用户名: 密码: 验证码:
含离子液体微乳液的构建和性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
离子液体以其低挥发性、高热稳定性和可设计性等优点成为一种极具吸引力的新型溶剂。将离子液体引入到微乳液,一方面有助于改善微乳液的性质、扩大其应用范围,另一方面也有利于拓展离子液体的应用领域。本文在现有研究基础上,进一步考察了以离子液体为极性相的非水微乳液的性质,构建了以离子液体和极性溶剂为混合极性相的非水微乳液体系,研究了离子液体对传统含水微乳液体系性质的影响。论文主要内容如下:
     1.研究了以离子液体为极性相的非水微乳液的性质。首先,考察了离子液体在叔辛基酚聚氧乙烯醚(TX系列)表面活性剂微乳液体系中的增溶量。结果表明,离子液体阴离子氢键碱性越强、阳离子链长越短、体系温度越高越有利于离子液体增溶。在此基础上,选取离子液体1-乙基-3-甲基咪唑醋酸盐(emimCH3COO),研究了25℃下emimCH3COO、表面活性剂TX-45以及环已烷三元体系的相行为。用电导法划分出emimCH3COO/环已烷(IL/O)、双连续以及环已烷/emimCH3COO (O/IL)三种微乳液的微观结构区域。粒径实验证实了离子液体微乳液的形成。通过紫外-可见光谱实验,以甲基橙(MO)和亚甲基蓝(MB)为探针,研究了IL/O微乳液的微观极性。研究结果表明离子液体微乳液的微观极性随emimCH3COO含量的增加而增大,但当离子液体池形成以后,微乳液极性保持不变。另外,光谱实验也表明IL/O微乳液可以增溶金属盐COCl2、 CuCl2和生物分子核黄素。对IL/O微乳液的电导渗透行为进行研究,发现体系活化能较低,不出现温度渗透现象。但体系具有体积渗透现象,加入金属盐CuCl2和聚合物聚乙二醇400有利于体积渗透。
     2.构建了以离子液体和极性溶剂为混合极性相的非水微乳液,拓展了离子液体的选择范围。研究了25℃下离子液体bmimCl与极性溶剂(甲酰胺或乙二醇)、表面活性剂TX-100以及环已烷体系的相行为。通过电导研究发现该类微乳液也具有三种不同的微观结构区域。以bmimCl和极性溶剂为混合内相的微乳液的粒径与混合内相和表面活性剂的摩尔比呈线性关系,证实了这类离子液体微乳液的形成。红外光谱实验表明,表面活性剂TX-100与混合内相间存在较强的氢键作用,该作用有利于微乳液的形成。这类微乳液的微观极性随混合内相含量的增加而持续增大,这与单以离子液体为内相的微乳液不同。微乳液极性只与混合内相和表面活性剂的摩尔比有关,与表面活性剂的浓度无关。光谱实验表明金属盐CoCl2和生物分子核黄素都能增溶到微乳液的混合内相中。
     3.考察了离子液体对非离子型表面活性剂形成的含水微乳液性质的影响。研究了25℃下两种离子液体bmimBF4和bmimCl对TX-100形成的含水微乳液极性、电导、粘度和粒径等性质的影响。研究结果表明,离子液体使微乳液极性增大,同时使微乳液极性达到最大所需的水量减少。微乳液电导率随水含量的增加逐渐增加并出现体积渗透现象,渗透水量随离子液体浓度增加而减小。离子液体的存在会增加微乳液的粘度。bmimBF4对微乳液以上性质的影响均大于bmimCl.粒径的数据表明,bmimBF4基本增溶到了微乳液内核,而bmimCl只有部分增溶到微乳液中,以此解释两种离子液体对微乳液性质影响的差异。
     4.研究了离子液体对阴离子表面活性剂AOT形成的含水微乳液电导渗透行为和增溶水量的影响。AOT含水微乳液具有明显的温度渗透现象,微乳液渗透温度(Tp)随离子液体浓度的增加而增大。离子液体阳离子链长、取代数和末端基团对渗透温度影响较大,而阴离子的影响较小。微乳液粒径和粘度均随离子液体的加入而降低。体系粒径、渗透温度和粘度具有很好的相关性,粒径越小,其粘度也越小,渗透温度则越高。离子液体推迟了微乳液的体积渗透,提高了微乳液的渗透体积分率(Φp)。Φp随离子液体浓度的增加而增大。但较高的离子液体浓度下,由于微乳液增溶水量较小,无法观察到渗透现象。离子液体链长对Φp影响较大。微乳液增溶水量随离子液体浓度的增加先增大后减小,出现最大值。离子液体链长越长,达到最大增溶水量所需离子液体含量越低。同时,在较低离子液体浓度下,增溶水量随离子液体链长的增加而增大。
Ionic liquids (ILs) are receiving great attention as a class of neoteric solvents because of their special physical and chemical properties, such as low volatility. high thermal stability and designable property. In recent years, the microemulsions containing ILs have become an interesting topic. It revealed that ILs can act as effective additives to modify the properties of microemulsions, which expands the utilization of microemulsions. Meanwhile, the application of ILs is also expanded. Based on the previous studies by other groups, the properties of nonaqueous microemulsions, which use ILs as polar phase, was investigated in this dissertation. Also, using the mixture of an IL and nonaqueous polar solvents instead of pure IL to form ionic liquid microemulsions had been described. Additionally, the effect of ILs on the traditional water-based microemulsions was investigated. The contents of this dissertation are as follows:
     1. The properties of IL microemulsions were investigated in detail. Firstly, the solubilizations of ILs in polyoxyethylene tert-octylphenyl ether surfactants systems were studied. It indicated that the IL which had higher hydrogen-bond basicity, longer alkyl chain length of cation, possessed a higher solubilization. On the basis of these results, the phase behavior of the1-ethyl-3-methylimidazolium acetate (emimCHbCOO), polyoxyethylene tert-octylphenyl ether (TX-45) and cyclohexane system at25℃was studied. And, microregions of emimCH3COO-in-cyclohexane (IL/O), bicontinuous and cyclohexane-in-emimCH3COO (O/IL) were identified by electrical conductivity measurements. The experiments of droplet size revealed the formation of the IL microemulsions. The micropolarities of the emimCH3COO-in-cyclohexane microemulsions were investigated by the UV-vis spectroscopy using methyl orange (MO) and methylene blue (MB) as absorption probes. The results showed that, with the addition of IL, the polarity of the microemulsions was increased, but it didn't change any more when the IL pools began to form. Moreover, the study of spectroscopy also indicated that biological molecule riboflavin and metal salts such as CoCl2, CuCl2could be solubilized into the microemulsions droplets. Conductivity measurements indicated that the microemulsions didn't have temperature-induced percolation, which showed very low activation energy. However, the systems possessed volume-induced percolation, which could be assisted by the metal salt CuCl2and polyethylene glycol400.
     2. The formation of nonaqueous microemulsions containing the mixture of IL and polar solvent as the polar phase was studied. The phase behavior of the bmimCl, polar solvent (formamide or ethylene glycol), polyoxyethylene tert-octylphenyl ether (TX-100) and cyclohexane system at25℃was investigated. Electrical conductivity measurement was used to identify the three microregions of the nonaqueous microemulsions. Dynamic light scattering (DLS) studies revealed that the droplet size of reverse microemulsions of bmimCl-polar solvent in cyclohexane increased linear with the increase of the polar phase-to-TX-100molar ratio, which confirmed the formation of reverse microemulsions. FTIR spectra showed that there were hydrogen-bond interactions between the mixed polar phase and the surfactant. The interactions might be the driving force for solubilizing polar phase into the microemulsions. The polarity of these microemulsions was increased with the increasing amount of polar phase, which was different from the microemulsions containing IL as the only polar phase. The polarity was dependent of the polar phase-to-TX-100molar ratio (R), and nearly independent of the surfactant concentration. UV-vis studies indicated that the nonaqueous reverse microemulsions could dissolve metal salt CoCl2and biological molecule riboflavin.
     3. A study was carried out concerning the effects of ILs (bmimBF4and bmimCl) on the properties of nonionic surfactant-based H2O/TX-100/hexanol/cyclohexane microemulsions at25℃. Several properties of microemulsions, such as polarity, conductivity, viscosity and droplet size, were investigated. With the addition of IL, the polarity of the microemulsions was increased, and the water needed to form water pool was decreased. Conductivity results revealed that the onset water content of electrical percolation was decreased with the presence of IL and continued to decrease as the amount of IL increased. The viscosity of microemulsions was increased with the increasing amount of IL. The influence of bmimBF4on the properties of microemulsions was greater than bmimCl. The measurement of droplet sizes of microemulsions indicated that the bmimBF4was almost all solubilized into the polar core of microemulsions, but the bmimCl wasn't. This explained the difference of the two IL's effect on the properties of microemulsions.
     4. The effects of ILs on temperature-induced and volume-induced percolation as well as water solubilization capacity of anionic surfactant AOT-based microemulsions were investigated. The temperature-induced percolation phenomena of microemulsions were delayed with the addition of IL. And the percolation temperature threshold (Tp) of microemulsions was increased with an increase of the IL's concentration. The alkyl chain length, hydrogen-bond acidity and end group of cation had great effect on the Tp. However. Tp was slightly affected by the ILs anions. The viscosity and droplet size of microemulsions were all decreased when addition of ILs and the observed decrease correlated roughly with an increase in Tp. The volume-induced percolation phenomena of microemulsions were also delayed by the ILs. The volume percolation threshold (Φp) was increased in the presence of IL, and increased with the increase of the concentration of IL at low IL's concentration, whereas no percolation phenomena could be observed at high IL's concentration. The Φp value was increased with increasing chain length of ILs under the same conditions. Additionally. the water solubilization capacity was enhanced as function of IL concentration at low concentration of IL. reached a maximum and decreased for high IL's concentration. For the microemulsions, the water solubilization capacity was increased with the increase of chain length of ILs at low IL's concentration.
引文
[1]Hoar T P, Schulman J H. Transparent water-in-oil dispersions:the oleopathic hydro-micelle[J]. Nature.1943,152(152):102-103.
    [2]Schulman J H, Stoeckenius W, Prince L M. Mechanism of formation and structure of microemulsions by electron microscopy[J]. Journal of Physical Chemistry.1959,63(10):1677-1680.
    [3]Danielsson I, Lindman B. The definition of micro-emulsion[J]. Colloids and Surfaces.1981,3(4): 391-392.
    [4]杜永峰,吕方.微乳状液体系应用研究进展[J].化学世界.1999.10:511.
    [5]Eastoe J.表面活性剂化学[M].武汉:武汉大学出版社,2005.
    [6]颜肖慈,罗明道.界面化学[M].北京:化学工业出版社,2005.
    [7]王龙平.双连续相微乳液聚合法制备多孔性材料[D].福州大学,2006.
    [8]Prince L M. Microemulsions:theory and practice[M]. New York:Academic press,1977.
    [9]郭丹.Triton X-100水溶液和微乳液中结晶紫碱性褪色反应的动力学研究[D].兰州大学,2007.
    [10]Winsor P A. Hydrotropy, solubilisation and related emulsification processes.1. to 4.[J]. Transactions of the Faraday Society.1948,44(6):376-398.
    [11]Palit S R, Moghe V A, Biswas B. Solubilization of water by cationic detergents [J]. Transactions of the Faraday Society.1959,55(3):463-476.
    [12]Saito H, Shinoda K. Solubilization of hydrocarbons in aqueous solutions of nonionic surfactants[J]. Journa of Colloid and Interface Science.1967.24(1):10-15.
    [13]Robbins M L. Micellization, solubilization and microemusions[M]. New York:Flenum press. 1977.
    [14]Michell D J. Ninham B W. Micelles, vesicles and microemusions[J]. Journal of the Chemical Society, Faraday Transactions.1981.77:601-629.
    [15]秦承宽.柴金岭,陈景飞.微乳液的研究及应用进展[J].山西化工.2006.26(6):21-25.
    [16]Bourrel M, Schechter R S. Surfactant science series[M]. New York:Plenum press.1988.
    [17]苏宝根.超临界CO2微乳液的热力学性质研究[D].浙江大学,2007.
    [18]胡利利.微乳液的研究进展与应用[J].日用化学品科学.2007,30(1):18-21.
    [19]Holmberg K. Organic and bioorganic reactions in microemulsions[J]. Advances in Colloid and Interface Science.1994:137-174.
    [20]Schwuger M, Stickdorn K. Microemulsions in technical processes[J]. Chemical Reviews.1995. 95(4):849-864.
    [21]Sjoblom J, Lindberg R, Friberg S E. Microemulsions-phase equilibria characterization, structures, applications and chemical reactions[J]. Advances in Colloid and Interface Science.1996:125-287.
    [22]Lopez-Quintela M A, Tojo C, Blanco M C, et al. Microemulsion dynamics and reactions in microemulsions[J]. Current Opinion in Colloid & Interface Science.2004.9:264-278.
    [23]Boutonnet M, Logdberg S, Svensson E E. Recent developments in the application of nanoparticles prepared from w/o microemulsions in heterogeneous catalysis[J]. Current Opinion in Colloid & Interface Science.2008,13:270-286.
    [24]Walden P. Uber die molekulargrosse und elektrisehe leitfahigkeit einiger gesehmolzenen salze[J]. Buletinul Academiei of Imperial Science (St.Petersburg).1914:405-422.
    [25]Wilkes J S, Levisky J A, Wilson R A. et al. Dialkylimidazolium chloroaluminate melts:a new class of room-temperature ionic liquids for electrochemistry, spectroscopy and synthesis[J]. Inorganic Chemistry.1982,21(3):1263-1264.
    [26]Hurley F H, Wier T P. Electrodeposition of metals from fused quaternary ammonium salts[J]. Journal of the Electrochemical Society.1951,98(2):405-422.
    [27]Wikes J S, Zaworotko M J. Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids[J]. Journal of the Chemical Society, Chemical Communications.1992:965-967.
    [28]Fuller J, Carlin R T, Hugh C, et al. Structure of 1-ethyl-3-methylimidazolium hexafluorophosphate: model for room temperature molten salts[J]. Journal of the Chemical Society, Chemical Communications.1994(3):299-300.
    [29]Rogers D R, Seddon K R. Ionic liquids-solvents of the future?[J]. Science.2003,302(5646): 792-793.
    [30]Anderson J L, Ding J, Welton T, et al. Characterizing ionic liquids on the basis of multiple solvation interactions[J]. Journal of the American Chemical Society.2002,124(47):14247-14254.
    [31]Wasserscheid P. Volatile times for ionic liquids[J]. Nature.2006,439:797.
    [32]邓友全.离子液体-性质、制备与应用[M].北京:中国石化出版社,2006.
    [33]秦承宽.咪唑类离子液体在微乳液中的应用及性质研究[D].山东师范大学,2008.
    [34]王均凤,张锁江,陈慧萍等.离子液体的性质及其在催化反应中的应用[J].过程工程学报.2003,3(2):177-185.
    [35]Weton T. Room-temperature ionic liquids. Solvents for synthesis and catalysis[J]. Chemical Reviews.1999,99(8):2071-2083.
    [36]Plechkova N V. Seddon K R. Applications of ionic liquids in the chemical industry [J]. Chemical Society Reviews.2008,37(1):123-150.
    [37]Howarth J. Oxidation of aromatic aldehydes in the ionic liquid [bmim]PF6[J]. Tetrahedron Letters. 2000,41(34):6627-6629.
    [38]Hu A, Ngo H L, Lin W. Remarkable 4,4'-substituent effects on binap:highly enantioselective Ru catalysts for asymmetric hydrogenation of beta-aryl ketoesters and their immobilization in room-temperature ionic liquids[J]. Angewandte Chemie International Edition.2004,43(19): 2501-2504.
    [39]Song C E. Shim W H, Roh E J, et al. Scandium(III) triflate immobilised in ionic liquids:a novel and recyclable catalytic system for Friedel-Crafts alkylation of aromatic compounds with alkenes[J]. Chemical Communications.2000:1695-1696.
    [40]Gui J, Cong X, Liu D, et al. Novel Bronsted acidic ionic liquid as efficient and reusable catalyst system for esterification[J]. Catalysis Communications.2004,5(9):473-477.
    [41]Huddleston J G, Willauer H D, Swatloski R P, et al. Room temperature ionic liquids as novel media for 'clean'liquid-liquid extraction[J]. Chemical Communications.1998:1765-1766.
    [42]Visser A E, Swatloski R P, Rogers R D. pH-Dependent partitioning in room temperature ionic liquids provides a link to traditional solvent extraction behavior[J]. Green Chemistry.2000,2(1):1-4.
    [43]Fan J, Fan Y, Pei Y, et al. Solvent extraction of selected endocrine-disrupting phenol using ionic liquids[J]. Separation and Purification Technology.2008,61(3):324-331.
    [44]Fadeev A G, Meagher M M. Opportunities for ionic liquids in recovery of biofuels[J]. Chemical Communications.2001(3):295-296.
    [45]Visser A E, Swatloski R P, Reichert W M, et al. Traditional extractants in nontraditional solvents: groups 1 and 2 extraction by crown ethers in room-temperature ionic liquids[J]. Industrial & Engineering Chemistry Research.2000,39(10):3596-3604.
    [46]Visser A E, Swatloski R P, Griffin S T, et al. Liquid/liquid extraction of metal ions in room temperature ionic liquids[J]. Separation Science and Technology.2001,36:785-804.
    [47]Visser A E, Swatloski R P, Reichert W M, et al. Task-specific ionic liquids incorporating novel cations for the coordination and extraction of Hg2+ and Cd2+:synthesis, characterization, and extraction studies[J]Environmental Science & Technology.2002,36(11):2523-2529.
    [48]Su B M, Zhang S J, Zhang Z C. Structural elucidation of thiophene interaction with ionic liquids by multinuclear NMR spectroscopy[J]. Journal of Physical Chemistry B.2004,108(50):19510-19517.
    [49]Huang C P, Chen B H. Zhang J, et al. Desulfurization of gasoline by extraction with new ionic liquids[J]. Energy & Fuels.2004,18(6):1862-1864.
    [50]Ding J, Welton T, Armstrong D W. Chiral ionic liquids as stationary phases in gas chromatography[J]. Analytical Chemistry.2004,76(22):6819-6822.
    [51]Anderson J L. Armstrong D W. Immobilized ionic liquids as high-selectivity/high-temperature/high-stability gas chromatography stationary phases[J]. Analytical Chemistry.2005.77(19):6453-6462.
    [52]Zhou Y, Antonietti M. Preparation of highly ordered monolithic super-microporous lamellar silica with a room-temperature ionic liquid as template via the nanocasting technique[J]. Advanced Materials. 2003.15(17):1452-1455.
    [53]Endres F, Bukowski M, Hempelmann R. et al. Electrodeposition of nanocrystalline metals and alloys from ionic liquids[J]. Angewandte Chemie International Edition.2003.42(29):3428-3430.
    [54]Kubo W, Kitamura T, Hanabusa K. et al. Quasi-solid-state dye-sensitized solar cells using room temperature molten salts and a low molecular weight gelator[J]. Chemical Communications.2002(4): 374-375.
    [55]Hara K, Sayama K. Ohga Y, et al. A coumarin-derivative dye sensitized nanocrystalline TiO2 solar cell having a high solar-energy conversion efficiency up to 5.6%[J]. Chemical Communications. 2001(6):569-570.
    [56]Tsuda T. Nohira T. Ito Y. Electrodeposition of lanthanum in lanthanum chloride saturated AlCl3 1-ethyl-3-methylimidazolium chloride molten salts[J]. Electrochimica Acta.2001,46(12):1891-1897.
    [57]Barhdadi R. Courtinard C, Nedelec J Y, et al. Room-temperature ionic liquids as new solvents for organic electrosynthesis. The first examples of direct or nickel-catalysed electroreductive coupling involving organic halides[J]. Chemical Communications.2003(12):1434-1435.
    [58]Park S. Kazlauskas R J. Improved preparation and use of room temperature ionic liquids in lipase-catalyzed enantio-and regioselective acylations[J]. Journal of Organic Chemistry.2001,66(25): 8395-8401.
    [59]Okoturo O O. Vandernoot T J. Temperature dependence of viscosity for room temperature ionic liquids[J]. Journal of Electroanalytical Chemistry.2004.568(1-2):167-181.
    [60]Jacquemin J, Husson P, Padua A A H, et al. Density and viscosity of several pure and water-saturated ionic liquids[J]. Green Chemistry.2006,8(2):172-180.
    [61]Qiu Z M. Texter J. Ionic liquids in microemulsions[J]. Current Opinion in Colloid & Interface Science.2008,13(4):252-262.
    [62]董彬,郑利强.离子液体参与构筑的微乳液[J].中国科学:化学.2010,40(9):1266-1275.
    [63]Martino A, Kaler E W. Phase-behavior and microstructure of nonaqueous microemulsions[J]. Journal of Physical Chemistry.1990,94(4):1627-1631.
    [64]Riter R E, Undiks E P, Kimmel J R. et al. Formamide in reverse micelles:restricted environment effects on molecular motion[J]. Journal of Physical Chemistry B.1998.102(41):7931-7938.
    [65]Lopez-Cornejo P, Costa S M B. Luminescence of zinc tetraphenylporphyrin in ethylene glycol-in-oil microemulsions[J]. Langmuir.1998,14(8):2042-2049.
    [66]Falcone R D, Correa N M, Biasutti M A, et al. Properties of AOT aqueous and nonaqueous microemulsions sensed by optical molecular probes[J]. Langmuir.2000,16(7):3070-3076.
    [67]Correa N M, Pires P A R, Silber J J, et al. Real structure of formamide entrapped by AOT nonaqueous reverse micelles:FT-IR and'H NMR studies[J]. Journal of Physical Chemistry B.2005, 109(44):21209-21219.
    [68]Falcone R D, Correa N M, Biasutti M A, et al. The use of acridine orange base (AOB) as molecular probe to characterize nonaqueous AOT reverse micelles[J]. Journal of Colloid and Interface Science.2006,296(1):356-364.
    [69]Falcone R D, Silber J J, Correa N M. What are the factors that control non-aqueous/AOT/n-heptane reverse micelle sizes? A dynamic light scattering study[J]. Physical Chemistry Chemical Physics.2009,11(47):11096-11100.
    [70]Riter R E, Kimmel J R, Undiks E P, et al. Novel reverse micelles partitioning nonaqueous polar solvents in a hydrocarbon continuous phase[J]. Journal of Physical Chemistry B.1997,101(41): 8292-8297.
    [71]Ray S, Moulik S P. Dynamics and thermodynamics of aerosol OT-aided nonaqueous microemulsions[J]. Langmuir.1994,10(8):2511-2515.
    [72]张丽,程虎民,马季铭.非水反相微乳中NaCl纳米粒子的制备[J].物理化学学报.2002,18(1):79-81.
    [73]Hazra P. Chakrabarty D, Sarkar N. Intramolecular charge transfer and solvation dynamics of coumarin 152 in aerosol-OT, water-solubilizing reverse micelles, and polar organic solvent solubilizing reverse micelles[J]. Langmuir.2002,18(21):7872-7879.
    [74]Poole C F. Chromatographic and spectroscopic methods for the determination of solvent properties of room temperature ionic liquids[J]. Journal of Chromatography A.2004,1037(1-2):49-82.
    [75]Ab Rani M A, Brant A, Crowhurst L, et al. Understanding the polarity of ionic liquids[J]. Physical Chemistry Chemical Physics.2011,13(37):16831-16840.
    [76]Gao H X, Li J C, Han B X, et al. Microemulsions with ionic liquid polar domains[J]. Physical Chemistry Chemical Physics.2004,6(11):2914-2916.
    [77]Eastoe J, Gold S, Rogers S E, et al. Ionic liquid-in-oil microemulsions[J]. Journal of the American Chemical Society.2005,127(20):7302-7303.
    [78]Gao Y A, Zhang J, Xu H Y, et al. Structural studies of 1-butyl-3-methylimidazolium tetrafluoroborate/TX-100/p-xylene ionic liquid microemulsions[J]. ChemPhysChem.2006,7(7): 1554-1561.
    [79]Gao Y A, Wang S Q, Zheng L Q, et al. Microregion detection of ionic liquid microemulsions[J]. Journal of Colloid and Interface Science.2006,301(2):612-616.
    [80]Gao Y A, Li N, Zhang S H, et al. Organic solvents induce the formation of oil-in-ionic liquid microemulsion aggregations[J]. Journal of Physical Chemistry B.2009,113(5):1389-1395.
    [81]Gao Y A, Li N, Hilfert L, et al. Temperature-induced microstructural changes in ionic liquid-based microemulsions[J]. Langmuir.2009,25(3):1360-1365.
    [82]Li J C, Zhang J L, Gao H X. et al. Nonaqueous microemulsion-containing ionic liquid [bmim][PF6] as polar microenvironment[J]. Colloid & Polymer Science.2005,283(12):1371-1375.
    [83]Falcone R D, Correa N M, Silber J J. On the formation of new reverse micelles:a comparative study of benzene/surfactants/ionic liquids systems using UV-visible absorption spectroscopy and dynamic light scattering[J]. Langmuir.2009,25(18):10426-10429.
    [84]Pramanik R. Sarkar S, Ghatak C, et al. Microemulsions with surfactant TX-100, cyclohexane, and an ionic liquid investigated by conductance, DLS. FTIR measurements, and study of solvent and rotational relaxation within this microemulsion[J]. Journal of Physical Chemistry B.2010,114(22): 7579-7586.
    [85]雷达,范芳,严建芳.甲苯/TX-100/1-丁基-3-甲基咪唑六氟磷酸盐微乳液的相结构研究[J].华中师范大学学报(自然科学版).2007,41(3):403-405.
    [86]Gao Y A, Voigt A, Hilfert L, et al. Nanodroplet cluster formation in ionic liquid microemulsions[J]. ChemPhysChem.2008,9(11):1603-1609.
    [87]Cheng S Q, Han F, Wang Y R, et al. Effect of cosurfactant on ionic liquid solubilization capacity in cyclohexane/TX-100/1-butyl-3-methylimidazolium tetrafluoroborate microemulsions[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects.2008,317(1-3):457-461.
    [88]Fu C P. Zhou H H, Wu H M, et al. Research on electrochemical properties of nonaqueous ionic liquid microemulsions[J]. Colloid & Polymer Science.2008,286(13):1499-1504.
    [89]Pramanik R, Sarkar S, Ghatak C, et al. Effect of water on the solvent relaxation dynamics in an ionic liquid containing microemulsion of 1-butyl-3-methyl imidazolium tetrafluoroborate/Triton X-100/cyclohexane[J]. Chemical Physics Letters.2010,490(4-6):154-158.
    [90]Qin C K. Chai J L, Chen J F, et al. Studies on the phase behavior and solubilization of the microemulsion formed by surfactant-like ionic liquids with epsilon-beta-fish-like phase diagram[J]. Colloid & Polymer Science.2008.286(5):579-586.
    [91]Atkin R. Warr G G. Phase behavior and microstructure of microemulsions with a room-temperature ionic liquid as the polar phase[J]. Journal of Physical Chemistry B.2007,111(31): 9309-9316.
    [92]Zheng Y J, Eli W M J. Li G. FTIR study of Tween80/1-butyl-3-methylimidazolium hexafluorophosphate/toluene microemulsions[J]. Colloid & Polymer Science.2009,287(7):871-876.
    [93]郑永军,吾满江·艾力.Tween80/Bmim PF6/醇/甲苯体系的相行为[J].物理化学学报.2008.24(11):2143-2148.
    [94]Zheng Y J, Eli W M J. Study on the polarity of bmimPF6/Tween80/toluene microemulsion characterized by UV-visible spectroscopy[J]. Journal of Dispersion Science and Technology.2009. 30(5):698-703.
    [95]Rabe C. Koetz J. CTAB-based microemulsions with ionic liquids[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects.2010.354(1-3):261-267.
    [96]Zech O. Thomaier S, Kolodziejski A. et al. Ethylammonium nitrate in high temperature stable microemulsions[J].Journal of Colloid and Interface Science.2010,347(2):227-232.
    [97]Zech O, Bauduin P, Palatzky P, et al. Biodiesel, a sustainable oil, in high temperature stable microemulsions containing a room temperature ionic liquid as polar phase[J]. Energy & Environmental Science.2010,3(6):846-851.
    [98]Zech O. Thomaier S, Bauduin P, et al. Microemulsions with an ionic liquid surfactant and room temperature ionic liquids as polar pseudo-phase[J]. Journal of Physical Chemistry B.2009,113(2): 465-473.
    [99]Harrar A. Zech O, Hartl R, et al. [emim][etSO4] as the polar phase in low-temperature-stable microemulsions[J]. Langmuir.2011,27(5):1635-1642.
    [100]Cheng S Q, Zhang J L, Zhang Z F, et al. Novel microemulsions:ionic liquid-in-ionic liquid[J]. Chemical Communications.2007(24):2497-2499.
    [101]Liu J H, Cheng S Q, Zhang J L, et al. Reverse micelles in carbon dioxide with ionic-liquid domains[J]. Angewandte Chemie International Edition.2007,46(18):3313-3315.
    [102]Li N, Gao Y A, Zheng L Q, et al. Studies on the micropolarities of bmimBF4/TX-100/toluene ionic liquid microemulsions and their behaviors characterized by UV-visible spectroscopy[J]. Langmuir.2007,23(3):1091-1097.
    [103]Chakrabarty D, Seth D, Chakraborty A, et al. Dynamics of solvation and rotational relaxation of coumarin 153 in ionic liquid confined nanometer-sized microemulsions[J]. Journal of Physical Chemistry B.2005,109(12):5753-5758.
    [104]Andujar-Matalobos M, Garcia-Rio L, Lopez-Garcia S, et al. Polarity of the interface in ionic liquid in oil microemulsions[J]. Journal of Colloid and Interface Science.2011,363(1):261-267.
    [105]Gao Y A, Li N, Zheng L Q, et al. The effect of water on the microstructure of l-butyl-3-methylimidazolium tetrafluoroborate/TX-100/benzene ionic liquid microemulsions[J]. Chemistry-A European Journal.2007,13(9):2661-2670.
    [106]Gao Y A, Li N, Zheng L Q, et al. Role of solubilized water in the reverse ionic liquid microemulsion of 1-butyl-3-methylimidazolium tetrafluoroborate/TX-100/benzene[J]. Journal of Physical Chemistry B.2007,111(10):2506-2513.
    [107]Li N, Cao Q, Gao Y A, et al. States of water located in the continuous organic phase of 1-butyl-3-methylimidazolium tetrafluoroborate/Triton X-100/triethylamine reverse microemulsions[J]. ChemPhysChem.2007,8(15):2211-2217.
    [108]Gao Y A, Hilfert L, Voigt A, et al. Decrease of droplet size of the reverse microemulsion 1-butyl-3-methylimidazolium tetrafluoroborale/Triton X-100/cyciohexane by addition of water[J]. Journal of Physical Chemistry B.2008,112(12):3711-3719.
    [109]Adhikari A, Sahu K, Dey S, et al. Femtosecond solvation dynamics in a neat ionic liquid and ionic liquid microemulsion:excitation wavelength dependence[J]. Journal of Physical Chemistry B. 2007,111(44):12809-12816.
    [110]Adhikari A, Das D K, Sasmal D K, et al. Ultrafast FRET in a room temperature ionic liquid microemulsion:a femtosecond excitation wavelength dependence study[J]. Journal of Physical Chemistry A.2009,113(16):3737-3743.
    [111]Gao Y A, Voigt A, Hilfert L, et al. Effect of polyvinylpyrrolidone on the microstructure of 1-butyl-3-methylimidazolium tetrafluoroborate/Triton X-100/cyclohexane microemulsions[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects.2008,329(3):146-152.
    [112]Li N, Zhang S H, Li X W, et al. Effect of polyethylene glycol (PEG-400) on the 1-butyl-3-methylimidazolium tetrafluoroborate-in-cyclohexane ionic liquid microemulsion[J]. Colloid & Polymer Science.2009,287(1):103-108.
    [113]Moniruzzaman M, Tahara Y, Tamura M, et al. Ionic liquid-assisted transdermal delivery of sparingly soluble drugs[J]. Chemical Communications.2010,46(9):1452-1454.
    [114]Moniruzzaman M, Kamiya N, Masahiro G. Ionic liquid based microemulsion with pharmaceutically accepted components:formulation and potential applications[J]. Journal of Colloid and Interface Science.2010,352(1):136-142.
    [115]Moniruzzaman M, Tamura M, Tahara Y, et al. Ionic liquid-in-oil microemulsion as a potential carrier of sparingly soluble drug:characterization and cytotoxicity evaluation[J]. International Journal of Pharmaceutics.2010,400(1-2):243-250.
    [116]Li N, Zhang S H, Zheng L Q, et al. Second virial coefficient of bmimBF4/Triton X-100/cyclohexane ionic liquid microemulsion as investigated by microcalorimetry[J]. Langmuir.2008, 24(7):2973-2976.
    [117]Zhao M W, Zheng L Q, Bai X T, et al. Fabrication of silica nanoparticles and hollow spheres using ionic liquid microemulsion droplets as templates[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects.2009,346(1-3):229-236.
    [118]Gayet F, Kalamouni C E, Lavedan P, et al. Ionic liquid/oil microemulsions as chemical nanoreactors[J]. Langmuir.2009,25(17):9741-9750.
    [119]Behera K. Dahiya P. Pandey S. Effect of added ionic liquid on aqueous Triton X-100 micelles[J]. Journal of Colloid and Interface Science.2007,307(1):235-245.
    [120]Murgia S, Palazzo G, Mamusa M, et al. Aerosol-OT forms oil-in-water spherical micelles in the presence of the ionic liquid bmimBF4[J]. Journal of Physical Chemistry B.2009,113(27):9216-9225.
    [121]Behera K, Malek N I, Pandey S. Visual evidence for formation of water-in-ionic liquid microemulsions[J]. ChemPhysChem.2009,10(18):3204-3208.
    [122]Gao Y A, Han S B, Han B X, et al. TX-100/water/1-butyl-3-methylimidazolium hexafluorophosphate microemulsions[J]. Langmuir.2005,21(13):5681-5684.
    [123]Li Z H, Zhang H L. Du J M, et al. Preparation of silica microrods with nano-sized pores in ionic liquid microemulsions[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects.2006, 286(1-3):117-120.
    [124]Anjum N, Guedeau-Boudeville M, Stubenrauch C, et al. Phase behavior and microstructure of microemulsions containing the hydrophobic ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate[J]. Journal of Physical Chemistry B.2009,113(1):239-244.
    [125]Seth D. Chakraborty A, Setua P, et al. Interaction of ionic liquid with water in ternary microemulsions (Triton X-100/water/1-butyl-3-methylimidazolium hexafluorophosphate) probed by solvent and rotational relaxation of coumarin 153 and coumarin 151[J]. Langmuir.2006,22(18): 7768-7775.
    [126]Seth D. Chakraborty A. Setua P, et al. Interaction of ionic liquid with water with variation of water content in 1-butyl-3-methyl-imidazolium hexafluorophosphate ([bmim][PF6])/TX-100/water ternary microemulsions monitored by solvent and rotational relaxation of coumarin 153 and coumarin 490[J]. Journal of Chemical Physics.2007,126(22):224511-224512.
    [127]Seth D, Setua P, Chakraborty A. et al. Solvent relaxation of a room-temperature ionic liquid [bmim][PF6] confined in a ternary microemulsion[J]. Journal of Chemical Sciences:2007,119(2): 105-111.
    [128]Gao Y A, Li N. Zheng L Q, et al. A cyclic voltammetric technique for the detection of micro-regions of bmimPF6/Tween 20/H2O microemulsions and their performance characterization by UV-vis spectroscopy[J]. Green Chemistry.2006,8(1):43-49.
    [129]Li N, Dong B, Yuan W L, et al. ZrO2 nanoparticles synthesized using ionic liquid microemulsion[J]. Journal of Dispersion Science and Technology.2007,28(7):1030-1033.
    [130]Dong B, Zhang S H, Zheng L Q, et al. Ionic liquid microemulsions:a new medium for electropolymerization[J]. Journal of Electroanalytical Chemistry.2008,619-620(15):193-196.
    [131]Dong B, Xu J K, Zheng L Q, et al. Electrodeposition of conductive poly(3-methoxythiophene) in ionic liquid microemulsions[J]. Journal of Electroanalytical Chemistry.2009,628(1-2):60-66.
    [132]Cheng S Q, Fu X G, Liu J H. et al. Study of ethylene glycol/TX-100/ionic liquid microemulsions[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects.2007, 302(1-3):211-215.
    [133]Safavi A. Maleki N, Farjami F. Phase behavior and characterization of ionic liquids based microemulsions[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects.2010, 355(1-3):61-66.
    [134]Moniruzzaman M, Kamiya N, Nakashima K, et al. Formation of reverse micelles in a room-temperature ionic liquid[J]. ChemPhysChem.2008,9(5):689-692.
    [135]Wang T F, Peng C J, Liu H L, et al. Phase behavior and microstructure of the system consisting of 1-butyl-3-methylimidazolium hexafluorophosphate, water, triblock copolymer F127 and short-chain alcohols[J]. Journal of Molecular Liquids.2009,146(3):89-94.
    [136]易封萍,李积宗,陈斌.离子液体型表面活性剂研究[J].化学学报.20,08,66(2):239-244.
    [137]Yan F, Texter J. Surfactant ionic liquid-based microemulsions for polymerization[J]. Chemical Communications.2006(25):2696-2698.
    [138]Yu S, Yan F, Zhang X, et al. Polymerization of ionic liquid-based microemulsions:a versatile method for the synthesis of polymer electrolytes[J]. Macromolecules.2008,41(10):3389-3392.
    [139]Li X W, Zhang J, Zheng L Q, et al. Microemulsions of N-alkylimidazolium ionic liquid and their performance as microreactors for the photocyeloaddition of 9-substituted anthracenes[J]. Langmuir. 2009,25(10):5484-5490.
    [140]夏寒松,余江,胡雪生等.离子液体相行为(I)胶团化特性[J].化工学报.2006,57(9):2145-2148.
    [141]Xia H S, Yu J, Jiang Y Y, et al. Physicochemical features of ionic liquid solutions in the phase separation of penicillin(Ⅱ):Winsor Ⅱ reversed micelle[J]. Industrial & Engineering Chemistry Research.2007,46(7):2112-2116.
    [142]Liu L, Bauduin P, Zemb T, et al. Ionic liquid tunes microemulsicn curvature[J]. Langmuir.2009, 25(4):2055-2059.
    [143]Rojas O, Koetz J, Kosmella S, et al. Structural studies of ionic liquid-modied microemulsions[J]. Journal of Colloid and Interface Science.2009,333(2):782-790.
    [144]Lu H, An X, Shen W. Critical behavior of a microemulsion with an ionic liquid[J]. Journal of Chemical and Engineering Data.2008,53(3):727-731.
    [145]Schubert K V, Lusvardi K M, Kaler E W. Polymerization in nonaqueous microemulsions[J]. Colloid & Polymer Science.1996,274(9):875-883.
    [146]Paul B K. Mitra R K. Water solubilization capacity of mixed reverse micelles:effect of surfactant component, the nature of the oil, and electrolyte concentration[J]. Journal of Colloid and Interface Science.2005,288(1):261-279.
    [147]Li X C, He G H, Liu D, et al. Effects of additives on water solubilization capacity and intermicellar interaction in heptane/hexanol/Triton X-100/water microemulsion[J]. Journal of Dispersion Science and Technology.2011,32(3):415-423.
    [148]Shen D, Zhang R, Han B X, et al. Enhancement of the solubilization capacity of water in Triton X-100/cyclohexane/water system by compressed gases[J]. Chemistry-A European Journal.2004, 10(20):5123-5128.
    [149]Sando G M, Dahl K, Owrutsky J C. Vibrational relaxation in ionic liquids and ionic liquid reverse micelles[J]. Chemical Physics Letters.2006,418(4-6):402-407.
    [150]Rosano H L, Clausse M. Microemulsion systems[M]. New York:Marcel Dekker,1987.
    [151]Hyde S T. Handbook of applied surface and colloid chemistry[M]. New York:John Wiley & Sons,2001.
    [152]Clarke M J, Harrison K L, Johnston K P, et al. Water in supercritical carbon dioxide microemulsions:spectroscopic investigation of a new environment for aqueous inorganic chemistry[J]. Journal of the American Chemical Society.1997,119(27):6399-6406.
    [153]Johnston K P, Harrison K L, Clarke M J, et al. Water-in-carbon dioxide microemlusions:an environment for hydrophiles including proteins[J]. Science.1996,271(2):624-626.
    [154]Mcfann G J, Johnston K P, Howdle S M. Solubilization in nonionic reverse micelles in carbon dioxide[J]. AIChE Journal.1994,40(3):543-555.
    [155]Hutton B H, Perera J M, Grieser F, et al. Investigation of AOT reverse microemulsions in supercritical carbon dioxide[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects. 1999,146(1-3):227-241.
    [156]Keiper J S, Simhan R, Desimone J M, et al. New phosphate fluorosurfactants for carbon dioxide[J]. Journal of the American Chemical Society.2002,124(9).
    [157]Liu J C, Ikushima Y, Shervani Z. Investigation on the solubilization of organic dyes and micro-polarity in AOT water-in-CO2 microemulsions with fluorinated co-surfactant by using UV-Vis spectroscopy[J]. The Journal of Supercritical Fluids.2004.32(1-3):97-103.
    [158]Li J C, Zhang J L, Han B X, et al. Effect of ionic liquid on the polarity and size of the reverse micelles in supercritical CO2[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects. 2006,279(1-3):208-212.
    [159]Zhu D M, Wu X, Schelly Z A. Investigation of the micropolarities in reverse micelles of Triton X-100 in mixed benzene and n-hexane[J]. Journal of Physical Chemistry.1992,96(17):7121-7126.
    [160]Zhu D M, Schelly Z A. Investigation of the microenvironment in Triton X-100 reverse micelles using methyl orange and methylene blue as absorption probes [J]. Langmuir.1992,8(1):48-50.
    [161]Pramanick D, Mukherjee D. Molecular interaction of methylene blue with Triton X-100 in reverse micellar media[J]. Journal of Colloid and Interface Science.1993,157(1):131-134.
    [162]Qi L M, Ma J M. Investigation of the microenvironment in nonionic reverse micelles using methyl orange and methylene blue as absorption probes[J]. Journal of Colloid and Interface Science. 1998.197(1):36-42.
    [163]Capek I. Preparation of metal nanoparticles in water-in-oil (w/o) microemulsions[J]. Advances in Colloid and Interface Science.2004,110(1-2):49-74.
    [164]Eastoe J, Hollamby M J, Hudson L. Recent advances in nanoparticle synthesis with reversed micelles[J]. Advances in Colloid and Interface Science.2006,128-130:5-15.
    [165]Zhang R, Liu J, Han B, et al. Recovery of nanoparticles from (EO)8(PO)50(EO)8/p-xylene/H2O microemulsions by tuning the temperature[J]. Langmuir.2003,19(21):8611-8614.
    [166]Spiro M, De Jesus D M. Nanoparticle catalysis in microemulsions:oxidation of N,N-dimethyl-p-phenylenediamine by cobalt(Ⅲ) pentaammine chloride catalyzed by colloidal palladium in water/AOT/n-heptane microemulsions[J]. Langmuir.2000,16(6):2464-2468.
    [167]Liu J, Gan L M, Chew C H, et al. Nanostructured polymeric materials from microemulsion polymerization using poly(ethylene oxide) macromonomer[J]. Langmuir.1997,13(24):6421-6426.
    [168]Moulika S P, Paul B K. Structure, dynamics and transport properties of microemulsions[J]. Advances in Colloid and Interface Science.1998,78(2):99-195.
    [169]Eicke H, Borkovec M, Das-Gupta B. Conductivity of water-in-oil microemulsions:a quantitative charge fluctuation model [J]. Journal of Physical Chemistry.1989,93(1):314-317.
    [170]Jada A, Lang J, Zana R, et al. Ternary water in oil microemulsions made of cationic surfactants, water, and aromatic solvents.2. Droplet sizes and interactions and exchange of material between droplets [J]. Journal of Physical Chemistry.1990,94(1):387-395.
    [171]Jada A, Lang J, Zana R. Relation between electrical percolation and rate constant for exchange of material between droplets in water in oil microemulsions[J]. Journal of Physical Chemistry.1989. 93(1):10-12.
    [172]Fu X, Pan Y, Hu Z S, et al. Conductivity study on the w/o microemulsion of a saponified mono(2-ethylhexyl) phosphoric acid extractant system[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects.1996,110(1):55-61.
    [173]Mathew C, Patanjali P K, Nabi A, et al. On the concept of percolative conduction in water-in-oil microemulsions[J]. Colloids and Surfaces.1988,30(3-4):253-263.
    [174]Velazquez M M, Valero M, Ortega F. Light scattering and electrical conductivity studies of the aerosol OT toluene water-in oil microemulsions[J]. Journal of Physical Chemistry B.2001,105(42): 10163-10168.
    [175]Hait S K, Moulik S P, Rodgers M P, et al. Physicochemical studies on microemulsions.7. Dynamics of percolation and energetics of clustering in water/AOT/isooctane and water/AOT/decane w/o microemulsions in presence of hydrotopes (sodium salicylatei, alpha-naphthol, beta-naphthol, resorcinol, catechol, hydroquinone, pyrogallol and urea) and bile salt (sodium cholate)[J]. Journal of Physical Chemistry B.2001,105(29):7145-7154.
    [176]Lungwitz R, Strehmel V, Spange S. The dipolarity/polarisability of 1-alky 1-3-methylimidazolium ionic liquids as function of anion structure and the alkyl chain length[J]. New Journal of Chemistry. 2010,34(6):1135-1140.
    [177]Comminges C, Barhdadi R, Laurent M, et al. Determination of viscosity, ionic conductivity, and diffusion coefficients in some binary systems:ionic liquids+ molecular solvents[J]. Journal of Chemical and Engineering Data.2006,51(2):680-685.
    [178]Gardas R L, Dagade D H, Coutinho J A P, et al. Thermodynamic studies of ionic interactions in aqueous solutions of imidazolium-based ionic liquids [Emim][Br] and [Bmim][Cl][J]. Journal of Physical Chemistry B.2008,112(11):3380-3389.
    [179]Yang Q W, Xing H B, Cao Y F, et al. Selective separation of tocopherol homologues by liquid-liquid extraction using ionic liquids[J]. Industrial & Engineering Chemistry Research.2009, 48(13):6417-6422.
    [180]Yang Q W, Zhang H, Su B G, et al. Volumetric properties of binary mixtures of 1-butyl-3-methylimidazolium chloride plus water or hydrophilic solvents at different temperatures[J]. Journal of Chemical and Engineering Data.2010,55(4):1750-1754.
    [181]Guo R, Qi H, Guo D, et al. Preparation of high concentration ceramic inks for forming by jet-printing[J]. Journal of the European Ceramic Society.2003,23(1):115-122.
    [182]陈龙武,甘礼华,岳天仪等.微乳液反应法制备氧化铝(含水)超细颗粒[J].高等学校化学学报.1995,16(1):13-16.
    [183]Dutkiewicza E, Robinson B H. The electrical conductivity of a water-in-oil microemulsion system containing an ionic surfactant:Part I. Temperature effect[J]. Journal of Electroanalytical Chemistry.1988,251(1):11-20.
    [184]Jada A, Lang J, Zana R. Ternary water in oil microemulsions made of cationic surfactants, water, and aromatic solvents.1. Water solubility studies[J]. Journal of Physical Chemistry.1990,94(1): 381-387.
    [185]Peyrelasse J, Moha-Ouchane M, Boned C. Viscosity and the phenomenon of percolation in microemulsions[J]. Physical Review A.1988,38(8):4155-4161.
    [186]Arias-Barros S I, Cid A, Garcia-Rio L, et al. Influence of polyethylene glycols on percolative phenomena in AOT microemulsions[J]. Colloid & Polymer Science.2010,288(2):217-221.
    [187]Hait S K, Sanyal A, Moulik S P. Physicochemical studies on microemulsions.8. The effects of aromatic methoxy hydrotropes on droplet clustering and understanding of the dynamics of conductance percolation in water/oil microemulsion systems[J]. Journal of Physical Chemistry B.2002,106(48): 12642-12650.
    [188]Dasilva-Carvalhal J, Garcia-Rio L, Gomez-Diaz D, et al. Influence of crown ethers on the electric percolation of AOT/isooctane/water (w/o) microemulsions[J]. Langmuir.2003,19(15): 5975-5983.
    [189]Paul B K, Mitra R K. Percolation phenomenon in mixed reverse micelles:the effect of additives[J]. Journal of Colloid and Interface Science.2006.295(1):230-242.
    [190]Ray S, Bisal S R, Moulik S P. Structure and dynamics of microemulsions. Part 1. Effect of additives on percolation of conductance and energetics of clustering in water-AOT-heptane microemulsions[J]. Journal of the Chemical Society, Faraday Transactions.1993,89(17):3277-3282.
    [191]Mukhopadhyay L, Bhattacharya P K, Moulik S P. Additive effects on the percolation of water/AOT/decane microemulsion with reference to the mechanism of conduction[J]. Colloids and Surfaces.1990,50:295-308.
    [192]Ray S, Paul S, Moulik S P. Physicochemical studies on microemulsions.5. Additive effects on the performance of scaling equations and activation energy for percolation of conductance of water/AOT/heptane microemulsion[J]. Journal of Colloid and Interface Science.1996,183(1):6-12.
    [193]Zhang X, Dong J, Zhang G, et al. The effect of additives on the water solubilization capacity and conductivity in n-pentanol microemulsions[J]. Journal of Colloid and Interface Science.2005,285(1): 336-341.
    [194]Mitra R K, Paul B K. Effect of NaCl and temperature on the water solubilization behavior of AOT/nonionics mixed reverse micellar systems stabilized in IPM oil[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects.2005,255(1-3):165-180.
    [195]Alvarez E, Garcia-Rio L. Mejuto J C, et al. Effects of temperature on the conductivity of sodium bis(2-ethylhexyl) sulfosuccinate plus 2.2.4-trimethylpentane plus water microemulsions. Influence of sodium salts[J]. Journal of Chemical and Engineering Data.1998,43(4):519-522.
    [196]Alvarez E, Garcia-Rio L, Mejuto J C, et al. Effects of temperature on the conductivity of AOT/isooctane/water microemulsions. Influence of salts[J]. Journal of Chemical and Engineering Data. 1999,44(4):850-853.
    [197]Kim M W, Huang J S. Percolation-like phenomena in oil-continuous microemulsions[J]. Physical Review A.1986,34(1):719-722.
    [198]Hong D P, Kuboi R. Evaluation of the alcohol-mediated interaction between micelles using percolation processes of reverse micellar systems[J]. Biochemical Engineering Journal.1999,4(1): 23-29.
    [199]Hou M, Shah D O. Effects of the molecular structure of the interface and continuous phase on solubilization of water in water/oil microemulsions[J]. Langmuir.1987,3(6):1086-1096.
    [200]Garcia-Rio L, Herves P, Mejuto J C, et al. Effects of alkylamines on the percolation phenomena in water/AOT/isooctane microemulsions[J]. Journal of Colloid and Interface Science.2000,225(2): 259-264.
    [201]Shvedene N V. Borovskaya S V, Sviridov V V, et al. Measuring the solubilities of ionic liquids in water using ion-selective electrodes[J]. Analytical and Bioanalytical Chemistry.2005,381(2): 427-430.
    [202]Freire M G, Santos L M, Fernandes A M, et al. An overview of the mutual solubilities of water-imidazolium-based ionic liquids systems[J]. Fluid Phase Equilibria.2007,261(1-2):449-454.
    [203]Crowhurst L, Mawdsley P R, Perez-Arlandis J M, et al. Solvent-solute interactions in ionic liquids[J]. Physical Chemistry Chemical Physics.2003,5(13):2790-2794.
    [204]Garcia-Rio L, Leis J R, Mejuto J C, et al. Effects of additives on the internal dynamics and properties of water/AOT/isooctane microemulsions[J]. Langmuir.1994,10(6):1676-1683.
    [205]Bini R, Bortolini O, Chiappe C, et al. Development of cation/anion " interaction " scales for ionic liquids through ESI-MS measurements[J]. Journal of Physical Chemistry B.2007,111(3): 598-604.
    [206]Liu D J, Ma J M, Cheng H M, et al. Investigation on the conductivity and microstructure of AOT/non-ionic surfactants/water/n-heptane mixed reverse micelles[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects.1998,135(1):157-164.
    [207]Liu D J, Ma J M, Cheng H M, et al. Solubilization behavior of mixed reverse micelles:effect of surfactant component, electrolyte concentration and solvent[J]]. Colloids and Surfaces A: Physicochemical and Engineering Aspects.1998,143(1):59-68.
    [208]Feldman Y, Kozlovich N, Nir I, et al. Mechanism of transport of charge carriers in the sodium bis(2-ethylhexyl) sulfosuccinate-water-decane microemulsion near the percolation temperature threshold[J]. Journal of Physical Chemistry.1996,100(9):3745-3748.
    [209]Hait S K, Moulik S P, Palepu R. Refined method of assessment of parameters of micellization of surfactants and percolation of w/o microemulsions[J]Langmuir.2002,18(7):2471-2476.
    [210]Hamada K, Ikeda T, Kawai T, et al. Ionic strength effects of electrolytes on solubilized states of water in AOT reversed micelles[J]. Journal of Colloid and Interface Science.2001.233(2):166-170.
    [211]Paul E K, Mitra R K. Water solubilization capacity of mixed reverse micelles:effect of surfactant component, the nature of the oil, and electrolyte concentration[J]. Journal of Colloid and Interface Science.2005,288(1):261-279.
    [212]Li Q, Li T, Wu J. Water solubilization capacity and conductance behaviors of AOT and NaDEHP systems in the presence of additives[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects.2002,197(1-3):101-109.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700