用户名: 密码: 验证码:
TiO_2光催化氧化As(Ⅲ)机理及其对碳钢的光电化学防护
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在环境污染物中,砷是最毒的元素之一,饮用未处理的地下水带来的慢性砷中毒,能造成各种健康损害,包括皮肤,肝,肾,肺等癌症。在自然水体中,砷主要以三价砷(As(Ⅲ))和五价砷(As(Ⅴ))的形式存在。许多水处理技术,能有效的脱除As(V),而常常对毒性更大的As(Ⅲ)无能为力。为了提高砷的去除效率,有必要将As(Ⅲ)氧化为易处理的As(V)。TiO2光催化氧化技术可以有效的将As(Ⅲ)氧化为As(V)。但是,在光催化过程中光生空穴、羟基自由基和超氧自由基等活性物种对As(Ⅲ)氧化的贡献,至今还存在争议。如何准确地区分这些物种在污染物氧化过程中的作用,不仅是光催化降解污染物技术的关键科学问题之一,也是该领域的研究难点。本论文针对上述科学问题,以砷为目标污染物,首次结合光(电)化学方法系统地研究了其氧化动力学、机理,并初步研究了As(Ⅲ)光催化氧化对典型金属碳钢的光电化学保护效果。论文分三部分,第一部分定量区分了超氧自由基及其衍生物和光生空穴在As(Ⅲ)光催化氧化过程中的作用;第二部分研究了As(Ⅲ)光催化氧化过程中光生空穴界面转移动力学和机理笫三部分以As(Ⅲ)为电子供体,初步研究了TiO2及其表面氟化改性TiO2对碳钢的光电化学保护行为。
     第一部分结合光(电)化学方法系统地研究了As(Ⅲ)光催化氧化动力学并定量区分了超氧自由基及其衍生物和光生空穴氧化As(Ⅲ)的机理。在无光照、有氧和负偏压的条件下,证实了超氧自由基可以氧化As(Ⅲ),但氧化效率低,表明超氧自由基是一种较弱的氧化剂。光照时超氧自由基可生成更强的氧化剂,从而能够有效地氧化As(Ⅲ)。在缺氧、阳极偏压和光照时,光生空穴的电流效率几乎为100%,表明其对As(Ⅲ)具有很强的氧化能力。在通常的光催化条件下(有氧、开路),光生空穴和超氧自由基及其衍生物对As(Ⅲ)的氧化贡献分别为57%和43%,起着几乎同等的作用。
     第二部分采用数学模型和饱和光电流测试实验,数学模型和不同As(Ⅲ)浓度时降解实验相结合的研究方法,研究了光生空穴和羟基自由基对As(Ⅲ)氧化的贡献。实验结果表明,在所研究的试验条件下羟基自由基对As(Ⅲ)的氧化起主要作用。采用空穴和羟基自由基捕获剂,及电极表面改性等常规研究方法,定性的探讨了As(Ⅲ)的氧化机理。实验结果辅助证实了As(Ⅲ)的羟基自由基氧化机理。
     第三部分考察了Ti02电极表面氟化改性,溶液中As(Ⅲ)的加入和02的去除对电极光电性能和对碳钢的阴极保护性能的影响。试验结果表明,电极表面氟化溶液中As(Ⅲ)的加入和O2的去除,均可以显著的提高电极的光电流,降低电极的光电势,从而提高了光电极对金属的光电化学防护性能。在As(Ⅲ)存在下和N2氛围中,氟化Ti02可以对腐蚀电位很负的碳钢进行有效地阴极保护。
Arsenic is one of the most poisonous elements in environmental pollutants. Studies on long-term human exposure reported that arsenic in drinking water was associated with liver, lung, kidney, bladder, and skin cancers. Arsenic in groundwater occurs primarily in inorganic form, either as arsenite (As(Ⅲ)), or arsenate (As(Ⅴ)). As(V) could be efficiently removed by common water treatment methods. However, the removal of As(Ⅲ) by such processes is often substantially less efficient. The oxidation of As(Ⅲ) to As(V), is required for the efficient removal of arsenic.TiO2photo-catalysis has been shown to be effective in oxidizing As(Ⅲ) to As(V) in the presence of oxygen. However, the As(Ⅲ) photo-oxidation mechanism is complex, has been an issue of considerable controversy. Lines of evidence supporting As(Ⅲ) oxidation by super-oxide, hydroxyl radicals, valence band holes have been reported.
     To unequivocally answer who, among the photo-hole, super-oxide, and its photo-induced derivates, is the main oxidant in the normal aerated aqueous solutions and at open circuit conditions, their respective contribution to As(Ⅲ) oxidation was studied. The contribution of photo-hole to As(Ⅲ) oxidation was investigated under conditions of anodic bias potentials and under illumination. The role of super-oxide in the dark and its photo-induced derivates under illumination were studied respectively under the conditions of negative bias potentials and air-saturated which conditions no photo-holes would be involved in the oxidation of As(Ⅲ). The results show the sum contribution of super-oxide and its derivates is considerably high (up to43%), it is not more than that of photo-hole (57%).
     In order to Distinguish between the direct and indirect interfacial hole transfer, the experiments of electrochemical measurements and As(Ⅲ) oxidation were conducted in the conditions of anodic potential and N2saturated when no super-oxide was involved in the oxidation of As(Ⅲ). An Kinetics model was established and used to reveal the photocatalytic oxidation of As(Ⅲ). The measurements of photocurrent and expeneriments of As(Ⅲ) oxidation were carrird out in different light intensities and As(Ⅲ) concentrations. Based on the Kinetic model, the results showed hydroxyl radicals were mainly responsible for the photocatalytic oxidation of As(Ⅲ). Fluorinated TiO2, Hydroxyl radical and valence band hole scavenger were also used to to seek for clearer evidences for the role of hydroxyl radicals and valence band holes in the course of As(Ⅲ) oxidation. The results also confirmed that hydroxyl radicals is the main oxidant for the oxidation of As(Ⅲ).
     The effect of fluorinated TiO2, the addition of As(Ⅲ) and the romovel of O2on the anticorrosion performances of TiO2electrodes have been investigated by the electrochemical methods. The results showed that fluorinated TiO2, the addition of As(Ⅲ) and the romovel of O2could obviously enhanced photocurrent and decrease the potential under illumination, thus improve the anticorrosion performances for carbon steel. Fluorinated TiO2, could produce an efficient photocathodic protection for carbon steel under the condition of N2saturated and the solution with As(Ⅲ).
引文
(1)Smedley, P. L. Arsenic in groundwater-South and East Asia. In Arsenic in Groundwater; Welch, A. H. S., Kenneth, G., Eds.; Kluwer Academic Publishers: Norwell, MA,2003; Vol.1, pp 179-209.
    (2)Smith, A. H.; Hopenhaynrich, C.; Bates, M. N.; et al. Cancer risks from arsenic in drinking-water. Environ. Health Perspect.1992,97,259-268.
    (3)U.S. EPA. Fed. Regist.2001,66,6976.
    (4)DeMarco, M. J.; SenGupta, A. K.; Greenleaf, J. E. Arsenic removal using polymeric/inorganic hybrid sorbent. Water Res.2003,57,164-176.
    (5)Nikolaidis, N. P.; Dobbs, G. ML; Lackovic, J. A. Arsenic removal by zerovalent iron:field, laboratory and modeling studies. Water Res.2003,37,1417-1425.
    (6)Hering, J. G.; Chen, P.-Y.; Wilkie, J. A.; Elimelech, M.; Liang, S. Arsenic removal by ferric chloride. J.-Am. Water Works Assoc.1996,88,155-167.
    (7)Smedley, P. L.; Nicolli, H. B.; Macdonald, D. M. J.; et al.Hydrogeochemistry of arsenic and other inorganic constituents in groundwaters from La Pampa, Argentina. Appl.Geochem.2002,17,259-284.
    (8)Cullen, W. R.; Reimer, K. J. Arsenic speciation in the environment.Chem. Rev. 1989,59,713-764.
    (9)Masscheleyn, P. H.; Delaune, R. D.; Patrick, W. H., Jr. Effect of redox potential and pH on arsenic speciation and solubility in a contaminated soil. Environ. Set Technol.1991,25,1414-1419.
    (10)Pettine, M.; Campanella, L.; Millero, F. J. Arsenite oxidation by H2O2 in aqueous solutions. Geochim. Cosmochim. Acta 1999,63,2727-2735.
    (11)Raven, K. P.; Jain, A.; Loeppert, R. H. Arsenite and arsenate adsorption on ferrihydrite:Kinetics, equilibrium, and adsorption envelopes. Environ. Sci. Technol. 1998,32,344-349.
    (12)Jain, A.; Raven, K. P.; Loeppert, R. H. Arsenite and arsenate adsorption on ferrihydrite:Surface charge reduction and net OH" release stoichiometry. Environ. Sci. Technol.1999,33,1179-1184.
    (13)Lin, T. F.; Wu, J.-K. Adsorption of arsenite and arsenate within activated alumina grains:Equilibrium and kinetics. Water Res.2001,35,2049-2057.
    (14)Dodd, M. C; Vu, N.D.; Ammann, A.; et al. Kinetics and mechanistic aspects of As(Ⅲ) oxidation by aqueous chlorine, chloroamines, and ozone:relevance to drinking water treatment. Environ. Sci. Technol.2006,40,3285-92.
    (15)Pettine, M.; Campanella, L.; Millero, F. J. Arsenite oxidation by H2O2 in aqueous solutions. Geochim. Cosmochim. Acta 1999,63,2727-2735.
    (16)Frank, P.; Clifford, D. Arsenic(Ⅲ) oxidation and removal from drinking water. U.S. Environmental Protection Agency. EPA-600-52-86/021,1986, pp.2-86.
    (17)Myoung, J. K.; Jerome, N. Oxidation of arsenite in groundwater using ozone and oxygen. Sci. Total Environ.2000,247,71-79.
    (18)Hug, S. J.; Leupin, O. Iron-catalyzed oxidation of arsenic(Ⅲ) by oxygen and by hydrogen peroxide:pH-dependent formation of oxidants in the Fenton reaction. Environ. Sci. Technol.2003,37,2734-2742.
    (19)Yang, H.; Lin, W. Y.; Rajeshwar, K. Homogeneous and heterogeneous photo-catalytic reactions involving As(Ⅲ) and As(Ⅴ) species in aqueous media. J. Photochem. Photobiol, A 1999,123,137-143.
    (20)Lee, H.; Choi, W. Photocatalytic oxidation of arsenite in TiO2 suspension: Kinetics and mechanisms. Environ. Sci. Technol.2002,36,3872-3878.
    (21)Rye, J.; Choi, W. Response to comments on photocatalytic oxidation of arsenite on TiO2:understanding the controversial oxidation mechanism involving superoxides and the effect of alternative acceptors. Environ. Sci. Technol.2007,41,6313-6314.
    (22)Ryu, J.; Choi, W. Effects of TiO2 surface modifications on photocatalytic oxidation of arsenite:The role of superoxides. Environ. Sci. Technol.2004,38, 2928-2933.
    (23)Ryu, J.; Choi, W. Photocatalytic oxidation of arsenite on TiO2:understanding the controversial oxidation mechanism involving superoxides and the effect of alternative electron acceptors. Environ. Sci. Technol.2006,40,7034-7039.
    (24)Ferguson, M. A.; Hoffman, M. R.; Hering, J. G. TiO2-photocatalyzed As(Ⅲ) oxidation in aqueous suspensions:reaction kinetics and effect of adsorption. Environ. Sci. Technol.2005,39,1880-1886.
    (25)Yoon, S. H.; Lee, J. H. Oxidation mechanism of As(Ⅲ) in the UV/TiO2 system: evidence for a direct hole mechanism. Environ. Sci. Technol.2005.39,9695-9701.
    (26)Dutta, P. K.; Pehkonen, S. O.; Sharma, V. K.; et al. Photocatalytic oxidation of arsenic(Ⅲ):evidence of hydroxyl radicals. Environ. Sci. Technol.2005,39,1827-1834.
    (27)Xu, T.; Kamat, P. V.; O'Shea, K. E. Mechanistic evaluation of arsenite oxidation in TiO2 assisted photocatalysis. J. Phys. Chem. A 2005,109,9070-9075.
    (28)Mandal, B. K.; Suzuki, K. T. Arsenic around the world:a review. Talanta 2002, 58,201-235.
    (29)Nriagu, J. O.; Azcue, J. M.; In:Nriagu, J.; O. editor. Arsenic in the environment. Part I:cycling and characterization. New York:John Wiley and Sons, Inc; 1990. p. 1-15.
    (30)Bissen, M.; Frimmel, F. H. Arsenic-a review. Part I:occurrence, toxicity, speciation, and mobility. Acta Hydroch. Hydrob.2003a,31,9-18.
    (31)Bissen, M.; Frimmel, F. H. Arsenic—a review. Part Ⅱ:oxidation of arsenic and its removal in water treatment. Acta Hydroch. Hydrob.2003b,37,97-107
    (32)Viraraghavan, T., Subramanian, K. S., Aruldoss, J. A. Arsenic in drinking Water problems and solutions. Water Sci. Technol.1999,40,2,69-76.
    (33)廖自基.环境中微量重金属的污染危害与迁移转化.北京:科学出版社,1989.101-109.
    (34)Ng, J. C.; Wang, J.; Sharim, A. A global health problem caused by arsenic from natural sources. Chemosphere 2003,52,1353-1359.
    (35)Ferguson, J. F.; Gavis, J. Review of the arsenic cycle in natural waters. Water Res 1972,6,1259-1274.
    (36)Pierce, M. L.; Moore, C. B. Adsorption of arsenite and arsenate on amorphous iron hydroxide. Water Res.1982,16,1247-1253.
    (37)Goldberg, S.; Johnston, C. T. Mechanism of arsenic adsorption on amorphous oxides:evaluated using macroscopic measurements, vibrational spectroscopy, and surface complexation modeling. J. Colloid. Interface. Sci.2001,234,204-216.
    (38)Masscheleyn, P. H.; Delaune, R. D.; Patrick, J. W. H. Effect of redox potential and pH on arsenic speciation and solubility in a contaminated soil. Environ. Sci. Technol.1991,25,1414-1419.
    (39)Ng, J. C. Environmental contamination of arsenic and its toxicological impact on humans. Environ. Chem.2005,2,146-160.
    (40)Korte, N. E.; Fernando, Q. Areview of arsenic(Ⅲ) in groundwater. Crit. Rev. Environ. Control 1991,21,1-39.
    (41)Khatiwada, N. R.; Takizawa, S.; Tran, T. V. N.; Inoue, M. Groundwater contamination assessment for sustainable water supply in Kathmandu Valley, Nepal. Water Sci. Technol.2002,46,147-154.
    (42)潘泽民,刘开泰,杨磊.砷对细胞和生物作用的研究进展.环境与健康杂志.2003,20,184-186.
    (43)Ncsnow, S.; Roop, B. C.; Lambert, G.; et al. DNA damage induced by methylated trivalent arsenicals is mediated by reactive oxygen species. Chem. Res. Toxicol.2002,15,1627-1634.
    (44)Suzuki, N.; Naranmandura, H.; Hirano, S.; et al. Theoretical calculations and reaction analysis on the interaction of pentavelent thioarsenicals with biorelevant thiol compounds. Chem. Res. Toxicol.2008,21,550-553.
    (45)Aposhian, H. V.; Aposhian, M. M. Arsenic toxicology:five questions. Chem. Res. Toxicol 2006,19,1-15.
    (46)Chang, K. N.; Lee, T. C.; Tam, M. F.; et al. Identification of galectin I and thioredoxin peroxidase Ⅱ as two arsenic-binding proteins in Chinese hamster ovary cells. Biochem. J.2003,371,495-503.
    (47)Schuliga, M.; Chouchane, S.; Snow, E. T. Upregulation of glutathione-related genes and enzyme activities in cultured human cells by sublethal concentration of inorganic arsenic. Toxicol. Sci.2002,70,183-92.
    (48)Sharma, V. K.; Sohn, M. Aquatic arsenic:Toxicity, speciation, transformations, and remediation. Environ. Int.2009,35,743-759.
    (49)Berg, M., Tran, H. C., Nguyen, T. C, et al. Arsenic contamination of groundwater and drinking water in Vietnam:A human health threat. Environ. Sci. Technol.2001,35, 2621-2626.
    (50)Nickson, R.; McArthur, J.; Burgess, W.; et al. Nature 1998,395,338-339.
    (51)方兆珩,石伟,韩宝玲,等.高砷溶液中和脱砷过程.化工冶金.2000,21,359-362.
    (52)曹忠良,王珍云.无机化学反应方程式手册.长沙:湖南科学技术出版社,1982.
    (53)蒋宏国,潘剑波.三氧化二砷冶炼“三废”治理研究.湖南有色金属.2002,18,6,39-41.
    (54)葛宪民,江世强,韦波,等.石灰中和法对砒霜泄漏污染河流的野外现场应急处理.广西医科大学学报.2004,21,1-4.
    (55)Environmental Protection Agency. Technologies and costs for removal of arsenic from drinking water. EPA 815-R-00-028,2000. December.
    (56)Mohan, D.; Pittman, J. C. U. Arsenic removal from water/wastewater using adsorbents-a critical review. J. Hazard. Mater.2007,142,1-53.
    (57)Gu, Z.; Fang. J.; Deng, B. Preparation and evaluation of GAC-based iron containing adsorbents for arsenic removal. Environ.Sci. Technol.2005,39,3833-3843.
    (58)Chuang. C. L.; Fan, M.; Xu, M.; et al. Adsorption of arsenic (V) by activated carbon prepared from oat hulls. Chemosphere 2005,61,478-483.
    (59)Lin, T. F.; Wu, J. K. Adsorption of arsenite and arsenate within activated alumina grains:equilibrium and kinetics. Water Res.2001a,35,2049-2057.
    (60)Singh, T. S.; Pant, K. K. Equilibrium, kinetics, and thermodynamic studies for adsorption of As(Ⅲ) on activated alumina. Sep. Purif. Technol.2004,36,139-147.
    (61)Sato, Y.; Kang, M.; Karnei, T.; et al. Performance of nano-filtration for arsenic removal. Water Res,2002,36:3371-3377.
    (62)Gergeley, S.; Vatai, G.; Bekassy-Molna, E. Arsenic, zinc and magnesium ion removal from water by nano-filtration, modelling of rejections. Hungarian J. Ind. Chem,2001,2:9,21-25.
    (63)Ning, R. Y. Arsenic removal by reverse osmosis. Desalination,2002,143, 237-241.
    7(64) Baciocchi, R.; Chiavola, A.; Gavasci, R. Ion exchange equilibria of arsenic in the presence of high sulfate and nitrate concentrations. Water. Sci. Technol.2005,5,67-74.
    (65)Sharma, V. K. Use of iron(VI) and iron(V) in water and wastewater treatment. Water Sci. Technol.2004,49,69-14.
    (66)Sharma, V. K. Ferrate studies for disinfection and treatment of drinking water. In: Nikolaou, A.; Rizzo, L.; Selcuk, H.; editors. Advances in control of disinfection byproducts in drinking water systems. Nova Science Publishers; 2007a. p.1-6. Chapter 7.
    (67)Sharma, V. K. A review of disinfection performance of Fe(VI) in water and wastewater. Water Sci. Technol.2007b,55,225-232.
    (68)Fujishima, A., Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature,1972,238,37-38.
    (69)Carey, J. H., Lawrence, J., Tosine, H. M. Photodechlorination of PCB's in the presence of titanium dioxide in aqueous suspension. Bull. Environ. Contain. Toxicol. 1976,16,697-701
    (70)施晶莹,冷文华,程小芳,张鉴清,曹楚南.TiO2光电化学电池催化氧化甲基红.物理化学学报,2005,21,971-976.
    (71)Cong, S.; Xu, Y. M. Enhanced sorption and photo-degradation of chloro-phenol over fluoride-loaded TiO2 J. Hazard. Mater.2011,192,485-489.
    (72)Linsebigler, A. L., Lu, G, Yates, J. T. Photocatalysis on TiO2 surfaces; principles, mechanisms, and selected results, Chem. Rev.,1995,95,735-742.
    (73)施晶莹.浙江大学博士学位论文.浙江大学,杭州:2005
    (74)阿伦.J.巴德等著,邵元华等译.电化学方法原理和应用.化学工业出版社,北京,2005年第二版.
    (75)Mills, A.; LeHunte, S. An overview of semiconductor photocatalysis. J. Photochem. Photobiol., A.1997,108:1-35.
    (76)Graetzel, M.; Frank, A. J. Interracial electron-transfer reactions in colloidal semiconductor dispersions, Kinetic analysis. J. Phys. Chem.1902,86,2964-2967.
    (77)Martin, S. T., Herrmann, H., Choi, W., et al. Time-resolved microwave conductivity. Trans. Faraday Soc,1994,90:3323-3330.
    (78)Tumhi, C. S.; Ollis, D. F. Photocatalytic degradation of organic water contaminants:Mechanisms involving hydroxyl radical attack, J. Catal.1990,122, 178-192.
    (79)Yang, J. K.; Davis, A. E. Photocatalytic oxidation of Cu(11)-EDTA with illuminated TiO2:Kinetics. Environ. Sci. Technol.2000,34,3789-3795.
    (80)Parra,S.; Olivero, J.; Pulgarin, C. Relationships between physicochemical roperties and photoreactivity of four biorecalcitrant phenylurea herbicides in aqueous TiO2 suspension. Appl. Catal, B,2002,6,75-85.
    (81)Gerischer, H.; Heller, A. The Role of Oxygen in Photooxidation of Organic Molecules on Semiconductor Particles. J. Phys. Chem.1991,95,5261-5267.
    (82)Grela, M. A.; Brusa, M. A.; Colussi, A. J. Efficiency of Hot Carrier Trapping by Outer-Sphere Redox Probes at Quantum Dot Interfaces. J. Phys. Chem. B.1999, 103,6400-6402.
    (83)Morrison, S. R. Electrochemistry at Semiconductors and Oxidized Metal Electrodes; Plenum Press:New York,1980.
    (84)Villarreal, T. L.; Gomez, R.; Spallart N. M.; et al. Semiconductor Photooxidation of Pollutants Dissolved in Water:G. A Kinetic Model for Distinguishing between Direct and Indirect Interfacial Hole Transfer. I. Photo-electrochemical Experiments with Polycrystalline Anatase Electrodes under Current Doubling and Absence of Recombination. J. Phys. Chem.B 2004,108,15172-15181.
    (85)Villarreal, T. L.; Gomez, R.; Spallart, N. M.; et al. Semiconductor Photooxidation of Pollutants dissolved in water:a kinetic model for distinguishing between direct and indirect interfacial hole transfer. I. photo-electrochemical experiments with polycrystalline anatase electrodes under current doubling and absence of recombination.J. Phys. Chem. B 2004,108,15172-15181.
    (86)Carraway, E. R.; Hoffman, A. J.; Hoffmann, M. R. Photocatalytic oxidation of organic acids on quantum-sized semiconductor colloids. Environ. Sci. Technol.1994, 28,786-793.
    (87)Fox, M. A.; Dulay, M. T. Acceleration of secondary dark reactions of intermediates derived from adsorbed dyes on irradiated TiO2 powders, J. Photochem. Photobiol, A 1996,98,91-101.
    (88)Furuta, T.; Ito, H.; Ishibashi, T. Photoresponse dynamics of uni-traveling-carrier and conventional pin-photodiodes. Compd. Semicond.1999,166,419-422.
    (89)Ollis, D. F.; Hsiao, C. Y.; Budiman, L.; et al. Heterogeneous photo-assisted catalysis:Conversions of perehloroethylene, dichloroethane, chloroacefic acids, and chlorobanzenes, J. Catal.1984,88,89-96.
    (90)Turch, C. S.; Ollis, D. F. Mixed reactant photocatalysis:Intermediates and mutual rate inhibition, J. Catal.1989,119,483-496.
    (91)Tumhi, C. S.; Ollis, D. F.Photocatalytic degradation of organic water contaminants:Mechanisms involving hydroxyl radical attack, J. Catal.1990,122, 178-192.
    (92)Jaeger, C. D.; Bard, A. Spin trapping and electron spin resonance detection radical inter mediates in the photocomposition of water at titanium dioxide particulate system. J. Phys. Chem.1979,83,3146-3152.
    (93)Nosaka, Y.; Komori, S.; Yawata, K.; et al. Photo-catalytic.OH radical formation in TiO2 aqueous suspension studied by several detection methods, Phys. Chem. Chem. Phys.2003,5,4731-4735.
    (94)Anpo, M.; Shima, T.; Kodama, S.; et al. Photocatalytic hydrogenation of propyne with water on small-particle titania size quantization effects and reaction intermediates. J. Phys. Chem.1987,91,4305-4310.
    (95)Cunningham, J.; Srijaranai, S. Isotope-effect evidence for hydroxyl radical involvement in alcohol photo-oxidation sensitized by TiO2 in aqueous suspension. J. Photochem. Photobiol, A 1988,43,329-335.
    (96)Okamoto, K.; Yamamoto, Y.; Tanaka, H.; et al. Heterogeneous photocatalytic decomposition of phenol over anatase powder. Bull. Chem. Soc. Jpn.1985,58, 2015-2022.
    (97)Kaise, M.; Nagai, H.; Tokuhashi, K.; et al. Electron spin resonance study of photocatalytic interface reaction of suspended M/TiO2 (M=Pt, Pd, It, Rh, Os, or Ru) with alcohol and acetic acid in aqueous medium. Langrauir 1994,10,1345-1347.
    (98)Bielski, B. H. J.; Cabelli, D. E.; Arudi, R. L; et al. Reactivity of HO2·/O2·-radicals in aqueous solution, J. Phys. Chem. Ref. Data.1985,14,1041-1100.
    (99)Nosaka, Y.; Nakamura, M.; Hirakawa, T. Behavior of superoxide radicals formed on TiO2 powder photocatalysts studied by a chemiluminescent probe method, Phys. Chem. Chem. Phys.2002,4,1088-1092.
    (100)Nosaka, Y.; Yamashita, Y.; Fukuyama, H. Application of chemiluminescent probe to monitoring superoxide radicals and hydrogen peroxide in TiO2 photocatalysis. J. Phys. Chem. B 1997,101,5822-5827.
    (101)Anrunes, C. S. A.; Bietti, M.; Salamone, M.; et al. Early stage in the TiO2-photocatalyzed degradation of simple phenolic and non-phenolic lignin model compounds, J. Photochem. Photobiol, A 2004,163,453-462.
    (1)曹楚南,张鉴清著.电化学阻抗谱导论,科学出版社,北京,2002年7月第一版.
    (2)Oskam, G, Schmidt, J. C., Hoffmann, P. M., Searson, P. C. Electrical properties of n-type (111) Si in aqueous K4Fe(CN)6 solution.J. Electrochem. Soc.,1996,143: 2531-2537.
    (3)Dhar, R. K.; Zheng, Y.; Rubenstone, J.; van Geen, A. A rapid colorimetric method for measuring arsenic concentrations in groundwater. Anal. Chim. Acta,2004,526, 203-209.
    (4)水质-铁的测定,邻菲啰啉分光光度法,中华人名共和国环境保护行业标准国家环境保护总局,2007年3月10日.
    (1)Ng, J. C. Environmental contamination of arsenic and its toxicological impact on humans. Environ. Chem.2005,2,146-160.
    (2)Smith, A. H.; Hopenhaynrich, C.; Bates, M. N.; et al. Cancer risks from arsenic in drinking-water. Environ. Health Perspect.1992,97,259-268.
    (3)Smedley, P. L.; Nicolli, H. B.; Macdonald, D. M. J.; et al. Hydrogeochemistry of arsenic and other inorganic constituents in groundwaters from La Pampa, Argentina. ApplGeochem.2002,17,259-284.
    (4)DeMarco, M. J.; SenGupta, A. K.; Greenleaf, J. E. Arsenic removal using polymeric/inorganic hybrid sorbent. Water Res.2003,37,164-176.
    (5)Nikolaidis, N. P.; Dobbs, G. M.; Lackovic, J. A. Arsenic removal by zerovalent iron:field, laboratory and modeling studies. Water Res.2003,37,1417-1425.
    (6)Hering, J. G.; Chen, P. Y.; Wilkie, J. A.; et al. Arsenic removal by ferric chloride. J.-Am. Water Works Assoc.1996,88,155-167.
    (7)Raven, K. P.; Jain, A.; Loeppert, R. H. Arsenite and arsenate adsorption on ferrihydrite:Kinetics, equilibrium, and adsorption envelopes. Environ. Sci. Technol. 1998,32,344-349.
    (8)Jain, A.; Raven, K. P.; Loeppert, R. H. Arsenite and arsenate adsorption on ferrihydrite:Surface charge reduction and net OH-release stoichiometry. Environ. Sci. Technol.1999,33,1179-1184.
    (9)Dodd, M. C; Vu, N. D.; Ammann, A.; et al. Kinetics and mechanistic aspects of As(Ⅲ) oxidation by aqueous chlorine, chloroamines, and ozone:relevance to drinking water treatment. Environ. Sci. Technol.2006,40,3285-3292.
    (10)Pettine, M.; Campanella, L.; Millero, F. J. Arsenite oxidation by H2O2 in aqueous solutions. Geochim Cosmochim Acta 1999,63,2727-2735.
    (11)Myoung, J. K.; Jerome, N. Oxidation of arsenite in groundwater using ozone and oxygen. Sci. Tot. Environ.2000,247,71-79.
    (12)Hug, S. J.; Leupin, O. Iron-catalyzed oxidation of arsenic(Ⅲ) by oxygen and by hydrogen peroxide:pH-dependent formation of oxidants in the Fenton reaction. Environ. Sci. Technol.2003,37,734-742.
    (13)Yang, H.; Lin, W. Y.; Rajeshwar, K. Homogeneous and heterogeneous photocatalytic reactions involving As(Ⅲ) and As(Ⅴ) species in aqueous media. J. Photochem. Photobiol., A 1999,123,137-143.
    (14)Bissen, M.; Frimmel, F. H. Arsenic—a review. Part Ⅱ:oxidation of arsenic and its removal in water treatment. Acta Hydroch Hydrobiol 2003b,31,97-107.
    (15)Yoon, S. H.; Lee, J. H. Oxidation mechanism of As(Ⅲ) in the UV/TiO2 system: evidence for a direct hole mechanism. Environ. Sci. Technol.2005,39,9695-9701.
    (16)Yoon, S. H.; Oh, S. E.; Yang, J. E.; et al. TiO2 Photocatalytic oxidation mechanism of As(Ⅲ). Environ.Sci. Technol.2009,43,864-869.
    (17)Dutta, P. K.; Pehkonen, S. O.; Sharma, V. K. Photocatalytic oxidation of arsenic(Ⅲ):evidence of hydroxyl radicals. Environ. Sci. Technol.2005,39,1827-1834.
    (18)Xu, T.; Kamat, P. V.; O'Shea, K. E. Mechanistic evaluation of arsenite oxidation in TiO2 assisted photocatalysis. J. Phys. Chem. A 2005,109,9070-9075.
    (19)Lee, H.; Choi, W. Photocatalytic oxidation of arsenite in TiO2 suspension: Kinetics and mechanisms. Environ. Sci. Technol.2002,36,3872-3878.
    (20)Rye, J.; Choi, W. Response to comments on photocatalytic oxidation of arsenite on TiO2:understanding the controversial oxidation mechanism involving superoxides and the effect of alternative acceptors. Environ. Sci. Technol.2007,41,6313-6314.
    (21)Ryu, J.; Choi, W. Effects of TiO2 surface modifications on photocatalytic oxidation of arsenite:The role of superoxides. Environ. Sci. Technol. 2004,38, 2928-2933.
    (22)Ryu, J.; Choi, W. Photocatalytic oxidation of arsenite on TiO2:understanding the controversial oxidation mechanism involving superoxides and the effect of alternative electron acceptors. Environ. Sci. Technol.2006,40,7034-7039.
    (23)Ferguson, M. A.; Hoffman, M. R.; Hering, J. G. TiO2-photocatalyzed As(Ⅲ) oxidation in aqueous suspensions:reaction kinetics and effect of adsorption. Environ. Sci. Technol.2005,39,1880-1886.
    (24)Choi, W.; Yeo, J.; Ryu, J.; et al. Photocatalytic oxidation mechanism of As(Ⅲ) on TiO2:Unique role of As(Ⅲ) as a charge recombinant species. Environ. Sci. Technol. 2010,^,9099-9104.
    (25)Fei, H.; Leng, W. H.; Li, X.; et al. Photocatalytic oxidation of arsenite over TiO2: Is superoxide the main oxidant in normal air-saturated aqueous solutions? Environ. Sci. Technol.2011,45:4532-4539.
    (26)Leng, W. H.; Cheng, X. F.; Zhang, J. Q.; et al. Comment on photocatalytic oxidation of arsenite on TiO2:Understanding the controversial oxidation mechanism involving superoxides and the effect of alternative electron acceptors. Environ. Sci. Technol.2007,41,6311-6312.
    (27)Leng, W. H.; Li, X.; Fei, H.; et al. Comment on photocatalytic oxidation mechanism of As(Ⅲ) on TiO2:Unique role of As(Ⅲ) as a charge recombinant species. Environ. Sci. Technol.2011,45,2028-2029.
    (28)Leng, W. H.; Zhang, Z.; Zhang, J. Q.; et al. Investigation of the kinetics of a TiO2 photoelectrocatalytic reaction involving charge transfer and recombination through surface states by electrochemical impedance spectroscopy. J. Phys. Chem. B 2005,109, 15008-15023.
    (29)Kesselman, J. M.; Shreve, G. A.; Hoffmann, M. R.; et al. Flux-matching conditions at TiO2 photoelectrodes:Is interfacial electron transfer to O2 rate-limiting in the TiO2-catalyzed photochemical degradation of organics? J. Phys. Chem.1994,98, 13385-13395.
    (30)Villarreal, T. L.; Gomez, R.; Neumann-Spallart, M.; et al. Semiconductor photooxidation of pollutants dissolved in water:A kinetic model for distinguishing between direct and indirect interfacial hole transfer. I. Photoelectrochemical experiments with polycrystalline anatase electrodes under current doubling and absence of recombination. J. Phys. Chem. B 2004,108,15172-15181.
    (31)Vinodgopal, K.; Hotchandani, S.; Kamat, P. V. Electrochemically assisted photocatalysis:titania particulate film electrodes for photocatalytic degradation of 4-chlorophenol. J. Phys. Chem.,1993,97,9040-9044.
    (32)Kim, D. H.; Anderson, M. A. Photoelectrocatalytic degradation of formic acid using a porous titanium dioxide thin-film electrode. Environ. Sci. Technol.1994,28, 479-483
    (33)Vinodgopal, K.; Stafford, U.; Gray, K. A.; et al. Electrochemically assisted photocatalysis.2. The role of oxygen and reaction intermediates in the degradation of 4-Chlorophenol on immobilized TiO2 particulate films. J. Phys Chem.1994,98, 6797-6803
    (34)Leng, W. H.; Zhang, Z.; Zhang, J. Q. Photoelectrocatalytic degradation of aniline over rutile TiO2/Ti electrode thermally formed at 600℃. J. Mol. Catal. A, Chem.2003, 206,239-252.
    (35)Leng, W. H.; Zhu, W. C.; Ni, J.; et al. Photoelectrocatalytic destruction of organics using TiO2 as photoanode with simultaneous production of H2O2 at the cathode. Appl. Catal., A 2006,300,24-35.
    (36)Dhar, R. K.; Zheng, Y.; Rubenstone, J.; et al. A rapid colorimetric method for measuring arsenic concentrations in groundwater. Anal. Chim. Acta 2004,526, 203-209.
    (37)Klaning, U. K.; Bielski, B. H. J.; Sehested, K. Arsenic(Ⅳ). A pulseradiolysis study. Inorg. Chem.1989,28,2717-2724.
    (38)Buxton, G. V.; Greenstock, C. K.; Helman, W. P.; et al. Critical-review of rate constants for reactions of hydrated electrons, hydrogen-atoms and hydroxyl radicals (.OH/O") in aqueous-solution.J. Phys. Chem. Ref. Data 1988,17,513-886.
    (39)Dionysiou, D. D.; Suidan, M. T.; Baudin, I.; et al. Effect of hydrogen peroxide on the destruction of organic contaminantssynergism and inhibition in a continuous-mode photocatalytic reactor. Appl. Catal, B 2004,50,259-269.
    (40)Nosaka, Y.; Nakamura, M.; Hirakawa, T. Behavior of superoxide radicals formed on TiO2 powder photocatalysts studied by a chemiluminescent probe method. Phys. Chem. Chem. Phys.2002,4,1088-1092.
    (41)Hirakawa, T.; Nosaka, Y. Properties of O2·-and OH· formed in TiO2 aqueous suspensions by photocatalytic reaction and the influence of H2O2 and some ions. Langmuir 2002,18,3247-3254.
    (1)Kaneko, M.; Okura, I. Photo-catalysis Science and Technology; Springer:New York,2002.
    (2)Hoffmann, M. R.; Martin, S. T.; Choi, W.; et al. Environmental Applications of Semiconductor Photocatalysis. Chem. Rev.1995,95,69-96.
    (3)Bard, A. J.; Faulkner, L. R. Electrochemical Methods Fundamentals and Applications; Wiley:New York,2001; p 116.
    (4)Bard, A. J. Inner-sphere heterogeneous electrode reactions. Electro-catalysis and Photo-catalysis:The Challenge. J. Am. Chem. Soc.2010,132,7559-7567
    (5)Gerischer, H.; Heller, A.The role of oxygen in photooxidation of organic molecules on semiconductor particles. J. Phys. Chem.1991,95,5261-5267.
    (6)Grela, M. A.; Brusa, M. A.; Colussi, A. Efficiency of hot carrier trapping by outer-sphere redox probes at quantum dot interfaces.J. Phys. Chem. B 1999,103, 6400-6402.
    (7)Jaeger, C. D.; Bard, A. Spin trapping and electron spin resonance detection radical inter mediates in the photocomposition of water at titanium dioxide particulate system. J. Phys. Chem.1979,83,3146-3152.
    (8)Nosaka, Y.; Komori, S.; Yawata, K.; et al. Photo-catalytic.OH radical formation in Ti02 aqueous suspension studied by several detection methods, Phys. Chem. Chem. Phys.2003,5,4731-4735.
    (9)Anpo, M.; Shima, T.; Kodama, S.; et al. Photo-catalytic hydrogenation of propyne with water on small-particle titania size quantization effects and reaction intermediates. J. Phys. Chem.1987,91,4305-4310.
    (10)Murakami, Y.; Endo, K.; Noska, A. Y.; et al. Direct detection of OH radicals diffused to the gas phase from the UV-irradiated photocatalytic TiO2 surfaces by means of laser-induced fluorescence spectroscopy. J. Phys. Chem. B 2006,110,16808-16811.
    (11)Murakami, Y.; Endo, K.; Ohta, I.; et al. Can OH Radicals Diffuse from the UV-Irradiated Photocatalytic TiO2 Surfaces? Laser Induced Fluorescence Study. J. Phys. Chem. C2007, 111,11339-11346.
    (12)Ollis, D. F.; Hsiao, C. Y.; Budiman, L.; et al. Heterogeneous photo-assisted catalysis:Conversions of perehloroethylene, dichloroethane, chloroacefic acids, and chlorobanzenes.J. Catal.1984,88,89-96.
    (13)Turch, C. S.; Ollis, D. F. Mixed reactant photocatalysis:Intermediates and mutual rate inhibition. J. Catal.1989,119,483-496.
    (14)Tumhi, C. S.; Ollis, D. F. Photocatalytic degradation of organic water contaminants:Mechanisms involving hydroxyl radical attack, J. Catal.1990,122, 178-192.
    (15)Cunningham, J.; Srijaranai, S. Isotope-effect evidence for hydroxyl radical involvement in alcohol photooxidation sensitized by TiO2 in aqueous suspension. J. Photochem. Photobiol, A 1988,43,329-335.
    (16)Fan, J. F.; Yates, J. T. Mechanism of Photooxidation of Trichloroethylene on TiOy.(?) Detection of Intermediates by Infrared Spectroscopy. J. Am. Chem. Soc.1996, 118,4686-4692.
    (17)Ishibashi, K. I.; Fujishima, A.; Watanabe, T.; Hashimoto, K. Quantum yields of active oxidative species formed on TiO2 photocatalyst. J. Photochem. Photobiol, A 2000,134,139-142.
    (18)Mao, Y.; Schoeneich, C.; Asmus, K. D. Identification of organic acids and other intermediates in oxidative degradation of chlorinated ethanes on titania surfaces en route to mineralization:a combined photocatalytic and radiation chemical study. J. Phys. Chem.1991,95,10080-10089.
    (19)Carraway, E. R.; Hoffman, A. J.; Hoffmann, M. R. Photocatalytic Oxidation of Organic Acids on Quantum-Sized Semiconductor Colloids. Environ. Sci. Technol. 1994,28,786-793.
    (20)Bahnemann, D. W.; Hilgendorff, M.; Memming, R. Charge Carrier Dynamics at TiO2 Particles:? Reactivity of Free and Trapped Holes. J. Phys. Chem. B 1997,101, 4265-4275.
    (21)Fox, M. A.; Dulay, M. T. Acceleration of secondary dark reactions of intermediates derived from adsorbed dyes on irradiated TiO2 powders. J. Photochem. Photobiol., A 1996,98,91-101.
    (22)Grabner, G.; Li G Z.; Quint R M.; et al. Pulsed laser-induced oxidation of phenol in acid aqueous TiO2 sols.J. Chem. Soc. Faray Trans.1991,87,1097-1101.
    (23)Furuta, T.; Ito, H.; Ishibashi, T. Photoresponse dynamics of uni-traveling-carrier and conventional pin-photodiodes. Compd. Semicond.1999,166,419-422.
    (24)Villarreal, T. L.; Gomez, R.; Spallart N. M.; et al. Semiconductor Photooxidation of Pollutants Dissolved in Water:? A Kinetic Model for Distinguishing between Direct and Indirect Interfacial Hole Transfer. I. Photo-electrochemical Experiments with Polycrystalline Anatase Electrodes under Current Doubling and Absence of Recombination. J. Phys. Chem. B 2004,108,15172-15181.
    (25)Villarreal, T. L.; Gomez, R.; Gonzalez, M. A Kinetic Model for Distinguishing between Direct and Indirect Interfacial Hole Transfer in the Heterogeneous Photooxidation of Dissolved Organics on TiO2 Nanoparticle Suspensions. J. Phys. Chem. B 2004,108,20278-20290.
    (26)MoraSero, I.; Villarreal T. L.; Bisquert, J.; et al. Photoelectrochemical Behavior of Nanostractured TiO2 Thin-Film Electrodes in Contact with Aqueous Electrolytes Containing Dissolved Pollutants:A Model for Distinguishing between Direct and Indirect Interfacial Hole Transfer from Photocurrent Measurements. J. Phys. Chem. B 2005,109,3371-3380.
    (27)Satoca, D. M.; Gomez, R.; Hidalgo, M. G. The "Direct-Indirect" model:An alternative kinetic approach in heterogeneous photocatalysis based on the degree of interaction of dissolved pollutant species with the semiconductor surface. Catal. Today. 2007,129,247-255.
    (28)Montoya, J. F.; Velasquez, J.; Salvador, P. The direct-indirect kinetic model in photocatalysis:A reanalysis of phenol and formic acid degradation rate dependence on photon flow and concentration in TiO2 aqueous dispersions. Appl. Catal. B:Environ. 2009,88,50-58.
    (29)Leng, W. H.; Zhang, Z.; Zhang, J. Q. Photoelectrocatalytic degradation of aniline over rutile TiO2/Ti electrode thermally formed at 600℃. J. Mol. Catal. A:Chem.2003, 206,239-252.
    (30)Leng, W. H.; Zhu, W. C.; Ni, J.; et al. Photoelectrocatalytic destruction of organics using TiO2 as photoanode with simultaneous production of H2O2 at the cathode. Appl. Catal., A 2006,300,24-35.
    (31)Dhar, R. K.; Zheng, Y.; Rubenstone, J.; et al. A rapid colorimetric method for measuring arsenic concentrations in groundwater. Anal. Chim. Acta 2004,526, 203-209.
    (32)Ferry, J. L.; Glaze, W. H. Photo-catalytic reduction of nitro organics over illuminated titanium dioxide:Role of the TiO2 surface, Langmuir1998,14,3551-3555.
    (33)Mandelbaum, P.; Bilmes, S. A.; Regazzoni, A. E. The influence of applied bias potential on the photo-oxidation of methanol and salicylate on titania dioxide films Solar Energy,1999,65,75-80.
    (34)Behnajady, M. A.; Modirshahla, N.; Shokri, M. Photodestruction of Acid Orange 7 (AO7) in aqueous solutions by UV/H2O2:influence of operational parameters Chemosphere 2004,55,129-134.
    (35)Daneshvar, N.; Salad, D.; Khataee, A. R. Photocatalytic degradation of azo dye acid red 14 in water on ZnO as an alternative catalyst to TiO2. J. Photochem. Photobiol, A 2004,162,317-322.
    (36)Ferguson, M. A.; Hoffman, M. R.; Hering, J. G. TiO2-photocatalyzed As(Ⅲ) oxidation in aqueous suspensions:reaction kinetics and effect of adsorption. Environ. Sci. Technol 2005,39,1880-1886.
    (37)Choi, W.; Yeo, J.; Ryu, J.; et al. Photocatalytic oxidation mechanism of As(Ⅲ) on TiO?:Unique role of As(Ⅲ) as a charge recombinant species. Environ. Sci. Technol. 2010,44,9099-9104.
    (38)Veen, J.; Veltmant, F.; Jonkem, G. A method for the quantitative determination of the basic, acidic and total surface hydroxyl content of TiO2. J. Chem. Soc. Chem. Commun.1985,1656-1658.
    (39)Wardman, P. Reduction potentials of one electron couples involving free radicals in aqueous solution, J. Phys. Chem. Ref. Data.1989,18,1637-1755.
    (40)Park, J. S.; Choi, W. Enhanced Remote Photocatalytic Oxidation on Surface-Fluorinated TiO2. Langmuir 2004,20,11523-11527.
    (41)Mrowetz, M.; Selli, E. Enhanced photocatalytic formation of hydroxyl radicals on fluorinated TiO2. Phys. Chem. Chem. Phys.2005,7,1100-1102.
    (42)Mrowetz, M.; Selli, E. H2O2 evolution during the photocatalytic degradation of organic molecules on fluorinated TiO2. New J. Chem.2006,30,108-112.
    (43)Park, H.; Choi, W. Effects of TiO2 Surface Fluorination on Photocatalytic Reactions and Photoelectrochemical Behaviors. J. Phys. Chem. B 2004,108, 4086-4093.
    (44)Ryu, J.; Choi, W. Effects of TiO2 surface modifications on photocatalytic oxidation of arsenite:The role of superoxides. Environ. Sci. Technol.2004,38, 2928-2933.
    (45)Cheng, X. F.; Leng, W. H., Liu, D.P. et al. Electrochemical Preparation and Characterization of Surface-Fluorinated TiO2 Nanoporous Film and Its Enhanced Photoelectrochemical and Photocatalytic Properties. J. Phys. Chem. C 2008,112, 8725-8734.
    (46)Nakamura, R.; Imanishi, A.; Murakoshi, K.; et al. In situ FTIR studies of primary intermediates of photo-catalytic reactions on nano-crystalline TiO2 films in contact with aqueous solutions. J. Am. Chem. Soc.2003,125,7443-7450.
    (47)Nosaka, Y.; Komori, S.; Yawata, K.; et al. Photocatalytic.OH radical formation in TiO2 aqueous suspension studied by several detection methods. Phys. Chem. Chem. Phys.2003,5,4731-4735.
    (48)El-morsi, T. M.; Budakowski, W. R.; Abdelaziz, A. S.; et al. Photocatalytic degradation of 1,10-Dichlorodecane in aqueous suspensions of TiO2:A reaction of adsorbed chlorinated alkane with surface hydroxyl radicals. Environ. Sci. Technol. 2000,34,1018-1022.
    (1)Fujishima, A.; Honda, K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 1972,238,37-40.
    (2)Jaeger, C. D.; Bard, A. Spin trapping and electron spin resonance detection radical inter mediates in the photocomposition of water at titanium dioxide particulate system. J. Phys. Chem.1979,83,3146-3152.
    (3)Leng, W. H.; Zhang, Z.; Zhang, J. Q.; et al. Investigation of the kinetics of a TiO2 photoelectrocatalytic reaction involving charge transfer and recombination through surface states by electrochemical impedance spectroscopy. J. Phys. Chem. B 2005, 109,15008-15023.
    (4)Bisquert, J.; Vikhrenko, V. S. Interpretation of the time constants measured by kinetic techniques in nanostructured semiconductor electrodes and dye-sensitized solar cells. J. Phys. Chem. B 2004,108,2313-2322.
    (5)Barnes, P. R. F.; Anderson, A. Y.; Koops, S. E.; et al. Electron injection efficiency and diffusion length in dye-sensitised solar cells derived fromincident photon conversion efficiency measurements. J. Phys. Chem. C2009,113,12615-12615.
    (6)Yuan, J.; Tsujikawa, S. Characterization of Sol-Gel-Derived TiO2 Coatings and Their Photoeffects on Copper Substrates. J. Electrochem. Soc,1995,142,3444-3450.
    (7)Imokawa, T.; Fujisawa, R.; Suda, A.; Tsujikawa, S. Zairyo-to-Kankyo,1994,43 (2):482.
    (8)Konishi, T.; Tsujikawa, S. Zairyo-to-Kankyo,1997,46,709.
    (9)Huang, J.; Shinohara, T.; Tsujikawa, S. Zairyo-to-Kankyo,1999,48,575.
    (10)Ohko, Y.; Saitoh, S.; Tatsuma, T.; Fujisawa, R. Photoelectrochemical Anticorrosion and Self-Cleaning Effects of a TiO2 Coating for Type 304 Stainless Steel. J. Electrochem. Soc,2001,148, B24-B28.
    (11)Park, H.; Kim, K. Y.; Choi, W. Photoelectrochemical Approach for Metal Corrosion Prevention Using a Semiconductor Photoanode.J. Phys. Chem., B,2002, 106,4775.
    (12)Park, H.; Kim, K. Y.; Choi, W. A novel photoelectrochemical method of metal corrosion prevention using a TiO2 solar panel. Chem. Commun,2001,1,281-282.
    (13)Tatsuma, T.; Saitoh, S.; Ohko, Y.; et al. TiO2-WO3 photo-electrochemical anti-corrosion system with a energy storage ability. Chem. Master,2001,13,2838.
    (14)Hyunwoong, P.; Kyoo, Y. K.; Won, Y. C. Photo-electrochemical approach for metal corrosion prevention using a semiconductor photoanode. J. Phys. Chem. B, 2002,106,4775-4781.
    (15)Subasri, R.; Shimohara, T. The applicability of SnO2 coating for corrosion protection of metals. Electrochem. Solid state Lett.,2004,7, B17-B20.
    (16)Ohko, Y.; Saitoh, S.; Tatsuma, T.; et al. Photoelectrochemical anticorrosion effect of SrTiO3 for carbon steel. Electrochem. Solid state Lett.,2002,5, B9-B12.
    (17)Subasri, R.; Deshpande, S.; Seal, S.; et al. Evaluation of the performance of TiO2-CeO2 bilayer coatings as photoanodes for corrosion protection of copper. Electrochem. Solid state Lett.,2006,9, B1-B4.
    (18)Subasri, R.; shinohara, T. Investigations on SnO2 composite photoelectrodes for corrosion protection. Electro. Commun.2003,5,897-903.
    (19)Jiang, H. B.; Gao, L. Influence of Cu dopants on structure and properties of nanosized TiO2 particulate film. J. lnorg. Mater.2002,17,787-791.
    (20)Weng, L.; Hodgson, S. N. B.; Ma, J. Preparation of TeO2-TiO2 thin films by sol-gel process. J. Mater. Sei. Lett.,1999,18,2037-2039.
    (21)Sonawane, R. S.; Kale, B. B.; Dongare, M. K. Preparation and photo-catalytic activity of Fe-TiO2 thin films prepared by sol-gel clip coating. Mater. Chem. Phys., 2004,85,52-57.
    (22)Jeon, M. S.; Yoon, W. S.; Joo, H. K.; et al. Preparation and characterization of a nano-sized Mo/Ti mixed photoeatalyst. Appl. Surf. Sci.,2000,165,209-216.
    (23)Stir, M.; Traykova, T.; Nicula, E.; et al. In situ high-pressure and high temperature diffraction experiments on pure and Ag-doped TiO2 nanopowder s. Nucl. Instrum. Meth. Phys. Res. B.2003,199,59-63.
    (24)Nakamura, R.; Nakato, Y. Mechanism for visible light responses in anodic photoeurrents at N-doped TiO2 film electrodes. J. Phys. Chem. B 2004,108, 10617-10620.
    (25)沈光霞,陈艺聪,林昌健TiO2-V2O5纳米复合膜的制备及防腐蚀性能.物理化学学报,2005,21,485-489.
    (26)泠文华,刘东坡,程小芳等.电沉积制备W03及对金属铜可见光光电化学保护.金属学报,2007,43,764-771.
    (27)Cheng, X. F.; Leng, W. H., Liu, D.P. et al. Electrochemical Preparation and Characterization of Surface-Fluorinated TiO2 Nanoporous Film and Its Enhanced Photoelectrochemical and Photocatalytic Properties. J. Phys. Chem. C 2008,112, 8725-8734.
    (28)Montoya, J. F.; Salvador, P. The influence of surface fluorination in the photocatalytic behaviour of TiO2 aqueous dispersions:An analysis in the light of the direct-indirect kinetic model. Appl. Catal. B:Environ.2010,94,97-107.
    (29)李文,冷文华,牛振江等.含氟水溶液中电化学刻蚀氟化W03薄膜电极增强可见光光电化学性能.物理化学学报.2009,25,2427-2432.
    (30)谌攀,曹江林,冷文华等.掺钴氧化钛电极的制备、表征及其光电性能.化学物理学报.2003,16,307-311.
    (31)刘东坡.浙江大学硕士学位论文.浙江大学.;杭州,2007
    (32)曹楚南,张鉴清著.电化学阻抗谱导论,科学出版社,北京,2002年7月第一版
    (33)Satoca, D. M.; Gomez, R. Electrochemical Method for Studying the Kinetics of Electron Recombination and Transfer Reactions in Heterogeneous Photocatalysis:The Effect of Fluorination on TiO2 Nanoporous Layers. J. Phys. Chem. C,2008,112, 139-147.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700