用户名: 密码: 验证码:
沸石分子筛孔道中催化反应机理的理论计算研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分子筛催化剂因为环境友好而在石油化学工业中得到了广泛的应用。酸强度和孔道限域效应是分子筛催化科学研究中最根本的问题,其对催化反应机理以及活性的影响,一直以来受到了实验与理论工作者的广泛关注。本论文采用量子化学理论计算的方法研究了固体酸的酸强度性质,以及固体酸的酸强度和孔道限域效应对石油化工中几种重要反应的影响,取的了一些有意义的结果。
     (1)酸强度的定量测定是固体酸催化材料表征中最为关键的科学问题之一。我们利用理论计算的方法构建了一系列不同酸强度的固体Br(?)nsted酸和Lewis酸模型,计算了三甲基膦(TMP)探针分子在各酸模型上的吸附行为,并建立了TMP31P化学位移与固体Br(?)nsted和Lewis酸强度之间的定量关系。计算结果表明:TMP31P化学位移可以用来区分固体酸中的弱羟基(氢键吸附,化学位移,-60ppm)和强酸位(质子化TMPH+,化学位移,-2--4ppm)。对于Lewis酸,吸附TMP31P的化学位移与具有相同金属中心的Lewis酸强度(Lewis-TMP结合能)之间存在着良好的线性关系,因此TMP作为探针分子可以用来表征具有相同金属中心的Lewis酸强度。
     (2)烷烃活化是石油化工中重要的反应,它涉及到C-H和C-C键的活化与裂解等石油化工中重要的基元反应。在表征固体酸酸强度的基础上,我们进一步研究了酸强度与烷烃活化反应活性之间的定量关系。计算结果表明,甲烷氢交换、丙烷脱氢、裂解反应都随着酸强度的增加而反应活性增加。然而,这几类反应对酸强度的敏感性是不同的:裂解反应对酸强度最为敏感;而氢交换对酸强度最不敏感。反应对酸强度的敏感特性是由其过渡态的离子特性所决定的。
     (3)分子筛孔道的择形效应对催化反应的过渡态具有很好的选择性,反应分子尺寸太大或太小都不利于催化反应的进行。甲醇制烯烃的反应(MTO),可以把储量丰富的煤、天然气转化为低碳烯烃,是目前为止,最有可能替代传统石油路线的新工艺。我们利用密度泛函的方法研究了分子筛孔道0.3A的差异对MTO反应中多甲苯碳池物种选择性生成的影响。计算结果显示,在较大孔道的ZSM-12分子筛中,五甲基苯碳正离子的生成具动力学与热力学的优势,是ZSM-12分子筛中MTO反应的重要的活性物种。在只有0.3A差异的ZSM-22分子筛中,多甲苯的异碳甲基化具有动力上的优势,不利于MTO反应中碳池物种的生成。计算结果表明,虽然分子筛孔道只有0.3A的差异却对MTO反应中碳池物种的形成造成巨大的影响,由此看来分子筛的孔道限域效应是制约催化反应过渡态选择性的一种重要的因素。我们的研究将为实际工业中分子筛催化剂的选择提供重要的参考。
     (4)低碳烯烃通过聚合可以生成具有更高价值的高碳化合物。通过理论计算的方法我们研究了固体酸的酸强度以及孔道限域效应对烯烃聚合反应机理以及活性的影响。计算结果表明,无论是协同机理还是分步机理,增加酸强度都可以显著地提高烯烃聚合的反应活性。同时计算结果显示,在弱酸催化下,协同机理是主导机理;在强度以及超强酸下,两种机理将共存竞争。
     由于分子筛的孔道限域效应对离子性强的过渡态具有很好的稳定性作用,烯烃聚合反应在包含分子筛孔道结构的HZSM-5模型中反应活性显著提高,分步机理转变为主导机理。并且通过对比烯烃聚合反应在三种不同孔道尺寸的分子筛中的活性发现,烯烃聚合反应在与其过渡态尺寸相当的ZSM-5与ZSM-22中反应活性最高。
     (5)环己酮肟通过贝克曼重排反应所生成的ε-己内酰胺,是工业中合成尼龙的重要原料。本文中利用理论计算的方法系统地研究了固体酸的酸强度以及分子筛的孔道限域效应对贝克曼重排反应机理以及活性的影响。研究结果显示,酸强度与孔道限域效应是影响贝克曼重排反应的两个重要的因素。在孤立的酸模型下,随着酸强度的增加贝克曼重排反应的活性逐渐增加,当达到中强酸时活性最高;然后继续增加酸强度反应活性将降低。这主要是由于酸强度可以改变贝克曼重排反应的决速步骤所引起的。
     当反应在分子筛孔道内进行时,由于孔道限域效应的影响,反应与强酸下相似:1,2-H迁移是速率决定步骤,弱酸更有利于反应的进行;然而当孔道限域效应不明显时,重排反应是决速步骤,增加酸强度更有利于反应的进行。但是无论孔道限域效应是否明显,贝克曼重排反应在分子筛孔道中都将表现出比孤立模型下更强的反应活性。
     本文中我们用理论计算的方法构建了固体酸酸强度定量表征的标尺,并在此基础上建立了固体酸的酸强度以及孔道限域效应与石油化工中几类典型反应之间的定量关系。这些研究成果将为实际的石油化工中固体催化剂的设计、修饰与应用提供了一定的理论参考。
Zeolites have been applied extensively in the petrochemical industry due to their environmentally friendly properties. The acidity and pore confinement effect are key subjects in the zeolite science, which have great influence on the mechanisms and activities of acid-catalyzed reactions and have received extensive attentions from experimental and theoretical aspects. In this work, the quantum chemical calculations are applied to explore the acid strength of the solid acid catalysts, the influence of acid strength and pore confinement effect on several important reactions, and some meaningful results are obtained.
     (1) Adsoption of basic molecules is one of the widely used methods to character acid strength of solid acids. We theoretically built a series of Br(?)nsted and Lewis acid models with different acid strengths, and investigate the adsorptions of TMP on these Br(?)nsted and Lewis models, in order to elucidate the relationship between31P chemical shift and the strengths of these acid models. Based on the calculational result, it is found that31P chemical shifts can be used to discern the hydrogen-bonded TMP…H complex and the TMPH+adducts. For the TMP-Lewis acid complex, a linear correlation between the calculated31P chemical shifts and corresponding binding energies was observed for the B-, A1-, and Ti-containing Lewis acids, respectively, indicating the feasibility of using the31P chemical shift of adsorbed TMP as a scale for Lewis acidic strength.
     (2) Alkane activations include C-H and C-C bond activation and dissociation, which are important elementary reactions in the petrochemical industry.Based on the quantitative characterization of the solid acid strengths; we investigated the influence of Br(?)nsted acid strength on the reactivities of alkane activations by density functional theory (DFT) calculations. On the basis of the calculated energy barriers and rate coefficients, it's demonstrated that stronger acidity could improve the reactivity of all the reactions studied. However, the sensitivity of the reaction activities to acid strengths is different. The propane cracking reaction is the most sensitive reaction, and the rate can be considerably improved by increasing acid strength; while methane hydrogen exchange is least sensitive to acid strength. It's also demonstrated that such a sensitivity relationship could be closely related to the ionic character of the transition state. Compared to the other reactions, the transition state of propane cracking holds the most net charge.
     (3) It is well known that the dimensions of zeolite pores strongly control the reaction activity and selectivity in the zeolite catalysts. The methnol-to-olefines (MTO) process is one of the most successful non-petrochemical routes for production of light olefins from abundant resources of natural gas or coal. The influence of0.3A difference in the zeolite pore sizes on the generation of polymethylbenzenium cation, which is an important activated intermediates in the hydrocarbon-pool (HCP) species during the MTO reaction, has been systematically explored by DFT calculations. Base on the calculational results, the formation of pentamethylbenzenium cation was favered in the larger channel of ZSM-12zeolite from both kinetic and thermodynamic points of view and the pentamethylbenzenium cation would be the active HCP specie in the MTO reaction. However, for the HZSM-22zeolite with a0.3A smaller pore structure, the methylation on C-H sites of polymethylbenzene was selectively occurred by kinetic control. Therefore, it is demonstrated that the zeolite pore structure makes a dramatic influence on the transition state selectivity in the confined zeolite pore. Our results may provide a theoretical guide for the rational design of zeolite catalysts for MTO reaction.
     (4) Dimerization of lower alkenes to form higher hydrocarbons is one of available routes for the production of high octane number gasoline. The influence of both Bransted acid strength and pore confinement effect on ethylene dimerization reaction has been systematically studied by DFT calculations. It is demonstrated that the reactivity of ethylene dimerization reaction can be significantly enhanced by increasing acid strength no matter which mechanism is considered, while on the basis of activated barriers, the concerted mechanism is preferred on weak acids and two mechanisms are competitive when the acid strength increases to medium-strong acid.
     Due to the pore confinement effect that can effectively stabilize the ionic transition states of the dimerization reaction, the activity of the dimerization reaction is considerably improved inside the zeolite pore and the step-wise mechanism turns to be the preferable route. Additionally, on the basis of the systematic investigations on the alkene dimerization reactions over zeolites with varying pore sizes (such as ZSM-22, ZSM-5and SSZ-13), it is demonstrated that ZSM-22and ZSM-5zeolite are effective catalysts for the ethylene dimerization. The present results might provide a theoretical guide for the design, modification, and application of solid acid catalysts in the petrochemical industry.
     (5) The Beckmann rearrangement reaction of cyclohexanone oxime is an important industrial reaction for the production of ε-caprolactam which is a valuable compound for the manufacture of nylon fibers. The influence of acid strength and pore confinement effect on Beckmann rearrangement reaction has been systematically studied by DFT calculations. It is revealed that acidity and pore confinement effect are two main factors that affect the Beckmann rearrangement reaction. On the isolated models, the rearrangement is rate-determining step and increasing acid strength can effectively improve the reactivity. When the acid strength exceeds the medium strong acidity, the rate-determining step alters to1,2-H shift step, and the reaction activity decreases with increasing the acid strength.
     In zeolite pore, the effective pore confinement effect results in rate-determining step alters to1,2-H shift step, and decreasing acid strength improves the reactivity; for the smaller reactant, the inadequately confinement effect makes rearrangement step is rate-determining step and increasing acidity enhances the reaction activity. However, under any conditions, the reaction activity could be improved obviously inside zeolite pore.
     In this work, the quantitative characterization of the solid acid strengths has been established, and on this basis, the quantitive relationships between both acid strength and pore confinement effect of the solid acid catalysts and some important reactions in petrochemical industries were established by DFT calculations. Our results may provide a theoretical guide for the design, modification, and applications of solid acid catalysts in the petrochemical industry.
引文
[1]Kohn W. Electronic structure of matter-wave functions and density functionals[J]. Rev. Mod. Phys.,1999,71(5):1253-1266.
    [2]Pople J. Nobel Lecture:Quantum chemical models[J]. Rev. Mod. Phys.,1999,71(5): 1267-1274.
    [3]Tuma C., Sauer J. Treating dispersion effects in extended systems by hybrid MP2:DFT calculations-protonation of isobutene in zeolite ferrierite[J]. Phys. Chem. Chem. Phys.,2006, 8(34):3955-3965.
    [4]Svelle S., Tuma C., Rozanska X., et al. Quantum chemical modeling of zeolite catalyzed methylation reactions:Toward chemical accuracy for barriers[J]. J. Am. Chem. Soc.,2008, 131(2):816-825.
    [5]Grimme S. Accurate description of van der Waals complexes by density functional theory including empirical corrections[J]. J. Comput. Chem.,2004,25(12):1463-1473.
    [6]Grimme S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction[J]. J. Comput. Chem.,2006,27(15):1787-1799.
    [7]Becke A. Density-functional thermochemistry. V. Systematic optimization of exchange-correlation functionals[J]. J. Chem. Phys.,1997,107(20):8554-8560.
    [8]Schmider H., Becke A. Optimized density functionals from the extended G2 test set[J]. J. Chem. Phys.,1998,108(23):9624-9631.
    [9]Zhao Y., Truhlar D. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals[J]. Theor. Chem. Acc.,2008,120(1-3):215-241.
    [10]Labat F., Fuchs A., Adamo C. Toward an accurate modeling of the water-zeolite interaction: Calibrating the DFT approach[J]. J. Phys. Chem. Lett.,2010,1(4):763-768.
    [11]Chai J.-D., Head Gordon M. Long range corrected hybrid density functionals with damped atom-atom dispersion corrections[J]. Phys. Chem. Chem. Phys.,2008,10(44):6615-6620.
    [12]Vos A., Rozanska X., Schoonheydt R., et al. A theoretical study of the alkylation reaction of toluene with methanol catalyzed by acidic mordenite[J]. J. Am. Chem. Soc.,2001,123(12): 2799-2809.
    [13]Zheng A., Deng F., Liu S. Regioselectivity of carbonium ion transition states in zeolites[J]. Catal. Today,2011,164(1):40-45.
    [14]方汉军.固体酸催化剂的酸强度和孔道骨架对碳正离子反应中间体稳定性影响的理 计算研究[D].中国科学院研究生院(武汉物理与数学研究所),2010.
    [15]韩冰.分子筛孔道限域效应的量子化学计算研究[D].中国科学院研究生院(武汉物与数学研究所),2012.
    [16]Wang C., Wang Y., Liu H., et al. Catalytic activity and selectivity of methylbenzenes in HSAPO-34 catalyst for the methanol-to-olefins conversion from first principles[J]. J. Catal., 2010,271(2):386-391.
    [17]Wang C., Wang Y., Xie Z., et al. Methanol to olefin conversion on HSAPO-34 zeolite from periodic density functional theory calculations:A complete cycle of side chain hydrocarbon pool mechanism[J]. J. Phys. Chem. C,2009,113(11):4584-4591.
    [18]Dapprich S., Komaromi I., Byun K., et al. A new ONIOM implementation in Gaussian98. Part I. The calculation of energies, gradients, vibrational frequencies and electric field derivatives[J]. J. Mol. Struct-THEOCHEM,1999,461-462:1-21.
    [19]Boronat M., Martinez-Sanchez C., Law D., et al. Enzyme-like specificity in zeolites:A unique site position in mordenite for selective carbonylation of methanol and dimethyl ether with CO[J]. J. Am. Chem. Soc.,2008,130(48):16316-16323.
    [20]Zheng A., Liu S., Deng F. Chemoselectivity during propene hydrogenation reaction over H-ZSM-5 zeolite:Insights from theoretical calculations[J]. Micropor. Mesopor. Mater.,2009, 121(1-3):158-165.
    [21]Zheng A., Han B., Li B., et al. Enhancement of Br(?)nsted acidity in zeolitic catalysts due to an intermolecular solvent effect in confined micropores[J]. Chem. Commun.,2012,48(55): 6936-6938.
    [22]Schmitt K., Kennedy G Toward the rational design of zeolite synthesis:The synthesis of zeolite ZSM-18[J]. Zeolites,1994,14(8):635-642.
    [23]Lewis D., Freeman C., Catlow C. Predicting the templating ability of organic additives for the synthesis of microporous materials[J]. J. Phys. Chem.,1995,99(28):11194-11202.
    [24]Sastre G, Cantin A., Diaz-Cabanas M., et al. Searching organic structure directing agents for the synthesis of specific zeolitic structures:An experimentally tested computational study[J]. Chem. Mater.,2005,17(3):545-552.
    [25]Moliner M., Serna P., Cantin A., et al. Synthesis of the Ti-silicate form of BEC polymorph of P-zeolite assisted by molecular modeling[J]. J. Phys. Chem. C,2008,112(49):19547-19554.
    [26]Burton A. A priori phase prediction of zeolites:Case study of the structure directing effects in the synthesis of MTT-type zeolites[J]. J. Am. Chem. Soc.,2007,129(24):7627-7637.
    [27]Mora-Fonz M., Catlow C., Lewis D. H-bond interactions between silicates and water during zeolite pre-nucleation[J]. Phys. Chem. Chem. Phys.,2008,10(43):6571-6578.
    [28]Mora-Fonz M., Catlow C., Lewis D. Oligomerization and cyclization processes in the nucleation of microporous silicas[J]. Angew. Chem. Int. Ed.,2005,44(20):3082-3086.
    [29]Yang C., Mora-Fonz J., Catlow C. Modeling the polymerization of aluminosilicate clusters[J]. J. Phys. Chem. C,2012,116(42):22121-22128.
    [30]Profeta M., Mauri F., Pickard C. Accurate first principles prediction of 17O NMR parameters in SiO2:Assignment of the zeolite ferrierite spectrum[J]. J. Am. Chem. Soc.,2002,125(2): 541-548.
    [31]Brouwer D. NMR crystallography of zeolites:refinement of an NMR-solved crystal structure using ab initio calculations of 29Si chemical shift tensors[J]. J. Am. Chem. Soc.,2008, 130(20):6306-6307.
    [32]Brouwer D., Enright G. Probing local structure in zeolite frameworks:ultrahigh-field NMR measurements and accurate first-principles calculations of zeolite 29Si magnetic shielding tensors[J]. J. Am. Chem. Soc.,2008,130(10):3095-3105.
    [33]Fripiat J., Galet P., Delhalle J., et al. A nonempirical molecular orbital study of the siting and pairing of aluminum in ferrierite[J]. J. Phys. Chem.,1985,89(10):1932-1937.
    [34]O'Malley P., Dwyer J. Ab initio molecular orbital calculations on the siting of aluminium in the Theta-1 framework:Some general guidelines governing the site preferences of aluminium in zeolites[J]. Zeolites,1988,8(4):317-321.
    [35]Redondo A., Hay P. Quantum chemical studies of acid sites in zeolite ZSM-5[J]. J. Phys. Chem.,1993,97(45):11754-11761.
    [36]Sastre G, Fornes V., Corma A. On the preferential location of A1 and proton siting in zeolites: a computational and infrared study[J]. J. Phys. Chem. B,2001,106(3):701-708.
    [37]Zheng A., Chen L., Yang J., et al. Combined DFT theoretical calculation and solid state NMR studies of A1 substitution and acid sites in zeolite MCM-22[J]. J. Phys. Chem. B,2005, 109(51):24273-24279.
    [38]Sklenak S., Dedecek J., Li C., et al. Aluminum siting in silicon rich zeolite frameworks:A combined high resolution 27A1 NMR spectroscopy and quantum mechanics/molecular mechanics study of ZSM-5[J]. Angew. Chem. Int. Ed.,2007,46(38):7286-7289.
    [39]Sklenak S., Dedecek J., Li C., et al. Aluminium siting in the ZSM-5 framework by combination of high resolution 27A1 NMR and DFT/MM calculations[J]. Phys. Chem. Chem. Phys.,2009,11(8):1237-1247.
    [40]Pereira M., Chaer Nascimento M. Theoretical study on the dehydrogenation reaction of alkanes catalyzed by zeolites containing nonframework gallium species[J]. J. Phys. Chem. B, 2006,110(7):3231-3238.
    [41]Shannon R., Gardner K., Staley R., et al. The nature of the nonframework aluminum species formed during the dehydroxylation of H-Y[J]. J. Phys. Chem.,1985,89(22):4778-4788.
    [42]Deng F., Yue Y., Ye C. Observation of nonframework Al species in zeolite β by solid-state NMR spectroscopy[J]. J. Phys. Chem. B,1998,102(27):5252-5256.
    [43]Li S., Zheng A., Su Y., et al. Br(?)nsted/Lewis acid synergy in dealuminated HY zeolite:A combined solid state NMR and theoretical calculation study[J]. J. Am. Chem. Soc.,2007, 129(36):11161-11171.
    [44]Yu Z., Zheng A., Wang Q., et al. Insights into the dealumination of zeolite HY revealed by sensitivity enhanced 27A1 DQ-MAS NMR spectroscopy at high field[J]. Angew. Chem. Int. Ed.,2010,49(46):8657-8661.
    [45]Yu Z., Li S., Wang Q., et al. Br(?)nsted/Lewis acid synergy in H-ZSM-5 and H-MOR zeolites studied by 1H and 27A1 DQ-MAS solid state NMR spectroscopy[J]. J. Phys. Chem. C,2011, 115(45):22320-22327.
    [46]Macht J., Janik M., Neurock M., et al. Catalytic consequences of composition in polyoxometalate clusters with keggin structure[J]. Angew. Chem.,2007,119(41):8010-8014.
    [47]Janik M., Macht J., Iglesia E., et al. Correlating acid properties and catalytic function:A first-principles analysis of alcohol dehydration pathways on polyoxometalates[J]. J. Phys. Chem. C,2009,113(5):1872-1885.
    [48]Macht J., Janik M., Neurock M., et al. Mechanistic consequences of composition in acid catalysis by polyoxometalate keggin clusters[J]. J. Am. Chem. Soc.,2008,130(31): 10369-10379.
    [49]Macht J., Carr R., Iglesia E. Consequences of acid strength for isomerization and elimination catalysis on solid acids[J]. J. Am. Chem. Soc.,2009,131(18):6554-6565.
    [50]Carr R., Neurock M., Iglesia E. Catalytic consequences of acid strength in the conversion of methanol to dimethyl ether[J]. J. Catal.,2011,278(1):78-93.
    [51]Zheng A., Zhang H., Lu X., et al. Theoretical predictions of 31P NMR chemical shift threshold of trimethylphosphine oxide absorbed on solid acid catalysts[J]. J. Phys. Chem. B,2008, 112(15):4496-4505.
    [52]Zheng A., Zhang H., Chen L., et al. Relationship between 1H chemical shifts of deuterated pyridinium ions and Br(?)nsted acid strength of solid acids[J]. J. Phys. Chem. B,2007,111(12): 3085-3089.
    [53]Fang H., Zheng A., Chu Y, et al.13C Chemical shift of adsorbed acetone for measuring the acid strength of solid acids:A theoretical calculation study[J]. J. Phys. Chem. C,2010, 114(29):12711-12718.
    [54]Kramer G., van Santen R., Emeis C., et al. Understanding the acid behaviour of zeolites from theory and experiment[J]. Nature,1993,363:529-531.
    [55]Zheng X., Blowers P. An ab initio study of ethane conversion reactions on zeolites using the complete basis set composite energy method[J]. J. Mol. Catal. A:Chem.,2005,229(1-2): 77-85.
    [56]Zheng X., Blowers P. Reactivity of alkanes on zeolites:A computational study of propane conversion reactions[J]. J. Phys. Chem. A,2005,109(47):10734-10741.
    [57]Barich D., Nicholas J., Xu T., et al. Theoretical and experimental study of the 13C chemical shift tensors of acetone complexed with Br(?)nsted and Lewis acids[J]. J. Am. Chem. Soc., 1998,120(47):12342-12350.
    [58]Haw J., Nicholas J., Xu T., et al. Physical organic chemistry of solid acids:Lessons from in situ NMR and theoretical chemistry[J]. Acc. Chem. Res.,1996,29(6):259-267.
    [59]Filek U., Bressel A., Sulikowski B., et al. Structural stability and Br(?)nsted acidity of thermally treated AlPW12O40 in Comparison with H3PW12O40[J]. J. Phys. Chem. C,2008, 112(49):19470-19476.
    [60]Yang J., Janik M., Ma D., et al. Location, acid strength, and mobility of the acidic protons in keggin 12-H3PW12O40:A combined solid-state NMR spectroscopy and DFT quantum chemical calculation study[J]. J. Am. Chem. Soc.,2005,127(51):18274-18280.
    [61]Fang H., Zheng A., Li S., et al. New insights into the effects of acid strength on the solid acid catalyzed reaction:Theoretical calculation study of olefinic hydrocarbon protonation reaction[J]. J. Phys. Chern. C,2010,114(22):10254-10264.
    [62]Chu Y., Han B., Zheng A., et al. Pore selectivity for olefin protonation reactions confined inside mordenite zeolite:A theoretical calculation study[J]. J. Phys. Chem. C,2013,117(5): 2194-2202.
    [63]Kent J., Riegel S. Handbook of Industrial Chemical,8th edn., van Nostrand, New York,1983, 402.
    [64]Reddy B., Reddy G., Rao K., et al. Influence of alumina and titania on the structure and catalytic properties of sulfated zirconia:Beckmann rearrangement[J]. J. Mol. Catal. A:Chem. 2009,306(1-2):62-68.
    [65]Mao D., Lu G, Chen Q. Vapor-phase Beckmann rearrangement of cyclohexanone oxime over B2O3 catalysts supported on TiO2-ZrO2 mixed oxide[J]. React. Kinet. Catal. Lett.,2002,75(1): 75-80.
    [66]Marthala V., Jiang Y, Huang J., et al. Beckmann rearrangement of15N-cyclohexanone oxime on zeolites silicalite-1, H-ZSM-5, and H-[B]ZSM-5 studied by solid-State NMR spectroscopy[J]. J. Am. Chem. Soc.,2006,128(46):14812-14813.
    [67]Sirijaraensre J., Limtrakul J. Effect of the acidic strength on the vapor phase Beckmann rearrangement of cyclohexanone oxime over the MFI zeolite:An embedded ONIOM study [J]. Phys. Chem. Chem. Phys.,2009,11(3):578-585.
    [68]Sastre G, Viruela P., Corma A. Quantum chemistry calculations on the effect of electron confinement upon the frontier molecular orbitals of ethylene and benzene in sodalite. implications on reactivity[J]. Chem. Phys. Lett.,1997,264(6):565-572.
    [69]Corma A., Garcia H., Sastre G., et al. Activation of molecules in confined spaces:An approach to zeolite-guest supramolecular systems[J]. J. Phys. Chem. B,1997,101(23): 4575-4582.
    [70]Marquez F., Garcia H., Palomares E., et al. Spectroscopic evidence in support of the molecular orbital confinement concept:Case of anthracene incorporated in Zeolites[J]. J. Am. Chem. Soc.,2000,122(27):6520-6521.
    [71]Fang H., Zheng A., Xu J., et al. Theoretical investigation of the effects of the zeolite framework on the stability of carbenium ions[J]. J. Phys. Chem. C,2011,115(15): 7429-7439.
    [72]Smit B., Maesen T. Towards a molecular understanding of shape selectivity [J]. Nature,2008, 451(7179):671-678.
    [73]Derouane E. Zeolites as solid solvents[J]. J. Mol. Catal. A:Chem.,1998,134(1-3):29-45.
    [74]Vora B., Marker T., Barger P., et al., Economic route for natural gas conversion to ethylene and propylene. Stud. Surf. Sci. Catal.,1997,107:87-98.
    [75]Olsbye U., Svelle S., Bj(?)rgen M., et al. Conversion of methanol to hydrocarbons:How zeolite cavity and pore size controls product selectivity [J]. Angew. Chem. Int. Ed.,2012, 51(24):5810-5831.
    [76]Lesthaeghe D., De Sterck B., Van Speybroeck V, et al. Zeolite shape selectivity in the gem-methylation of aromatic hydrocarbons[J]. Angew. Chem. Int. Ed.,2007,46(8): 1311-1314.
    [77]Lesthaeghe D., Van Speybroeck V, Waroquier M. Theoretical evaluation of zeolite confinement effects on the reactivity of bulky intermediates[J]. Phys. Chem. Chem. Phys., 2009,11(26):5222-5226.
    [78]Lesthaeghe D., Horre A., Waroquier M., et al. Theoretical insights on methylbenzene side-chain growth in ZSM-5 zeolites for methanol-to-olefin conversion[J]. Chem. Eur. J., 2009,15(41):10803-10808.
    [79]Svelle S., Joensen F., Nerlov J., et al. Conversion of methanol into hydrocarbons over zeolite H-ZSM-5:Ethene formation is mechanistically separated from the formation of higher alkenes[J]. J. Am. Chem. Soc.,2006,128(46):14770-14771.
    [80]Xu T., Barich D., Goguen P., et al. Synthesis of a benzenium ion in a zeolite with use of a catalytic flow reactor[J]. J. Am. Chem. Soc.,1998,120(16):4025-4026.
    [81]Bhan A., Allian A., Sunley G., et al. Specificity of sites within eight-membered ring zeolite channels for carbonylation of methyls to acetyls[J]. J. Am. Chern. Soc.,2007,129(16): 4919-4924.
    [82]Li B., Xu J., Han B., et al. Insight into dimethyl ether carbonylation reaction over mordenite zeolite from in-situ solid-state NMR spectroscopy[J]. J. Phys. Chem. C,2013,117(11): 5840-5847.
    [83]Gounder R., Iglesia E. Catalytic consequences of spatial constraints and acid site location for monomolecular alkane activation on zeolites[J]. J. Am. Chem. Soc,2009,131(5): 1958-1971.
    [84]Gounder R., Iglesia E. Effects of partial confinement on the specificity of monomolecular alkane reactions for acid sites in side pockets of mordenite[J]. Angew. Chem. Int. Ed.,2010, 49(4):808-811.
    [85]Gounder R., Iglesia E. The catalytic diversity of zeolites:Confinement and solvation effects within voids of molecular dimensions[J]. Chem. Commun.,2013,49(34):3491-3509.
    [86]Clark L., Sierka M., Sauer J. Computational elucidation of the transition state shape selectivity phenomenon[J]. J. Am. Chem. Soc.,2003,126(3):936-947.
    [87]Nieminen V., Sierka M., Murzin D., et al. Stabilities of C3-C5 alkoxide species inside H-FER zeolite:A hybrid QM/MM study[J]. J. Catal.,2005,231(2):393-404.
    [88]Corma A. Inorganic solid acids and their use in acid-catalyzed hydrocarbon reactions[J], Chem. Rev.,1995,95(3):559-614.
    [89]Zhao Q., Chen W.-H., Huang S.-J., et al. Discernment and quantification of internal and external acid sites on zeolites[J]. J. Phys. Chem. B,2002,106(17):4462-4469.
    [90]Karra M. D., Sutovich K. J.,Mueller K. T. NMR characterization of Bronsted acid sites in faujasitic zeolites with use of perdeuterated trimethylphosphine Oxide[J]. J. Am. Chem. Soc., 2002,124(6):902-903.
    [91]Baltusis L., Frye J. S., Maciel G E. Phosphine oxides as NMR probes for adsorption sites on surfaces[J]. J. Am. Chem. Soc.,1986,108(22):7119-7120.
    [92]Feng N., Zheng A., Huang S.-J., et al. Combined solid-state NMR and theoretical calculation studies of Br(?)nsted acid properties in anhydrous 12-Molybdophosphoric acid[J]. J. Phys. Chem. C,2010,114(36):15464-15472.
    [93]Zheng A., Huang S.-J., Chen W.-H., et al.31P Chemical shift of adsorbed trialkylphosphine oxides for acidity characterization of solid acids catalysts[J]. J. Phys. Chem. A,2008,112(32): 7349-7356.
    [94]Rothwell W. P., Shen W. X., Lunsford J. H. Solid-state phosphorus-31 NMR of a chemisorbed phosphonium ion in HY zeolite:Observation of proton-phosphorus-31 coupling in the solid-state[J]. J. Am. Chem. Soc.,1984,106(8):2452-2453.
    [95]Lunsford J. H., Rothwell W. P., Shen W. Acid sites in zeolite Y:A solid-state NMR and infrared study using trimethylphosphine as a probe molecule[J]. J. Am. Chem. Soc.,1985, 107(6):1540-1547.
    [96]Hunger M. Br(?)nsted acid sites in zeolites characterized by multinuclear solid-state NMR spectroscopy[J]. Catal. Rev.,1997,39(4):345-393.
    [97]Hu B., Gay I. D. Probing surface acidity by 31P nuclear magnetic resonance spectroscopy of arylphosphines[J]. Langmuir,1998,15(2):477-481.
    [98]Baltusis L., Frye J. S., Maciel G E. Phosphorus-31 NMR study of trialkylphosphine probes adsorbed on silica-alumina[J]. J. Am. Chem. Soc.,1987,109(1):40-46.
    [99]Chu P.-J., Carvajal R. R., Lunsford J. H. Direct NMR spinning sideband analysis for a dipolar coupled system:Structure elucidation of a proton-trimethylphosphine complex in LaH-Y zeolites[J]. Chem. Phys. Lett.,1990,175(4):407-412.
    [100]Bendada A., DeRose E. F., Fripiat J. J. Motions of trimethylphosphine on the surface of acid catalysts[J]. J. Phys. Chem.,1994,98(14):3838-3842.
    [101]Haw J. F., Zhang J., Shimizu K., et al. NMR and theoretical study of acidity probes on sulfated zirconia catalysts[J]. J. Am. Chem. Soc.,2000,122(50):12561-12570.
    [102]Sheng T.-C., Kirszensztejn P., Bell T. N., et al.31P and 119Sn high resolution solid state CP/MAS NMR study of Al2O3-SnO2 systems[J]. Catal. Lett.,1994,23(1-2):119-126.
    [103]Zhao B., Pan H., Lunsford J. H. Characterization of [(CH3)3P-H]+complexes in normal H-Y, dealuminated H-Y, and H-ZSM-5 zeolites using 31P solid-state NMR spectroscopy [J]. Langmuir,1999,15(8):2761-2765.
    [104]Kao H.-M., Grey C. P. Characterization of the Lewis acid sites in zeolite HY with the probe molecule trimethylphosphine, and 31P/27A1 double resonance NMR[J]. Chem. Phys. Lett., 1996,259(3-4):459-464.
    [105]Zhang H., Yu H., Zheng A., et al. Reactivity enhancement of 2-propanol photocatalysis on SO42-/TiO2:Insights from solid-state NMR spectroscopy [J]. Environ. Sci. Technol.,2008, 42(14):5316-5321.
    [106]Sang H., Chu H., Lunsford J. An NMR study of acid sites on chlorided alumina catalysts using trimethylphosphine as a probe[J]. Catal. Lett.,1994,26(3-4):235-246.
    [107]Yang J., Zheng A., Zhang M., et al. Bronsted and Lewis acidity of the BF3/γ-Al2O3 alkylation catalyst as revealed by solid-state NMR spectroscopy and DFT quantum chemical calculations[J]. J. Phys. Chem. B,2005,109(27):13124-13131.
    [108]Guan J., Li X., Yang G, et al. Interactions of phosphorous molecules with the acid sites of H-Beta zeolite:Insights from solid-state NMR techniques and theoretical calculations[J]. J. Mol. Catal. A:Chem.,2009,310(1-2):113-120.
    [109]Yang G, Lan X., Zhuang J., et al. Acidity and defect sites in titanium silicalite catalyst[J]. Appl. Catal. A:Gen.,2008,337(1):58-65.
    [110]Zhuang J., Ma D., Yan Z., et al. Solid-state MAS NMR detection of the oxidation center in TS-1 zeolite by in situ probe reaction[J]. J. Catal.,2004,221(2):670-673.
    [111]Shimizu K., Venkatraman T. N.,Song W. NMR study of tungstated zirconia catalyst:Acidic properties of tungstated zirconia and influence of tungsten loading[J]. Appl. Catal. A:Gen., 2002,224(1-2):77-87.
    [112]Yu H., Fang H., Zhang H., et al. Acidity of sulfated tin oxide and sulfated zirconia:A view from solid-state NMR spectroscopy [J]. Catal. Commun.,2009,10(6):920-924.
    [113]Xu J., Zheng A., Yang J., et al. Acidity of mesoporous MoOx/ZrO2 and WOx/ZrO2 materials: A combined solid-state NMR and theoretical calculation study[J]. J. Phys. Chem. B,2006, 110(22):10662-10671.
    [114]Ditchfield R., Hehre W. J., Pople J. A. Self-consistent molecular-orbital methods. IX. An extended gaussian-type basis for molecular-orbital studies of organic molecules[J]. J. Chem. Phys.,1971,54(2):724-728.
    [115]Zhang Y, Oldfield E.31P NMR chemical shifts in hypervalent oxyphosphoranes and polymeric orthophosphates[J]. J. Phys. Chem. B,2005,110(1):579-586.
    [116]Frisch M. J., Trucks G. W., Schlegel H. B., et al. Gaussian 09, Revision B.01,2010.
    [117]Zheng X., Blowers P. A computational study of methane catalytic reactions on zeolites[J]. J. Mol. Catal. A:Chem.,2006,246(1-2):1-10.
    [118]Blaszkowski S. R., Nascimento M. A. C., van Santen R. A. Activation of C-H and C-C bonds by an acidic zeolite:a density functional study [J]. J. Phys. Chem.,1996,100(9): 3463-3472.
    [119]Brand H. V., Curtiss L. A., Iton L. E. Ab initio molecular orbital cluster studies of the zeolite ZSM-5.1. Proton affinities[J]. J. Phys. Chem.,1993,97(49):12773-12782.
    [120]Eichler U., Brandle M., Sauer J. Predicting absolute and site specific acidities for zeolite catalysts by a combined quantum mechanics/interatomic potential function approach[J]. J. Phys. Chem. B,1997,101(48):10035-10050.
    [121]Luo Q., Deng F., Yuan Z., et al. Using trimethylphosphine as a probe molecule to study the acid sites in A1-MCM-41 materials by solid-state NMR spectroscopy[J]. J. Phys. Chem. B, 2002,107(11):2435-2442.
    [122]Chen W.-H., Tsai T.-C, Jong S.-J., et al. Effects of surface modification on coking, deactivation and para-selectivity of H-ZSM-5 zeolites during ethylbenzene disproportionation[J]. J. Mol. Catal. A:Chem.,2002,181(1-2):41-55.
    [123]Bauer F., Chen W. H., Bilz E., et al. Surface modification of nano-sized HZSM-5 and H-FER by pre-coking and silanization[J]. J. Catal.,2007,251 (2):258-270.
    [124]Tagusagawa C., Takagaki A., Iguchi A., et al. Highly active mesoporous Nb-W oxide solid-acid catalyst[J]. Angew. Chem. Int. Ed.,2010,49(6):1128-1132.
    [125]Bini L., Pidko E. A., Muller C., et al. Lewis acid controlled regioselectivity in styrene hydrocyanation[J]. Chem. Eur. J.,2009,15(35):8768-8778.
    [126]Sanders S. D., Ruiz-Olalla A., Johnson J. S. Total synthesis of (+)-virgatusin via AlCl3-catalyzed [3+2] cycloaddition[J]. Chem. Commun.,2009, (34):5135-5137.
    [127]Fringuelli F., Pizzo F., Vaccaro L. Lewis-acid catalyzed organic reactions in water. The case of AlCl3, TiCl4, and SnCl4 believed to be unusable in aqueous medium[J]. J. Org. Chem., 2001,66(13):4719-4722.
    [128]Russell G A. Catalysis by metal malides. IV. Relative efficiencies of Friedel-Crafts catalysts in cyclohexane-methylcyclopentane isomerization, alkylation of benzene and polymerization of styrene[J]. J. Am. Chem. Soc.,1959,81(18):4834-4838.
    [129]Bessac F., Frenking G. Why is BC13 a stronger Lewis acid with respect to strong bases than BF3?[J]. Inorg. Chem.,2003,42(24):7990-7994.
    [130]Hirao H., Omoto K., Fujimoto H. Lewis acidity of boron trihalides[J]. J. Phys. Chem. A, 1999,103(29):5807-5811.
    [131]Lamberov A. A., Kuznetsov A. M., Shapnik M. S., et al. Quantum-chemical investigation of the formation of Lewis acid centers of high-siliceous zeolites[J]. J. Mol. Catal. A:Chem., 2000,158(1):481-486.
    [132]Elanany M., Koyama M., Kubo M., et al. Periodic density functional investigation of Lewis acid sites in zeolites:Relative strength order as revealed from NH3 adsorption[J]. Appl. Surf. Sci.,2005,246(1-3):96-101.
    [133]Corma A., Garcia H. Lewis acids:From conventional homogeneous to green homogeneous and heterogeneous catalysis[J]. Chem. Rev.,2003,103(11):4307-4366.
    [134]Parr R. G., Pearson R. G Absolute hardness:Companion parameter to absolute electronegativity[J]. J. Am. Chem. Soc.,1983,105(26):7512-7516.
    [135]Weitkamp J., Traa Y. Isobutane/butene alkylation on solid catalysts. Where do we stand?[J]. Catal. Today,1999,49(1-3):193-199.
    [136]Arata K., Matsuhashi H., Hino M., et al. Synthesis of solid superacids and their activities for reactions of alkanes[J]. Catal. Today,2003,81(1):17-30.
    [137]Svelle S., Kolboe S., Swang O. Theoretical investigation of the dimerization of linear alkenes catalyzed by acidic zeolites[J]. J. Phys. Chem. B,2004,108(9):2953-2962.
    [138]Chatterjee A., Bhattacharya D., Chatterjee M., et al. Suitability of using ZSM-5 over other medium pore zeolites for n-hexane aromatization-a density functional study [J]. Micropor. Mesopor. Mater.,1999,32(1-2):189-198.
    [139]Xu T., Munson E. J., Haw J. Toward a systematic chemistry of organic reactions in zeolites: in situ NMR studies of ketones[J]. J. Am. Chem. Soc.,1994,116(5):1962-1972.
    [140]Song W., Nicholas J., Haw J. A persistent carbenium ion on the methanol-to-olefin catalyst HSAPO-34:Acetone shows the way[J]. J. Phys. Chem. B,2001,105(19):4317-4323.
    [141]Biaglow A., Gorte R., Kokotailo G., et al. A probe of Bronsted site acidity in zeolites:13C chemical shift of acetone[J]. J. Catal.,1994,148(2):779-786.
    [142]Zhang H., Zheng A., Yu H., et al. Formation, location, and photocatalytic reactivity of methoxy species on keggin 12-H3PW12O40:A joint solid-state NMR spectroscopy and DFT calculation study[J]. J. Phys. Chem. C,2008,112(40):15765-15770.
    [143]Macht J., Janik M. J., Neurock M., et al. Catalytic consequences of composition in polyoxometalate clusters with keggin structure[J]. Angew. Chem. Int. Ed.,2007,46(41): 7864-7868.
    [144]Castella-Ventura M., Akacem Y., Kassab E. Vibrational analysis of pyridine adsorption on the Bronsted acid sites of zeolites based on density functional cluster calculations [J]. J. Phys. Chem. C,2008,112(48):19045-19054.
    [145]Svelle S., Arstad B., Kolboe S., et al. A theoretical investigation of the methylation of alkenes with methanol over acidic zeolites[J]. J. Phys. Chem. B,2003,107(35):9281-9289.
    [146]Kassab E., Castella-Ventura M., Akacem Y. Theoretical study of 4,4'-bipyridine adsorption on the Br(?)nsted acid sites of H-ZSM-5 zeolite[J]. J. Phys. Chem. C,2009,113(47): 20388-20395.
    [147]Boronat M., Viruela P., Corma A. Theoretical study of bimolecular reactions between carbenium ions and paraffins:The proposal of a common intermediate for hydride transfer, disproportionation, dehydrogenation, and alkylation[J]. J. Phys. Chem. B,1999,103(37): 7809-7821.
    [148]Bhan A., Joshi Y., Delgass W., et al. DFT investigation of alkoxide formation from olefins in H-ZSM-5[J]. J. Phys. Chem. B,2003,107(38):10476-10487.
    [149]Oumi Y., Kanai T., Lu B., et al. Structural and physico-chemical properties of high-silica mordenite[J]. Micropor. Mesopor. Mater.2007,101(1-2):127-133.
    [150]Van Koningsveld H. On the location and disorder of the tetrapropylammonium (TPA) ion in zeolite ZSM-5 with improved framework accuracy[J]. Acta Cryst. B,1987,43:127-132.
    [151]Frisch M., Trucks G., Schlegel H., et al. GaussianO3, revision B.05,2003.
    [152]Ghysels A., Verstraelen T., Hemelsoet K., et al. TAMkin:A versatile package for vibrational analysis and chemical kinetics[J]. J. Chem. Inf. Mod.,2010,50(9):1736-1750.
    [153]McCann D., Lesthaeghe D., Kletnieks P., et al. A complete catalytic cycle for supramolecular methanol-to-olefins conversion by linking theory with experiment[J]. Angew. Chem. Int. Ed.,2008,47(28):5179-5182.
    [154]Vandichel M., Lesthaeghe D., Mynsbrugge J., et al. Assembly of cyclic hydrocarbons from ethene and propene in acid zeolite catalysis to produce active catalytic sites for MTO conversion[J]. J. Catal.,271(1):67-78.
    [155]Van Speybroeck V, Van der Mynsbrugge J., Vandichel M., et al. First principle kinetic studies of zeolite catalyzed methylation reactions[J]. J. Am. Chem. Soc.,2011,133(4): 888-899.
    [156]Hua W., Goeppert A., Sommer J. H/D exchange and isomerization of small alkanes over unpromoted and Al2O3-promoted SO2-4/ZrO2 catalysts[J]. J. Catal.,2001,197(2):406-413.
    [157]Blaszkowski S., Jansen A., Nascimento M., et al. Density functional theory calculations of the transition states for hydrogen exchange and dehydrogenation of methane by a Bransted zeolitic proton[J]. J. Phys. Chem.,1994,98(49):12938-12944.
    [158]Kramer G., van Santen R. An ab initio study of D/H exchange between CD4 and the H-forms of zeolites FAU and MFI[J]. J. Am. Chem. Soc.,1995,117(6):1766-1776.
    [159]Lercher J., Santen R.,Vinek H. Carbonium ion formation in zeolite catalysis[J]. Catal. Lett., 1994,27(1):91-96.
    [160]Kazansky V. B., Frash M. V.,Santen R. A. A quantum-chemical study of adsorbed nonclassical carbonium ions as active intermediates in catalytic transformations of paraffins. II. Protolytic dehydrogenation and hydrogen-deuterium hetero-isotope exchange of paraffins on high-silica zeolites[J]. Catal. Lett.,1994,28(2):211-222.
    [161]Zheng X., Blowers P. A computational study of alkane hydrogen-exchange reactions on zeolites[J]. J. Mol. Catal. A:Chem.,2005,242(1-2):18-25.
    [162]Schoofs B., Martens J., Jacobs P., et al. Kinetics of hydrogen-deuterium exchange reactions of methane and deuterated acid FAU-and MFI-Type zeolites[J]. J. Catal.,1999,183(2): 355-367.
    [163]Narbeshuber T., Brait A., Seshan K., et al. Dehydrogenation of light alkanes over zeolites[J]. J. Catal.,1997,172(1):127-136.
    [164]Milas I., Chaer Nascimento M. A density functional study on the effect of the zeolite cavity on its catalytic activity:The dehydrogenation and cracking reactions of isobutane over HZSM-5 and HY zeolites[J]. Chem. Phys. Lett.,2006,418(4-6):368-372.
    [165]Milas I., Nascimento M. The dehydrogenation and cracking reactions of isobutane over the ZSM-5 zeolite[J]. Chem. Phys. Lett.,2003,373(3-4):379-384.
    [166]Maihom T., Pantu P., Tachakritikul C., et al. Effect of the zeolite nanocavity on the reaction mechanism of n-Hexane cracking:A density functional theory study[J]. J. Phys. Chem. C, 2010,114(17):7850-7856.
    [167]Haw J., Song W., Marcus D., et al. The mechanism of methanol to hydrocarbon catalysis[J]. Acc. Chem. Res.,2003,36(5):317-326.
    [168]Stocker M. Methanol-to-hydrocarbons:catalytic materials and their behavior[J]. Micropor. Mesopor. Mater.,1999,29(1-2):3-48.
    [169]Wang W., Hunger M. Reactivity of surface alkoxy species on acidic zeolite catalysts[J]. Acc. Chem. Res.,2008,41(8):895-904.
    [170]Dahl I., Kolboe S. On the reaction mechanism for hydrocarbon formation from methanol over SAPO-34:I. Isotopic labeling studies of the co-reaction of ethene and methanol[J]. J. Catal.,1994,149(2):458-464.
    [171]Dahl I., Kolboe S. On the reaction mechanism for hydrocarbon formation from methanol over SAPO-34:2. isotopic labeling studies of the co-reaction of propene and methanol[J]. J. Catal.,1996,161(1):304-309.
    [172]Song W., Fu H., Haw J. Supramolecular origins of product selectivity for methanol-to-olefin catalysis on HSAPO-34[J]. J. Am. Chem. Soc,2001,123(20):4749-4754.
    [173]Arstad B., Nicholas J., Haw J. Theoretical study of the methylbenzene side-chain hydrocarbon pool mechanism in methanol to olefin catalysis[J]. J. Am. Chem. Soc.,2004, 126(9):2991-3001.
    [174]Wang Q., Cui Z., Cao C., et al.0.3 A makes the difference:dramatic changes in methanol-to-olefin activities between H-ZSM-12 and H-ZSM-22 zeolites[J]. J. Phys. Chem., C 2011,115(50):24987-24992.
    [175]Bj(?)rgen M., Bonino F., Kolboe S., et al. Spectroscopic evidence for a persistent benzenium cation in zeolite H-Beta[J]. J. Am. Chem. Soc.,2003,125(51):15863-15868.
    [176]Song W., Nicholas J., Sassi A., et al. Synthesis of the heptamethylbenzenium cation in Zeolite-p:In situ NMR and theory[J]. Catal. Lett.,2002,81(1-2):49-53.
    [177]Li J., Wei Y., Chen J., et al. Observation of heptamethylbenzenium cation over SAPO-Type molecular sieve DNL-6 under real MTO conversion conditions[J]. J. Am. Chem. Soc.,2011, 134(2):836-839.
    [178]Zheng X., Blowers P. Reactivity of isobutane on Zeolites:a first principles study[J]. J. Phys. Chem. A,2006,110(7):2455-2460.
    [179]Goerigk L., Grimme S. A thorough benchmark of density functional methods for general main group thermochemistry, kinetics, and noncovalent interactions[J]. Phys. Chem. Chem. Phys.,2011,13(14):6670-6688.
    [180]Foster M. D., Rivin I., Treacy M. M. J., et al. A geometric solution to the largest-free-sphere problem in zeolite frameworks[J]. Micropor. Mesopor. Mater.,2006,90(1-3):32-38.
    [181]Treacy M. M. J., Foster M. D. Packing sticky hard spheres into rigid zeolite frameworks[J]. Micropor. Mesopor. Mater.,2009,118(1-3):106-114.
    [182]Sastre G, Corma A. The confinement effect in zeolites[J]. J. Mol. Catal. A:Chem.,2009, 305(1-2):3-7.
    [183]Knifton J., Sanderson J., Dai P. Olefin oligomerization via zeolite catalysis[J]. Catal. Lett., 1994,28(2):223-230.
    [184]Dutta P., Roy S., Nandi L., et al. Synthesis of lower olefins from methanol and subsequent conversion of ethylene to higher olefins via oligomerisation[J]. J. Mol. Catal. A:Chem.,2004, 223(1-2):231-235.
    [185]Geobaldo F., Spoto G., Bordiga S., et al. Propene oligomerization on H-mordenite: hydrogen-bonding interaction, chain initiation, propagation and hydrogen transfer studied by temperature-programmed FT-IR and UV-VIS spectroscopies[J]. J. Chem. Soc., Faraday Trans.,1997,93(6):1243-1249.
    [186]Spoto G., Bordiga S., Ricchiardi G., et al. IR study of ethene and propene oligomerization on H-ZSM-5:hydrogen-bonded precursor formation, initiation and propagation mechanisms and structure of the entrapped oligomers[J]. J. Chem. Soc., Faraday Trans.,1994,90(18): 2827-2835.
    [187]Ding X., Geng S., Li C., et al. Effect of acid density of HZSM-5 on the oligomerization of ethylene in FCC dry gas[J]. J. Nat. Gas Chem.,2009,18(2):156-160.
    [188]Namuangruk S., Pantu P., Limtrakul J. Investigation of ethylene dimerization over faujasite zeolite by the ONIOM Method[J]. ChemPhysChem,2005,6(7):1333-1339.
    [189]Katayama A., Toba M., Takeuchi G., et al. Shape-selective synthesis of 2,6-diisopropylnaphthalene over H-mordenite catalyst[J]. J. Chem. Soc., Chem. Commun., 1991,(1):39-40.
    [190]韩冰,褚月英,郑安民,邓风.分子筛限域孔道中吡啶的吸附结构和能量[J].物理化学学报,2012,28(2):315-323.
    [191]Sohn J., Lee S. High catalytic activity of NiO/ZrO2 modified with WO3 for ethylene dimerization[J]. Appl. Catal.A:Gen.,1997,164(1-2):127-140.
    [192]Sohn J. R.,Lim J. S. Ethylene dimerization over NiSO4 supported on Fe2O3-promoted ZrO2 catalyst[J]. Catal. Today,2006,111(3-4):403-411.
    [193]Sohn J., Park J. Characterization of dealuminated NiY zeolite and effect of dealumination on catalytic activity for ethylene dimerization[J]. Appl. Catal. A:Gen.,2001,218(1-2):229-234.
    [194]Sohn J., Park W. Characterization and catalytic activity for ethylene dimerization of nickel sulfate supported on zirconia[J]. Appl. Catal. A:Gen.,2002,230(1-2):11-18.
    [195]Haw J., Nicholas J., Song W., et al. Roles for cyclopentenyl cations in the synthesis of hydrocarbons from methanol on zeolite catalyst HZSM-5[J]. J. Am. Chem. Soc.,2000, 122(19):4763-4775.
    [196]Arzumanov S., Reshetnikov S., Stepanov A., et al. In situ'H and 13C MAS NMR kinetic study of the mechanism of H/D exchange for propane on zeolite H-ZSM-5[J]. J. Phys. Chem. B,2005,109(42):19748-19757.
    [197]Olah G., Prakash G., Williams R., et al. Hypercarbon Chemistry, Wiley-Interscience: Hoboken,NJ 1987.
    [198]Boronat M., Martinez C., Corma A. Mechanistic differences between methanol and dimethyl ether carbonylation in side pockets and large channels of mordenite[J]. Phys. Chem. Chem. Phys.,2011,13(7):2603-2612.
    [199]Van der Mynsbrugge J., Hemelsoet K., Vandichel M., et al. Efficient approach for the computational study of alcohol and nitrile adsorption in H-ZSM-5[J]. J. Phys. Chem. C,2012, 116(9):5499-5508.
    [200]March J., Smith M. Advanced organic chemistry, reactions, mechanisms and structure. John Wiley & Sons:Hoboken,2007,1613.
    [201]Katada N., Tsubouchi T., Niwa M., et al. Vapor-phase Beckmann rearrangement over silica monolayers prepared by chemical vapor deposition[J]. Appl. Catal. A:Gen.,1995,124(1): 1-7.
    [202]Dai L., Hayasaka R., Iwaki Y., et al. Vapour phase Beckmann rearrangement of cyclohexanone oxime catalysed by H-beta zeolite[J]. Chem. Commun.,1996, (9):1071-1072.
    [203]Singh P. S., Bandyopadhyay R., Hegde S. G, et al. Vapour phase beckmann rearrangement of cyclohexanone oxime over SAPO-11 molecular sieve[J]. Appl. Catal. A:Gen.,1996, 136(2):249-263.
    [204]Thomas B., Prathapan S., Sugunan S. Solid acid-catalyzed dehydration/Beckmann rearrangement of aldoximes:Towards high atom efficiency green processes[J]. Micropor. Mesopor. Mater.2005,79(1-3):21-27.
    [205]Chung Y., Rhee H. Solvent effects in the liquid-phase Beckmann rearrangement of oxime over H-Beta catalyst Ⅱ:adsorption and FT-IR studies[J]. J. Mol. Catal. A:Chem.,2001, 175(1-2):249-257.
    [206]Sirijaraensre J., Truong T. N., Limtrakul J. Density functional study of the mechanism of the Beckmann rearrangement catalyzed by H-ZSM-5:A cluster and embedded cluster Study[J]. J. Phys. Chem. B,2005,109(24):12099-12106.
    [207]Camblor M., Corma A., Garcia H., et al. Active sites for the liquid-phase Beckmann rearrangement of cyclohexanone, acetophenone and cyclododecanone oximes, catalyzed by beta zeolites[J]. J. Catal.,1998,177(2):267-272.
    [208]Xu B., Cheng S., Jiang S., et al. Gas phase Beckmann rearrangement of cyclohexanone oxime over zirconia-supported boria catalyst[J]. Appl. Catal. A:Gen.,1999,188(1-2): 361-368.
    [209]Kob N., Drago R. Catalysis of the formation of caprolactam from cyclohexanone oxime by tungsten oxide solid acids[J]. Catal. Lett.,1997,49(3-4):229-234.
    [210]Sato S., Takematsu K., Sodesawa T., et al. Vapor-phase Beckmann rearrangement of cyclohexanone oxime over an HY Zeolite catalyst calcined at high temperature[J]. Bull. Chem. Soc. Jpn.,1992,65(6):1486-1490.
    [211]Dai L., Koyama K., Miyamoto M., et al. Highly selective vapor phase Beckmann rearrangement over H-USY zeolites[J]. Appl. Catal. A:Gen.,1999,189(2):237-242.
    [212]Corma A., Fornes V., Navarro M. T., et al. Acidity and stability of MCM-41 crystalline aluminosilicates[J]. J. Catal.,1994,148(2):569-574.
    [213]Nguyen M., Raspoet G., Vanquickenborne L. Important role of the Beckmann rearrangement in the gas phase chemistry of protonated formaldehyde oximes and their [CH4NO]+ isomers[J]. J. Chem. Soc., Perkin Trans.,21995, (9):1791-1795.
    [214]Zhang Y., Wang Y., Bu Y. Vapor phase Beckmann rearrangement of cyclohexanone oxime on H[beta]-zeolites treated by ammonia[J]. Micropor. Mesopor. Mater.2008,107(3): 247-251.
    [215]Reddy Marthala V., Rabl S., Huang J., et al. In situ solid-state NMR investigations of the vapor-phase Beckmann rearrangement of 15N-cyclohexanone oxime on MFI-type zeolites and mesoporous SBA-15 materials in the absence and presence of the additive 13C-methanol[J]. J. Catal.2008,257(1):134-141.
    [216]Chu Y., Han B., Fang H., et al. Influence of acid strength on the reactivity of alkane activation on solid acid catalysts:A theoretical calculation study[J]. Micropor. Mesopor. Mater.,2012,151:241-249.
    [217]Chu Y., Han B., Zheng A., et al. Influence of acid strength and confinement effect on the ethylene dimerization reaction over solid acid catalysts:A theoretical calculation study [J]. J. Phys. Chem. C,2012,116(23):12687-12695.
    [218]Lezcano-Gonzalez I., Boronat M., Blasco T. Investigation on the Beckmann rearrangement reaction catalyzed by porous solids:MAS NMR and theoretical calculations[J]. Solid State Nucl. Mag.,2009,35(2):120-129.
    [219]Chu C., Chang C. Isomorphous substitution in zeolite frameworks.1. Acidity of surface hydroxyls in [B]-, [Fe]-, [Ga]-, and [A1]-ZSM-5[J]. J. Phys. Chem.,1985,89(9):1569-1571.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700