2量下降,再生反应器含硫气体排放量增加。
In-situ CO2separation can be achieved by the integration of coal gasification and CO2absorption by CaO. In this dissertation, the CaCO3regeneration process with CaSO4as oxygen carrier was studied, to reveal chemical equilibrium, reaction rate, emission of sulfur-containing gases, and eutectic possibility of calcium-based materials in the process. The main work and results are shown as follows:
     1. Thermodynamic analysis of CaO regeneration system with CaSO4oxygen carrier
     Based on the chemical equilibrium of the process, the reaction condition of CaO regeneration system with CaSO4oxygen carrier was studied and several findings were obtained. In order to ensure the calcium carbonate decomposes completely, there existed minimum flow rates of H2O and carbon in the CaO regeneration reactor at every given pressure. Compared with the CaO regeneration process using oxy combustion of carbon, the minimum flow rates of H2O and carbon were higher in the CaO regeneration process using CaSO4oxygen carrier. The yields of H2S and SO2in product gas declined with the increasing temperature and decreasing pressure. With the decreasing temperature difference between CaO regeneration reactor and CaS oxidation reactor and the decreasing pressure, the exchange of heat and solid mass between the reactors declined, while Gs increased.
     2. Pressurized TGA expriments of CaSO4oxygen carrier and coke
     Pressurized TGA experiments were performed with coke and CaSO4mixed samples in H2O and N2atmospheres. The weight loss rate of coke with CaSO4in pure N2atmosphere declined rapidly, and the final carbon conversion was lower than that of coke in steam atmosphere. Compared with the reaction between coke and CaSO4in pure N2atmosphere, the introduction of H2O into the atmosphere can improve the reaction rate in the early period, but the rate declined as the reaction proceeded, and the final conversion of CaSO4and carbon decreased with the increase of partial pressure of steam in the atmosphere.
     3. Pressurized fixed-bed expriments of CaO regeneration system with CaSO4 oxygen carrier
     CaO regeneration experiments with CaSO4oxygen carrier were performed in a pressurized fixed-bed reactor, and the effects of reaction conditions on the yields of sulfur-containing gases were studied. It was found that the H2S yield declined with the increasing temperature and decreasing pressure of H2O. With the temperature increasing from900to950℃, the volume fraction of H2S declined from2635to2174ppmv, while the total amount of H2S yield declined from936mg to918mg. With the pressure of H2O decreasing from2.4to1.67MPa, the volume fraction of H2S in product gas decreased from2635to165ppmv.
     4. DTA&TG measurement and analysis of CaO-CaS-CaSO4system
     TG and DTA measurements of CaO-CaS-CaSO4mixtures with different molar fractions were performed using an atmospheric thermal analyzer under a nitrogen atmosphere. It was found that eutectic phenomenon of CaS and CaSO4mixture samples did not exist within700-1300℃. The conclusion was also correct for the samples of CaO, CaS and CaSO4mixture within700-1500℃.
     5. Thermodynamic analysis of direct hydrogen production from coal with CaSO4oxygen carrier
     Thermodynamic analysis of direct hydrogen production from coal with CaO regeneration by CaSO4oxygen carrier was performed and several findings at the pressure of3.0MPa were obtained. The H2yield in gasification reactor increased with the increasing temperature of CaO regeneration reactor, while the yields of sulfur-containing gases in CaO regeneration reactor declined. The yields of sulfur-containing gases produced from regeneration reactor decreased with the increase of Ca/C ratio in the gasification reactor, while the yield of H2from gasification reactor had a similar trend. Compared with the simulation results by assuming that the solid products out of regeneration reactor could be separated perfectly, less H2was produced when the solid products would not be separated, while the yields of sulfur-containing gases increased.
引文
[1]Balat M. Potential importance of hydrogen as a future solution to environmental and transportation problems [J]. International Journal of Hydrogen Energy,2008,33(15):4013-4029.
    [2]Veziroglu T. Nejat, Sahin Sumer.21st Century's energy:Hydrogen energy system[J]. Energy Conversion and Management,2008,49(7):1820-1831.
    [3]Li F. X., Fan L. S. Clean coal conversion processes-progress and challenges [J]. Energy & Environmental Science,2008,1(2):248-267.
    [4]Lin S. Y., Suzuki Y., Hatano H., Harada M. Hydrogen production from hydrocarbon by integration of water-carbon reaction and carbon dioxide removal (HyPr-RING method)[J]. Energy & Fuels,2001,15(2):339-343.
    [5]Lin S. Y., Suzuki Y, Hatano H., Harada M. Developing an innovative method, HyPr-RING, to produce hydrogen from hydrocarbons[J]. Energy Conversion and Management,2002,43(9-12):1283-1290.
    [6]Lin S. Y, Harada M., Suzuki Y, Hatano H. Continuous experiment regarding hydrogen production by coal/CaO reaction with steam (I) gas products[J]. Fuel, 2004,83(7-8):869-874.
    [7]Lin S. Y., Harada M., Suzuki Y., Hatano H. Process analysis for hydrogen production by reaction integrated novel gasification (HyPr-RING)[J]. Energy Conversion and Management,2005,46(6):869-880.
    [8]Lin S. Y, Harada M., Suzuki Y, Hatano H. Continuous experiment regarding hydrogen production by Coal/CaO reaction with steam (II) solid formation[J]. Fuel,2006,85(7-8):1143-1150.
    [9]Lin S. Y., Kiga T., Nakayama K., Suzukib Y. Coal power generation with in-situ CO2 capture--HyPr-RING method--Effect of ash separation on plant efficiency [J]. Energy Procedia,2011,4:378-384.
    [10]Lin S. Y, Harada M., Suzuki Y, Hatano H. CaO hydration rate at high temperature (similar to 1023 K)[J]. Energy & Fuels,2006,20(3):903-908.
    [11]肖云汉.煤制氢零排放系统[J].工程热物理学报,2001,22(1):13-15.
    [12]乔春珍.含碳能源直接制氢CO2吸收剂研究[D].北京:中国科学院工程热物理研究所,2006.
    [13]王峰.含碳能源直接制氢的实验研究[D].北京:中国科学院工程热物理研究所,2008.
    [14]Qiao C. Z., Xiao Y. H., Xu X., Zhao L. F., Tian W. D. Comparative analysis of hydrogen production systems from biomass based on different absorbent regeneration processes [J]. International Journal of Hydrogen Energy,2007, 32(l):80-85.
    [15]Fan L. S., Zeng L., Wang W. L., Luo S. W. Chemical looping processes for CO2 capture and carbonaceous fuel conversion-prospect and opportunity[J]. Energy & Environmental Science,2012,5(6):7254-7280.
    [16]金红光,洪慧,韩涛.化学链燃烧的能源环境系统研究进展[J].科学通报,2008,(24):2994-3005.
    [17]Wolf J., Yan J. Parametric study of chemical looping combustion for tri-generation of hydrogen, heat, and electrical power with CO2 capture[J]. International Journal of Energy Research,2005,29(8):739-753.
    [18]Wolf J., Barone F., Yan J. Performance analysis of evaporative biomass air turbine cycle with gasification for topping combustion[J]. Journal of Engineering for Gas Turbines and Power-Transactions of the Asme,2002, 124(4):757-761.
    [19]Wolf J., Anheden M., Yan J. Y. Comparison of nickel-and iron-based oxygen carriers in chemical looping combustion for CO2 capture in power generation[J]. Fuel,2005,84(7-8):993-1006.
    [20]Lyngfelt A., Leckner B., Mattisson T. A fluidized-bed combustion process with inherent CO2 separation; application of chemical-looping combustion[J]. Chemical Engineering Science,2001,56(10):3101-3113.
    [21]Leion H., Mattisson T., Lyngfelt A. Solid fuels in chemical-looping combustion[J]. International Journal of Greenhouse Gas Control,2008, 2(2):180-193.
    [22]Moghtaderi B. Review of the Recent Chemical Looping Process Developments for Novel Energy and Fuel Applications[J]. Energy & Fuels, 2012,26(1):15-40.
    [23]Noorman S., Gallucci F., Annaland M. van Sint, Kuipers J. A. M. A theoretical investigation of CLC in packed beds. Part 1:Particle model[J]. Chemical Engineering Journal,2011,167(1):297-307.
    [24]Noorman S., Annaland M. van Sint, Kuipers J. A. M. Experimental validation of packed bed chemical-looping combustion[J]. Chemical Engineering Science, 2010,65(1):92-97.
    [25]向文国,狄藤藤,肖军,沈来宏.新型煤气化间接燃烧联合循环研究[J].中国电机工程学报,2004,24(08):170-174.
    [26]向文国狄藤藤,肖军,沈来宏.具有CO2分离的煤气化化学链置换燃烧初步研究[J].东南大学学报,2005,35(1):20-23.
    [27]Diazbossio L. M., Squier S. E., Pulsifer A. H. Reductive Decomposition of Calcium-sulfate Utilizing Carbon-monoxide and Hydrogen[J]. Chemical Engineering Science,1985,40(3):319-324.
    [28]Kim B. S., Sohn H. Y. A novel cyclic reaction system involving CaS and CaSO4 for converting sulfur dioxide to elemental sulfur without generating secondary pollutants.3. Kinetics of the hydrogen reduction of the calcium sulfate powder to calcium sulfide[J]. Industrial & Engineering Chemistry Research,2002,41(13):3092-3096.
    [29]Sohn H. Y, Kim B. S. A novel cyclic reaction system involving CaS and CaSO4 for converting sulfur dioxide to elemental sulfur without generating secondary pollutants.1. Determination of process feasibility [J]. Industrial & Engineering Chemistry Research,2002,41(13):3081-3086.
    [30]Sohn H. Y, Kim B. S. A novel cyclic reaction system involving CaS and CaSO4 for converting sulfur dioxide to elemental sulfur without generating secondary pollutants.2. Kinetics of the reduction of sulfur dioxide by calcium sulfide powder [J]. Industrial & Engineering Chemistry Research,2002, 41(13):3087-3091.
    [31]韩翔宇,陈皓侃,李保庆CaSO4氢气下还原分解的热重研究[J].煤炭转化,2000,23(02):72-75.
    [32]肖海平,周俊虎,曹欣玉,范红宇,程军,岑可法CaSO4在CO气氛下的平行竞争反应实验与模型研究[J].燃料化学学报,2005,33(02):150-154.
    [33]Anthony E. J. Solid looping cycles:A new technology for coal conversion[J]. Industrial & Engineering Chemistry Research,2008,47(6):1747-1754.
    [34]Hossain M. M., de Lasa H. I. Chemical-looping combustion (CLC) for inherent CO2 separations-a review[J]. Chemical Engineering Science,2008, 63(18):4433-4451.
    [35]Rubel A., Liu K. L., Neathery J., Taulbee D. Oxygen carriers for chemical looping combustion of solid fuels[J]. Fuel,2009,88(5):876-884.
    [36]Wang J. S., Anthony E. J. Clean combustion of solid fuels[J]. Applied Energy, 2008,85(2-3):73-79.
    [37]Abad A., Mattisson T., Lyngfelt A., Ryden M. Chemical-looping combustion in a 300 W continuously operating reactor system using a manganese-based oxygen carrier[J]. Fuel,2006,85(9):1174-1185.
    [38]Chandel M. K., Hoteit A., Delebarre A. Experimental investigation of some metal oxides for chemical looping combustion in a fluidized bed reactor[J]. Fuel,2009,88(5):898-908.
    [39]Corbella B. M., De Diego L., Garcia F., Adanez J., Palacios J. M. The performance in a fixed bed reactor of copper-based oxides on titania as oxygen carriers for chemical looping combustion of methane[J]. Energy & Fuels,2005, 19(2):433-441.
    [40]de Diego L. F., Garcia-Labiano F., Adanez J., Gayan P., Abad A., Corbella B. M., Palacios J. M. Development of Cu-based oxygen carriers for chemical-looping combustion [J]. Fuel,2004,83(13):1749-1757.
    [41]Dueso C., Garcia-Labiano F., Adanez J., de Diego L. F., Gayan P., Abad A. Syngas combustion in a chemical-looping combustion system using an impregnated Ni-based oxygen carrier[J]. Fuel,2009,88(12):2357-2364.
    [42]Gayan P., Dueso C., Abad A., Adanez J., de Diego L. F., Garcia-Labiano F. NiO/Al2O3 oxygen carriers for chemical-looping combustion prepared by impregnation and deposition-precipitation methods[J]. Fuel,2009, 88(6):1016-1023.
    [43]Hossain M. M., Sedor K. E., de Lasa H. I. Co-Ni/Al2O3 oxygen carrier for fluidized bed chemical-looping combustion:Desorption kinetics and metal-support inter acti on [J]. Chemical Engineering Science,2007, 62(18-20):5464-5472.
    [44]Mattisson T., Jardnas A., Lyngfelt A. Reactivity of some metal oxides supported on alumina with alternating methane and oxygen-application for chemical-looping combustion[J]. Energy & Fuels,2003,17(3):643-651.
    [45]Sturzenegger M., D'Souza L., Struis Rpwj, Stucki S. Oxygen transfer and catalytic properties of nickel iron oxides for steam reforming of methane[J]. Fuel,2006,85(10-11):1599-1602.
    [46]Zafar Q., Abad A., Mattisson T., Gevert B., Strand M. Reduction and oxidation kinetics of Mn3O4/Mg-ZrO2 oxygen carrier particles for chemical-looping combustion [J]. Chemical Engineering Science,2007,62(23):6556-6567.
    [47]Monazam E. R., Siriwardane R., Breault R. W., Tian H. J., Shadle L. J., Richards G., Carpenter S. Kinetics of the Reduction of CuO/Bentonite by Methane (CH4) during Chemical Looping Combustion[J]. Energy & Fuels, 2012,26(5):2779-2785.
    [48]Gayan P., Pans M. A., Ortiz M., Abad A., de Diego L. F., Garcia-Labiano F., Adanez J. Testing of a highly reactive impregnated Fe2O3/Al2O3 oxygen carrier for a SR-CLC system in a continuous CLC unit[J]. Fuel Processing Technology,2012,96:37-47.
    [49]Vazquez M. I. S., Gutierrez J. S., Vigil D. D., Collins-Martinez V, Ortiz A. L. Synthesis Gas Production by Methane Partial Oxidation on Catalysts:Kinetic Study[J]. Journal of New Materials for Electrochemical Systems,2011,14(2):133-139.
    [50]Ortiz M, Gayan P., de Diego L. F., Garcia-Labiano F., Abad A., Pans M. A., Adanez J. Hydrogen production with CO2 capture by coupling steam reforming of methane and chemical-looping combustion:Use of an iron-based waste product as oxygen carrier burning a PSA tail gas[J]. Journal of Power Sources,2011,196(9):4370-4381.
    [51]Gu H. M., Shen L. H., Xiao J., Zhang S. W., Song T. Chemical Looping Combustion of Biomass/Coal with Natural Iron Ore as Oxygen Carrier in a Continuous Reactor [J]. Energy & Fuels,2011,25:446-455.
    [52]Ryden M., Johansson M., Cleverstam E., Lyngfelt A., Mattisson T. Ilmenite with addition of NiO as oxygen carrier for chemical-looping combustion[J]. Fuel,2010,89(11):3523-3533.
    [53]Song T., Wu J. H., Zhang H. F., Shen L. H. Characterization of an Australia hematite oxygen carrier in chemical looping combustion with coal[J]. International Journal of Greenhouse Gas Control,2012,11:326-336.
    [54]薛志鹏,陈时熠,王东,向文国.化学链燃烧制氢三联流化床冷态实验研究[J].工程热物理学报,2012,33(05):887-890.
    [55]Chen S. Y., Xue Z. P., Wang D., Xiang W. G. Hydrogen and electricity co-production plant integrating steam-iron process and chemical looping combustion [J]. International Journal of Hydrogen Energy,2012, 37(10):8204-8216.
    [56]孙小燕,向文国,田文栋,徐祥,徐燕骥,肖云汉.基于Fe3O4的化学链制氢动力学特性[J].燃烧科学与技术,2011,17(06):534-540.
    [57]Chen S. Y., Wang D, Xue Z. P., Sun X. Y., Xiang W. G. Calcium looping gasification for high-concentration hydrogen production with CO2 capture in a novel compact fluidized bed:Simulation and operation requirements [J]. International Journal of Hydrogen Energy,2011,36(8):4887-4899.
    [58]陈时熠,向文国,薛志鹏,石伟伟,孙小燕.固定床上Fe2O3载氧燃烧特性实验研究[J].中国电机工程学报,2010,30(20):44-50.
    [59]Xiang W. G., Chen S. Y., Xue Z. P., Sun X. Y. Investigation of coal gasification hydrogen and electricity co-production plant with three-reactors chemical looping process[J]. International Journal of Hydrogen Energy,2010, 35(16):8580-8591.
    [60]Sun X. Y, Xiang W. G, Wang S., Tian W. D., Xu X., Xu Y. J., Xiao Y. H. Investigation of Coal Fueled Chemical Looping Combustion Using Fe3O4 as Oxygen Carrier:Influence of Variables [J]. Journal of Thermal Science,2010, 19(3):266-275.
    [61]向文国牟建茂,狄藤藤.两种煤气化工艺下Ni基载氧体链式燃烧联合循环性能模拟[J].中国电机工程学报,2007,27(29):28-33.
    [62]向文国,狄藤藤.Ni载体整体煤气化链式燃烧联合循环性能[J].化工学报,2007,58(07):1816-1821.
    [63]向文国,陈盈盈.铁法链式反应器煤基氢电联产系统性能模拟[J].中国电机工程学报,2007,27(23):45-49.
    [64]Xiang W. G., Chen Y. Y. Hydrogen and electricity from coal with carbon dioxide separation using chemical looping reactors[J]. Energy & Fuels,2007, 21(4):2272-2277.
    [65]Guo Q. J., Zhang J. S., Tian H. J. Recent Advances in CaSO4 Oxygen Carrier for Chemical-Looping Combustion (CLC) Process[J]. Chemical Engineering Communications,2012,199(11):1463-1491.
    [66]刘黎明.煤基化学链燃烧技术的氧载体研究[D].武汉:华中科技大学,2007.
    [67]刘黎明,赵海波,郑楚光.化学链燃烧方式中氧载体的研究进展[J].煤炭转化,2006,29(03):83-93.
    [68]秦翠娟,沈来宏,肖军,高正平.化学链燃烧技术的研究进展[J].锅炉技术,2008,39(05):64-73.
    [69]秦翠娟,沈来宏,郑敏,肖军.基于CaSO4载氧体的煤化学链燃烧还原反应实验研究[J].中国电机工程学报,2009,29(17):43-50.
    [70]沈来宏,肖军,肖睿,张辉.基于CaSO4载氧体的煤化学链燃烧分离C02研究[J]_中国电机工程学报,2007,27(02):69-74.
    [71]郑瑛,王保文,宋侃,郑楚光.化学链燃烧技术中新型氧载体CaSO4的特性研究[J]_工程热物理学报,2006,27(03):531-533.
    [72]Song T., Zheng M., Shen L. H., Zhang T., Niu X., Xiao J. Mechanism Investigation of Enhancing Reaction Performance with CaSO4/Fe2O3 Oxygen Carrier in Chemical-Looping Combustion of Coal [J]. Industrial & Engineering Chemistry Research,2013,52(11):4059-4071.
    [73]Liu Y. Z., Guo Q. J., Cheng Y., Ryu H. J. Reaction Mechanism of Coal Chemical Looping Process for Syngas Production with CaSO4 Oxygen Carrier in the CO2 Atmosphere [J]. Industrial & Engineering Chemistry Research,2012, 51(31):10364-10373.
    [74]Jin B. S., Xiao R., Deng Z. Y., Song Q. L. Computational Fluid Dynamics Modeling of Chemical Looping Combustion Process with Calcium Sulphate Oxygen Carrier[J]. International Journal of Chemical Reactor Engineering, 2009,7
    [75]Manovic V., Anthony E. J., Loncarevic D. CO2 looping cycles with CaO-based sorbent pretreated in CO2 at high temperature[J]. Chemical Engineering Science,2009,64(14):3236-3245.
    [76]Widyawati M., Church T. L., Florin N. H., Harris A. T. Hydrogen synthesis from biomass pyrolysis with in situ carbon dioxide capture using calcium oxide[J]. International Journal of Hydrogen Energy,2011,36(8):4800-4813.
    [77]蔡宁生,房凡,李振山.钙基吸收剂循环煅烧/碳酸化法捕集CO2的研究进展[J].中国电机工程学报,2010,30(26):35-43.
    [78]Herbert E. Andrus Jr., Chiu John H., Thibeault Paul R., Brautsch Andreas. ALSTOM's Calcium Oxide Chemical Looping Combustion Coal Power Technology Development[C]//The 34th International Technical Conference on Clean Coal & Fuel Systems.Clearwater, Florida, USA,2009:
    [79]Nsakala ya N., Gregory N. L. Greenhouse Gas Emissions Control by Oxygen Firing in Circulating Fluidized Bed Boilers:Phase 1-A Preliminary Systems Evaluation[R].2001.
    [80]Andrus H. E., Burns G., Chiu J. H., Liljedahl G. N., Stromberg P. T. Thibeault P. R.. ALSTOM PHASE III-Hybrid Combustion-Gasification Chemical Looping Coal Power Technology Development PHASE III-FINAL REPORT[R].2008.
    [81]Rizeq G., West J., Frydman A., Subia R., Kumar R., Zamansky V. M., Das K.. Fuel-Flexible Gasification-Combustion Technology for Production of Hydrogen and Sequestration-Ready Carbon Dioxide[R]. Irvine,California: Corporation(GE-EER) GE Energy and Environmental Research,2005.
    [82]Rizeq RG Lyon RK, Zamansky VM. Fuel-flexible AGC technology for H2, power, and sequestration-ready CO2[C]//Proceedings of the 26th international technical conference on coal utilization and fuel systems.Clearwater, Florida, USA:2004:359-368.
    [83]Jukkola G, Liljedahl,G.,yaNsakala,N.,Morin,J.X.,Andrus,H. An ALSTOM vision of future CFB technology based power plant concepts[C]//18th International Conference on Fluidized Bed Combustion.Toronto,2005: 109-120.
    [84]Turek D. G., Morin J. X., Liljedahl G. N., Nsakala N. Y. Alstom's Development of Advanced CFB Based Technologies for CO2 Mitigation[C]//4th Annual Conference on Carbon Sequestration.Alexandria, Virginia, USA,2005:
    [85]Abad A., Adanez J., Cuadrat A., Garcia-Labiano F., Gayan P., de Diego L. F. Kinetics of redox reactions of ilmenite for chemical-looping combustion[J]. Chemical Engineering Science,2010,66(4):689-702.
    [86]Zheng M., Shen L. H., Xiao J. Reduction of CaSO4 oxygen carrier with coal in chemical-looping combustion:Effects of temperature and gasification intermediate [J]. International Journal of Greenhouse Gas Control,2010, 4(5):716-728.
    [87]Shen L. H., Zheng M., Xiao J., Xiao R. A mechanistic investigation of a calcium-based oxygen carrier for chemical looping combustion[J]. Combustion and Flame,2008,154(3):489-506.
    [88]Tian H. J., Guo Q. J. Investigation into the Behavior of Reductive Decomposition of Calcium Sulfate by Carbon Monoxide in Chemical-Looping Combustion[J]. Industrial & Engineering Chemistry Research,2009, 48(12):5624-5632.
    [89]Tian H. J., Guo Q. J., Yue X. H., Liu Y. Z. Investigation into sulfur release in reductive decomposition of calcium sulfate oxygen carrier by hydrogen and carbon monoxide [J]. Fuel Processing Technology,2010,91(11):1640-1649.
    [90]郑敏,沈来宏,肖军.化学链燃烧钙基载氧体CaSO4与CO在不同温度下的反应行为[J].化工学报,2008,59(11):2812-2818.
    [91]Zheng M., Shen L. H., Feng X. Q., Xiao J. Kinetic Model for Parallel Reactions of CaSO4 with CO in Chemical-Looping Combustion[J]. Industrial & Engineering Chemistry Research,2011,50(9):5414-5427.
    [92]Xiao R., Song Q. L. Characterization and kinetics of reduction of CaSO4 with carbon monoxide for chemical-looping combustion[J]. Combustion and Flame, 2011,158(12):2524-2539.
    [93]Song Q. L, Xiao R., Deng Z. Y., Zhang H. Y, Shen L. H., Xiao J., Zhang M. Y. Chemical-looping combustion of methane with CaSO4 oxygen carrier in a fixed bed reactor[J]. Energy Conversion and Management,2008, 49(11):3178-3187.
    [94]Song Q. L., Xiao R., Deng Z. Y., Shen L. H., Zhang M. Y. Reactivity of a CaSO4 oxygen carrier in chemical-looping combustion of methane in a fixed bed reactor[J]. Korean Journal of Chemical Engineering,2009,26(2):592-602.
    [95]Song Q. L., Xiao R., Deng Z. Y., Shen L. H., Xiao J., Zhang M. Y. Effect of Temperature on Reduction of CaSO4 Oxygen Carrier in Chemical-Looping Combustion of Simulated Coal Gas in a Fluidized Bed Reactor[J]. Industrial & Engineering Chemistry Research,2008,47(21):8148-8159.
    [96]Song Q. L., Xiao R., Deng Z. Y., Zheng W. G., Shen L. H., Xiao J. Multicycle Study on Chemical-Looping Combustion of Simulated Coal Gas with a CaSO4 Oxygen Carrier in a Fluidized Bed Reactor[J]. Energy & Fuels,2008, 22(6):3661-3672.
    [97]Zhang S. A., Xiao R., Liu J., Bhattacharya S. Performance of Fe2O3/CaSO4 composite oxygen carrier on inhibition of sulfur release in calcium-based chemical looping combustion[J]. International Journal of Greenhouse Gas Control,2013,17:1-12.
    [98]郑敏,沈来宏,肖军,秦翠娟.煤化学链燃烧还原阶段的污染物抑制[J].工程热物理学报,2010,(10):1780-1784.
    [99]秦翠娟,沈来宏,郑敏,肖军.不同气化介质下CaSO4载氧体的煤化学链燃烧实验研究[J].中国电机工程学报,2009,29(26):48-55.
    [100]Liu S. M., Lee D. H., Liu M., Li L. L., Yan R. Selection and Application of Binders for CaSO4 Oxygen Carrier in Chemical-Looping Combustion[J]. Energy & Fuels,2010,24:6675-6681.
    [101]Kuramoto K., Ohtomo K., Suzuki K., Fujimoto S., Shibano S., Matsuoka K., Suzuki Y., Hatano H., Yamada O., Shi-Ying L., Harada M., Morishita K., Takarada T. Localized interaction between coal-included minerals and Ca-based CO2 sorbents during the high-pressure steam coal gasification (HyPr-RING) process[J]. Industrial & Engineering Chemistry Research,2004, 43(25):7989-7995.
    [102]阳绍军.含碳能源直接制氢中钙基吸收剂改性研究[D].工程热物理研究所,2008.
    [103]迟金铃.IGCC电站二氧化碳捕集研究[D].北京:中国科学院工程热物理研究所,2011.
    [104]Wang J. S., Anthony E. J. Clean combustion of solid fuels[J]. Applied Energy, 2007,85(2-3):73-79.
    [105]肖海平,周俊虎,曹欣玉,范红宇,方磊,岑可法CaSO4在不同气氛下分解特性的实验研究[J].动力工程,2004,24(06):889-892.
    [106]田红景.钙基载氧体在化学链燃烧技术中的应用研究[D].青岛科技大学,2010.
    [107]肖海平,周俊虎,刘建忠,曹欣玉,范红宇,岑可法CaSO4与CaS在N2气氛下反应动力学[J].化工学报,2005,56(7):1322-1326.
    [108]Davies N. H., Hayhurst A. N. On the formation of liquid melts of CaS and CaSO4 and their importance in the absorption of SO2 by CaO[J]. Combustion and Flame,1996,106(3):359-362.
    [109]Adanez J., Gayan P., Celaya J.r, de Diego L. F., Garcia-Labiano F., Abad A. Chemical looping combustion in a 10 kW(th) prototype using a CuO/Al2O3 oxygen carrier:Effect of operating conditions on methane combustion[J]. Industrial & Engineering Chemistry Research,2006,45(17):6075-6080.
    [110]Jin H., Okamoto T., Ishida M. Development of a novel chemical-looping combustion:Synthesis of a looping material with a double metal oxide of CoO-NiO[J]. Energy & Fuels,1998,12(6):1272-1277.
    [111]Johansson M., Mattisson T., Lyngfelt A. Creating a synergy effect by using mixed oxides of iron-and nickel oxides in the combustion of methane in a chemical-looping combustion reactor[J]. Energy & Fuels,2006, 20(6):2399-2407.
    [112]郭庆杰,田红景,刘永卓CaSO4的复合载氧体制备及其反应特性[J].太原理工大学学报,2010,41(05):572-576.
    [113]Adanez J., Garcia-Labiano F., de Diego L. F., Gayan P., Celaya J., Abad A. Nickel-copper oxygen carriers to reach zero CO and H2 emissions in chemical-looping combustion[J]. Industrial & Engineering Chemistry Research,2006,45(8):2617-2625.
    [114]周树理.非混合燃烧中CaSO4载氧体的研究[D].北京:中国科学院研究生院,2007.
    [115]Li H. J., Zhuang Y. H. Catalytic reduction of calcium sulfate to calcium sulfide by carbon monoxide[J]. Industrial & Engineering Chemistry Research,1999, 38(9):3333-3337.
    [116]Wang Y., Lin S., Suzuki Y. Study of limestone calcination with CO2 capture: Decomposition Behavior in a CO2 atmosphere[J]. Energy & Fuels,2007, 21(6):3317-3321.
    [117]Yin Wang, Shiying Lin, Yoshizo Suzuki. Experimental study on CO2 capture conditions of a fluidized bed limestone decomposition reactor[J]. Fuel Processing Technology,2010,91(8):958-963.
    [118]Garcia-Labiano F., Abad A., de Diego L. F., Gayan P., Adanez J. Calcination of calcium-based sorbents at pressure in a broad range of CO2 concentrations[J]. Chemical Engineering Science,2002,57(13):2381-2393.
    [119]M.C.Fuerstenau C.M.Shen, B.R.Palmer. Liquidus Temperature in the CaCO3-Ca(OH)2-CaO and CaCO3-CaSO4-CaS Ternary Systems.1-2[J]. Ind Eng Chem Process DesDev,1981,20:441-443.
    [120]Kuramoto K., Shibano S., Fujimoto S., Kimura T., Suzuki Y, Hatano H., Lin S. Y., Harada M., Morishita K., Takarada T. Deactivation of Ca-based sorbents by coal-derived minerals during multicycle CO2 sorption under elevated pressure and temperature[J]. Industrial & Engineering Chemistry Research,2003, 42(15):3566-3570.
    [121]Kamphuis B, Potma A. W., Prins W, Vanswaaij W. P. M. The Reductive Decomposition of Calcium-Sulfate.l. Kinetics of the Apparent Solid-solid Reaction[J]. Chemical Engineering Science,1993,48(1):105-116.
    [122]叶大伦,胡建华.实用无机物热力学数据手册[M].2.北京:冶金工业出版社,2002:205.
    [123]刘光启,马连湘,刘杰.化学化工物性数据手册(无机卷)[M].北京:化学工业出版社,2001:249.
    [124]Barin I., Knacke O. Thermochemical Properties of Inorganic Substances[M]. New York:Springer-Verlag,1973:195.
    [125]Curran G P, Fink C E, E Gorin. CO2 acceptor gasification process:Studies of acceptor properties [J]. Adv Chem Ser,1967,69:141-165.
    [126]MC Fuerstenau, CM Shen, BR Palmer. Liquidus Temperature in the CaCO3-Ca(OH)2-CaO and CaCO3-CaSO4-CaS Ternary Systems.1-2 [J]. Industrial & Engineering Chemistry Process Design and Development,1981, 20(3):441-443.
    [127]Lindberg D., Chartrand P. Thermodynamic evaluation and optimization of the (Ca plus C plus O plus S) system[J]. Journal of Chemical Thermodynamics, 2009,41(10):1111-1124.
    [128]Wikipedi. CALPHAD[OL]. http://en.wikipedia.org/wiki/CALPHAD.
    [129]金利玲,王海涛,许中波,王福明.CaO-SiO2-Al2O3-MnO系低熔点区域控制[J].北京科技大学学报,2007,(6)
    [130]刘迎晖,郑楚光,邱建荣,王泉海.基于五元相图计算的结渣倾向预测方法[J].工程热物理学报,2001,(S1)
    [131]张炜.帘线钢的塑性夹杂物热力学计算[D].昆明:昆明理工大学,2008.
    [132]任楠,王涛,吴玉庭,马重芳.混合碳酸盐的DSC测量与比热容分析[J]. 化工学报,2011,62(S1):197-202.
    [133]Freidina E. B., Fray D. J. Study of the ternary system CaCl2-NaCl-CaO by DSC[J]. Thermochimica Acta,2000,356(1-2):97-100.
    [134]Freidina E. B., Fray D. J. Phase diagram of the system CaCl2-CaCO3[J]. Thermochimica Acta,2000,351(1-2):107-108.
    [135]Wang B. W., Yan R., Zheng Y., Zhao H., Zheng C. G. Simulation of sulfur distribution in chemical looping combustion (CLC) using CaSO4 as oxygen carrier[M]. Xu X., and Xu M.,2007:693-699.
    [136]Ding N., Zheng Y., Luo C., Wu Q. L., Fu P. F., Zheng C. G. Investigation into compound CaSO4 oxygen carrier for chemical-looping combustion[J]. Journal of Fuel Chemistry and Technology,2011,39(3):161-168.
    [137]Liu H., Katagiri S., Okazaki K. Decomposition behavior and mechanism of calcium sulfate under the condition of O2/CO2 pulverized coal combustion[J]. Chemical Engineering Communications,2001,187:199-214.
    [138]Wieczorek-Ciurowa K. The thermal behaviour of compounds in the Ca-S-O system[J]. Journal of Thermal Analysis and Calorimetry,1992,38(3):523-530.
    [139]樊腾飞,程晓磊,王波,田文栋,肖云汉.应用CaSO4载氧体燃烧技术的CaO再生过程[J].化工学报,2012,63(12):4055-4061.
    [140]Wang B. W., Yan R., Zheng Y., Zhao H. B., Zheng C. G. Simulated Investigation of Chemical Looping Combustion with Coal-derived Syngas and CaSO4 Oxygen Carrier[J]. Journal of Fuel Chemistry and Technology,2011, 39(4):251-257.
    [141]Stanmore B. R., Gilot P. Review-calcination and carbonation of limestone during thermal cycling for CO2 sequestration[J]. Fuel Processing Technology, 2005,86(16):1707-1743.
    [142]Qiu K., Anthony E. J., Jia L. Oxidation of sulfided limestone under the conditions of pressurized fluidized bed combustion [J]. Fuel,2001, 80(4):549-558.
    [143]Sohn I., Fruehan R. J. The reduction of iron oxides by volatiles in a rotary hearth furnace process:Part I. The role and kinetics of volatile reduction[J]. Metallurgical and Materials Transactions B-Process Metallurgy and Materials Processing Science,2005,36(5):605-612.
    [144]Donskoi E., McElwain D. L. S., Wibberley L. J. Estimation and modeling of parameters for direct reduction in iron ore/coal composites:Part II. Kinetic parameters [J]. Metallurgical and Materials Transactions B-Process Metallurgy and Materials Processing Science,2003,34(2):255-266.
    [145]Dey S. K., Jana B., Basumallick A. Kinetics and reduction characteristics of hematite-noncoking coal mixed pellets under nitrogen gas atmosphere [J]. Isij International,1993,33(7):735-739.
    [146]程晓磊,樊腾飞,杜鹏飞,田文栋,肖云汉.煤直接制甲烷实验研究[J].工程热物理学报,2013,
    [147]樊腾飞,赵丽凤,王波,田文栋,程晓磊,肖云汉.CaS-CaSO4是否共熔的DTA和TG实验研究[J].化工学报,2013,
    [148]Coursol P., Pelton A. D., Chartrand P., Zamalloa M. The CaSO4-Na2SO4-CaO phase diagram[J]. Canadian Metallurgical Quarterly,2005,44(4):537-545.
    [149]谢刚.熔融盐理论与应用[M].北京:冶金工业出版社,1998:234.
    [150]Lau K. H., Cubicciotti D., Hildenbrand D. L. Effusion Studies of Thermal-Decomposition of Magnesium and Calcium Sulfates[J]. Journal of Chemical Physics,1977,66(10):4532-4539.
    [151]刘振海.分析化学手册第八分册:热分析[M].2.北京:化学工业出版社,1999:274.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700