用户名: 密码: 验证码:
新型铁基材料的合成、表征及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,经济的快速发展给人们的生活带来便利的同时,也严重污染了我们赖以生存的自然环境。人口的持续增长、工业和生活污水的排放、机动车尾气排放以及建筑装修等,都给自然界的大气、水体、土壤带来了严重污染,如何有效地治理环境污染成为全球所关注的研究热点。在众多的环境治理方法中,铁作为地壳中含量最丰富的金属元素之一,在环境催化领域发挥了不可替代的作用。铁基材料具有合成简单,无污染,高活性,低成本的优点,因此具有非常好的实际应用前景。在环境污染问题日益严峻的今天,研究和开发新型铁基材料的应用领域成为材料研究及环境治理的热点方向之一。
     铁基材料,包括多铁性复合材料,铁(氢)氧化物,铁合金,零价铁等均能对环境污染物起到很好的修复作用。其中,纳米铁基材料由于具备了纳米材料粒径小,比表面积大等一系列的优点,在污染物的治理过程中表现出很好的催化活性,受到越来越多科研工作者的青睐。同时,铁基材料在污染物降解过程中,易与体系中的水(H20),氧气(O2),氢氧根(OH-)等发生氧化或还原反应,生成一系列包括双氧水(H202),超氧负离子(·O2-),羟基自由基(-OH)在内的活性氧物种,继而降解污染物。因此,研究铁基材料在污染物降解过程中的反应机理,进而提高反应过程中活性物种的生产量,能够在一定程度上拓宽铁基材料的应用领域,并使其在环境治理领域发挥更大的作用。
     本论文主要侧重于高活性铁基材料的合成,通过简单的制备方法,得到具有实际应用前景、低能耗、无污染的高活性铁基催化剂,并研究探讨其在大气、水体污染治理中的应用及其反应机理。论文中首先概括介绍了我国环境污染的现状,并重点介绍了大气、水体的污染状况,常用的大气、水体污染治理技术,铁基材料的研究进展等。继而详细阐述了分等级结构纤维状纳米LaFeO3、负载FeCl3的活性炭催化剂、以及具有核壳结构的Fe@Fe2O3纳米线的合成,通过扫描电子显微镜(SEM)、X-射线衍射(XRD)、X-射线光电子能谱测试(XPS)、透射电子显微镜(TEM)、比表面积以及孔结构测定等测试手段对所得铁基材料进行了表征,并对其催化活性及催化机理进行了深入细致的探讨研究,为新型铁基材料的研究奠定了一定的基础。
     本论文的具体研究内容主要包括以下几方面:
     1.以硝酸铁和硝酸镧为主要原料,首次在室温下,采用溶胶-凝胶法,通过加入棉布作为模板,合成了具有分等级结构的纤维状LaFeO3纳米催化剂,并通过XRD、SEM、TEM、XPS和CO催化氧化等测试对所得LaFeO3纳米催化剂进行了成分、结构、形貌和催化活性的研究。研究结果表明,加入棉布模板后,所制得的纳米LaFeO3材料可以很好地保持原模板的形貌,高分辨扫描电镜结果显示,所得LaFeO3为30~40nm的均匀颗粒,而传统溶胶-凝胶法所合成的LaFeO3则为不规则团聚的大颗粒。文中我们也提出了分等级结构纤维状LaFeO3的形成过程。通过对加入模板及未加模板两种方法所得LaFeO3样品的比表面积的测试,我们发现模板法可以明显增大样品的比表面积。由于比表面积的增大,使得模板法所得样品在催化氧化CO的过程中,表现出优越的催化性能和稳定性。该合成方法操作简单,价格低廉且绿色无污染,所得材料催化活性高,稳定性好。该方法对于合成其他高活性的铁基材料具有很好的借鉴意义。
     2.采用简单的浸渍方法,合成了负载Fe3+的活性炭催化剂,在微波条件下,研究了该反应体系对水华污染物蓝藻的处理效果。通过光学显微镜对蓝藻细胞的形貌进行了表征,同时通过对受试蓝藻的光密度(optical density, OD)、叶绿素α(Chlα)含量、谷胱甘肽(L-Glutathione,GSH)含量及超氧化物歧化酶(superoxidase dismutase, SOD)活性的测试结果表明,在微波作用(100℃,600W)下,该催化剂可在短短2.5min的时间内达到很好的杀藻效果。蓝藻细胞壁被破环,光密度值及叶绿素a含量均显著降低。同时我们对该体系的反应机理也进行了深入的研究探讨,发现在没有活性炭的情况下,FeCl3仅仅起絮凝作用,只能将蓝藻絮凝沉降,并未起到杀藻的作用。将氯化铁负载在活性炭上后,通过X射线光电子能谱分析,随着微波反应的进行,体系中单质铁的含量逐渐增加。因此,我们提出了空穴掺杂的反应机理,即当蓝藻细胞被吸附在FeCl3/AC催化剂的表面时,发生了电子转移的过程,即活性炭上的电子传递给Fe3+,活性炭上面便产生了空穴,而空穴具有很强的氧化性,可以将蓝藻细胞氧化,使其逐渐衰亡。同时,我们也发现该催化剂具有非常优良的循环稳定性。我们的这一工作首次报道了在微波体系中,加入负载FeCl3的活性炭催化剂可以达到快速高效的杀藻目的。
     3.以FeCl3, NaBH4为主要原料,室温下合成了具有核壳结构的Fe@Fe2O3纳米线,将其负载在活性炭纤维(ACF)上,制备了Fe@Fe2O3/ACF电极材料,该材料在电-Fenton体系中用作电阴极。通过对模拟污染物罗丹明B的降解测试,我们发现中性电-Fenton体系中在阴极上负载Fe@Fe2O3纳米线后,可以显著增强罗丹明B的降解效果。通过对反应体系中超氧负离子(·02-)及双氧水(H202)含量的测试,我们发现该反应体系中Fe@Fe2O3纳米线可以诱导活化分子氧生成超氧负离子,这是增强RhB降解效果的主要原因。活化分子氧产生的超氧负离子进一步与电子和质子反应产生双氧水,由此得到的双氧水与电化学体系中电阴极还原氧气产生的双氧水共同与Fe@Fe2O3纳米线原位产生的亚铁离子反应从而生成更丰富的羟基自由基,可以明显增强罗丹明B的降解效果。
     4.在前期工作的基础上,我们进一步拓展了Fe@Fe2O3纳米线的研究范围。在本实验中,我们制备了Fe@Fe2O3/碳毡电极材料。在微生物燃料电池体系中,利用异化铁还原菌的产电特性,我们研究了Fe@Fe2O3/碳毡电极对温室气体CO2的催化还原效果。通过对阳极铁还原菌种类、电子供体以及阴极电解液的浓度、pH的筛选,得出了MFC体系中还原CO2的最优条件。CO2还原产物通过离子色谱仪进行检测,经检测发现还原产物主要为甲酸。我们发现碳毡上负载Fe@Fe2O3纳米线材料后,可以明显增强阴极室甲酸的产量,且该催化剂在碳毡上具有很好的稳定性。我们认为Fe@Fe2O3纳米线增强C02还原效果的主要原因是由于在单质铁表面的Fe2O3氧化层参与了CO2的还原途径,它能够稳定C02还原过程的中间体·C02-,从而促进CO2的还原。我们首次研究了在微生物燃料电池中,通过异化铁还原菌提供电子,用Fe@Fe2O3碳毡做阴极,无需提供外加电压,即可直接实现CO2的还原。
In recent years, with the development of economic, our life becomes more and more convenient However, serious environment pollution also came into being. Pollutants came from increasing population, emissions of industrial and domestic sewage, emission of motor vehicle exhaust, bring serious pollution to atmosphere, water and soil. How to deal with environmental pollution has become a focus of global concern. Among the treatment of environmental pollution, as one of the most abundant metal element, iron plays a very important role in the field of environmental catalysis. Iron-based materials (IBMs) have advantages of non-pollution to the environment, high activity, low cost and so on. Thus they have a promising application prospects. Therefore, the exploration of novel iron-based materials has become more and more attractive.
     Iron-based materials, including multiferroic composite material, ferrous iron (hydrogen) oxide, iron alloy, zero valent iron and so on, all exhibit excellent activity for the treatment of environmental pollution. During the decomposition of organic pollutants, IBMs can react with absorbed H2O, O2, and OH", resulting in large amount of active oxygen radicals including H2O2,·O2-,·OH, which can oxide pollutants in gas and water effectively. Therefore, investigation of the reaction mechanism during the degradation of pollutants, improving the amount of active species can extend the application field of IBMs.
     Therefore, our work mainly focused on exploring novel IBMs with simple preparation, low energy consumption, and excellent catalytic activity. Then we investigated the role and mechanism of IBMs in the treatment of air and water pollution. This disssertation first introduced the current situation of environmental pollution, and highlighted the pollution of gas and water, current atmospheric and water control technology, and researches about IBMs. Then we elaborated the synthesis of patterned hierarchical LaFeO3fibers, FeCl3/AC catalyst, and core-shell Fe@Fe2O3nanowires. The crystal structure, composition, morphology, activity, and mechanism of these resulting materials were characterized by XRD, XPS, SEM, TEM and so on.
     The detailed works were shown as the following:
     1. Hierarchical LaFeO3fibers were prepared by a sol-gel nanocasting method using a cotton cloth as the template. The resulting products were characterized by scanning electron microscopy, powder X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, nitrogen adsorption and test of CO oxidation. It was discovered that the resulting LaFeO3fibers inherited the initial network morphology of the template very well. The high-magnification SEM images revealed that the hierarchical cellulosic structure of LaFeO3fibers comprises subunits of numerous nanoparticles with diameters of about30~40nm. While conventional sol-gel synthesized LaFeO3was composed of irregular aggregates of nanoparticles with about30-200nm in size. We also proposed apossible formation processes of LaFeO3particles and fibers. LaFeO3fibers produced by sol-gel nanocasting method showed enhanced catalytic CO oxidation activity and satisfactory stability compared to the counterpart particles prepared by the conventional sol-gel method.
     2. We synthesized FeCl3-loaded active carbon (FeCl3AC) catalyst under room temperature by a simple impregnation method. Then we demonstrated a rapid catalytic microwave method to deal with Microcystis aeruginosa with FeCl3/AC cataylst. Microcystis aeruginosa damage process was monitored by measuring optical density, chlorophyll-a content, superoxide dismutase activity, L-glutathione content, and turbidity of the treated Microcystis aeruginosa suspension. It was discovered that Microcystis aeruginosa could be damaged in a very short time of2.5min under microwave irradiation with FeCl3/AC catalyst. We also investigated the damage mechanism. When Fe3+was added into M. aeruginosa alone, the ions hydrolyzed to form Fe(OH)3, then M. aeruginosa cells likely adhered on the surface of Fe(OH)3to result in precipitation, M. aeruginosa was not damaged. From XPS result of FeCl3/AC, we discovered that during the microwave catalytic reaction, the peak of Fe increased. So we ascribed the excellent activity of FeC13/AC induced M. aeruginosa damage under microwave irradiation to the charge transfer-induced doping effect. That is, when FeCl3/AC was added into M. aeruginosa suspension, the cells could quickly be adsorbed on the surface of AC. Meanwhile, the so-called charge transfer-induced doping effect could realize electrons transferring from AC to Fe ions, thus leaving holes on AC to attack and oxidize the cells. This work provides a fast and green treatment method for cyanobacterial blooms.
     3. Core-shell Fe@Fe2O3nanowires were prepared in this work. Oxygen diffusion cathode Fe@Fe2O3/ACF was obtained by loading the nanowires on active carbon fibers. Then Fe@Fe2O3/ACF was used in E-Fenton oxidation system at neutral pH to degrade RhB. It was found that Fe@Fe2O3nanowires could enhance RhB degradation significantly. On the basis of the experiment, it was discovered that in the E-Fenton system, Fe@Fe2O3nanowires could induce the activation of molecular oxygen to produce superoxides which could enhance RhB degradation. The obtained superoxides could react with protons and electrons subsequently to generate H2O2. These extra H2O2and the cationically generated H2O2could react with in-situ released ferrous ions to produce more abundant hydroxide radicals, which could enhance the degradation of RhB.
     4. On the basis of the previous work, we further investigated the activity of Fe@Fe2O3nanowires on CO2reducntion in a microbial fuel cell (MFC). Fe@Fe2O3/carbon felt electrode was perpared and used in MFC as cathode. We investigated the influence parameters in the reduction of CO2and got the optimal conditions for CO2reduction. Products of the reduction were monitored by Ion Chromatograph. And we found that the main product was HCOOH. Loading of Fe@Fe2O3nanowires on carbon felt could significantly enhance the production of HCOOH. Also the anode was very stable in MFC system. We suggested that Fe2O3participated in the pathway of CO2reduction on Fe and enabled CO2redution to occur by stabilizing·CO2-(intermediate product during CO2reducion). We investigated for the first time that in MFC system, CO2can be reduced with Fe@Fe2O3/carbon felt cathode without any extra voltage.
引文
[1]余刚,黄俊,张彭义.POPs:倍受关注的全球性环境问题[J].环境保护:2001,4:37-39.
    [2]王麟生.环境化学导论[M].上海:华东师范大学出版社:2001,68-72.
    [3]杜一.浅谈水污染现状及防治对策[J].生态与环境工程:2012,7:200-200.
    [4]陈永焦.浅谈我国水污染现状及治理对策[J].科技信息:2010,11:381-382.
    [5]赵天,关晓梅,杨春生.水体污染物的种类、来源及对人体的危害[J].黑龙江水利科技:2004,2:99-99.
    [6]庆易微.浅析大气污染对人体健康的影响[J].青海师专学报(教育科学):2009,5:67-69.
    [7]赵丽丽.中国大气污染现状及防治对策[J].山西建筑:2011,37:194-195.
    [8]王占生.微污染水源水处理[M].北京:化学工业出版社:1997,26-27.
    [9]胡亨魁.水污染治理技术[M].武汉:武汉理工大学出版社:2009,55-57.
    [10]毕玉江.水处理技术的应用及研究[J].科技天地:2011,17,43-43.
    [11]F. O. Schmitt, C. H. Johnson, A. R. Olson. Oxidation promoted by ultrasonic radiation [J]. J. Am. Chem. Soc.:1929,51:370-375.
    [12]K. Makino, M. M. Mossoba, P. Riesz. Chemical effects of ultrasonic on aqueous-solution-evidence for-OH and-H by spin trapping [J]. J. Am. Chem. Soc:1982,104: 3537-3539.
    [13]T. Luo, Z. H. Ai, L. Z. Zhang. Fe@Fe2O3 core-shell nanowires as iron reagent.4. Sono-Fenton degradation of pentachlorophenol and the mechanism analysis [J]. J. Phys. Chem. C:2008,112: 8675-8681.
    [14]A. Henglein. Sonochemistry:Historical developments and modern aspects [J]. Ultrason.:1987, 25:6-16.
    [15]W. H. Glaze. Drinking water treatment with ozone [J]. Environ. Sci. Technol.:1987,21:224-230.
    [16]任建新.膜分离技术及其应用[M].北京:化学工业出版社:2003,62-63.
    [17]赵文蓓,赵文蕾.膜分离技术在水处理中的应用与发展[J].黑龙江水利科技:2002,4:136-138.
    [18]张安辉,游海平.超滤膜技术在水处理领域中的应用及前景[J].化工进展:2009,28:49-51.
    [19]邵刚.膜法水处理技术及工程实例[M].北京:化学工业出版社:2002,99-100.
    [20]许振良.膜法水处理技术[M].北京:化学工业出版社:2001,88-90.
    [21]刘茉娥.膜分离技术应用手册[M].北京:化学工业出版社:2001,75-75.
    [22]王建黎,计建炳,徐又一.膜分离技术在水处理领域的应用[J].膜科学与技术:2003,23:65-68.
    [23]C. C. Ruchhoft. The possibilities of disposal of radioactive wastes by biological treatment methods [J]. Sewage Works J.:1949,21:877-883.
    [24]Y. P. Ting, F. Lawson, I. G. Prince. Uptake of cadmium and zinc by the alga chlorella-vulgaris.l Individual ion species [J]. Biotech and Bioeng.:1989,34:990-999.
    [25]N. Kuyucak, B. Volesky. Accumulation of cobalt by marine alga [J]. Biotechnol. Bioeng.:1989, 33:809-814.
    [26]N. Kuyucak, B. Volesky. The mechanism of cobalt biosorption [J]. Biotechnol. Bioeng.:1989,33: 823-831.
    [27]Z. R. Holan, B. Volesky. Biosoption of lead and nichel by biomass of marine-algae [J]. Biotechnol. Bioeng.:1994,43:1001-1009.
    [28]张洪玲,吴海锁,王连军.生物吸附重金属的研究进展[J].污染防治技术:2003,16:53-56.
    [29]梁莎,冯宁川,郭学益.生物吸附法处理重金属废水研究进展[J].水处理技术:2009,35:13-17.
    [30]朱南文,蔡春光,吴志超等.污泥中重金属的生物沥滤及其机理分析[J].上海交通大学学报:2003,37:801-804.
    [31]R. D. Tyagi, J. F. Blais, J. C. Auclair. Bacterial leaching of toxic metals from municipal sludge: influence of sludge characteristics [J]. Water Environ. Res.:1993,65:196-204.
    [32]陈孝云.空气污染治理技术研究进展[J].科学技术与工程:2008,17:4939--4944.
    [33]J. M. Samet, J. D. Spengler. Indoor environments and health:Moving into the 21st century [J]. Am. J. Public Health:2003,93:1489-1493.
    [34]洪燕.室内空气污染分析及防治措施[J].污染防治技术:2006,19:50-51.
    [35]L. R. Radovic, I. F. Silva, J. I. Ume. An experimental and theoretical study of the adsorption of aromatics possessing electron-withdrawing and electron-donating functional groups by chemically modified activated carbons [J]. Carbon:1997,35:1339-1348.
    [36]S. J. Park, W. Y. Jung. KOH activation and characterization of glass fibers-supported phenolic resin [J]. J. Colloid Interf. Sci.:2003,265:245-250.
    [37]I. I. Salame, T. J. Bandosz. Role of surface chemistry in adsorption of phenol on activated carbons [J]. J. Colloid Interf. Sci.:2003,264:307-312.
    [38]C. H. Ao, S. C. Lee. Combination effect of activated carbon with TiO2 for the photodeg radation of binary pollutants at typical indoor air level [J]. J. Photochem. Photobiol. A:Chemistry:2004, 161:131-140.
    [39]S. K. Brown. Volatile Organic Pollutants in new and established buildings in melboume Australia [J]. Indoor Air:2002,12:55-61.
    [40]李长连.负离子发生器在母婴同室净化空气中的应用研究[J].中华医院感染学杂志:1999,9:168-169.
    [41]蒋耀庭,潘丽娜,金德林.人工负离子净化舰艇舱内空气的效果研究[J].环境与健康杂志:1999,16:277-279.
    [42]张兴华,耿世彬.臭氧与室内空气品质[J].制冷与空调:2002,2:7-8.
    [43]黄启成.酵母菌处理赖氨酸废水的研究[J].中国给水排水:1999,15:47-49.
    [44]T. L. Greaves, C. J. Drummond. protic ionic liquids:Properties and applications [J]. Chem. Rev;: 2008,108:206-237.
    [45]B. Tryba, A. W. Morawski, M. Inagaki. A new route for preparation of TiO2-mounted activated carbon [J]. Appl. Catal. B:2003,46:203-208.
    [46]张建臣,郭坤敏,马兰.TiO2/AC光催化剂上气体污染物降解的反应动力学模型[J].催化学报:2006,27:849-852.
    [47]T. Oda, T. Takahashi, S. Kohzuma. Decomposition of dilute trichloroethylene by using nonthermal plasma processing-frequency and catalyst effects [J]. IEEE Trans. Ind. Appl.:2001, 37:965-970.
    [48]K. Yan, T. Yamamoto, S. Kanazawa, et al. Control of flow stabilized positive corona discharge modes and NO removal characteristics in dry air by CO2 injections [J]. J. Electrostat:1999,46: 207-219.
    [49]M. Kang, B. J. Kim, S. M. Cho. Decomposition of toluene using an atmospheric pressure plasma/ TiO2 catalytic system [J]. J. Mol. Catal. A:Chem.:2002,180:125-132.
    [50]B. Y. Lee, S. H. Park, S. C. Lee. Decomposition of benzene by using a discharge plasma-photocatalyst hybrid system [J]. Catal. Today:2004,93:769-776.
    [51]Z. Liu, J. Wang, D. Xie, et al. Polyaniline-coated Fe3O4 nanoparticle-carbon-nanotube composite and its application in lectrochemical biosensing [J]. Small:2008,4:462-466.
    [52]M. Quintin, O. Devos, M. H. Delville, et al. Study of the lithium insertion-deinsertion mechanism in nanocrystalline gamma-Fe2O3 electrodes by means of electrochemical impedance spectroscopy [J]. Electrochim. Acta:2006,51:6426-6434.
    [53]M. Morteza, H. Heinrich, R. R. Barbara, et al. Assessing the in vitro and in vivo toxicity of superparamagnetic iron oxide nanoparticles [J]. Chem. Rev.:2012,112:2323-2338.
    [54]D. Laurent, M. Leriche, K. Desboeufs, et al. Transition metals in atmospheric liquid phases: sources, reactivity, and sensitive parameters [J]. Chem. Rev.:2005,105:3388-3431.
    [55]R. David, W. L. George. Chemistry of iron sulfides [J]. Chem. Rev.:2007,107:514-562.
    [56]S. M. Ponder, J. G. Darab, T. E. Mallouk. Remediation of Cr(Ⅵ) and Pb(Ⅱ) aqueous solutions using supported, nanoscale zero-valent iron [J]. Environ. Sci. Technol.:2000,34:2564-2569.
    [57]Y. Q. Liu, H. Choi, D. Dionysiou, et al. Trichloroethene hydrodechlorination in water by highly disordered monometallic nanoiron [J]. Chem. Mater.:2005,17:5315-5322.
    [58]X. Q. Li, W. X. Zhang. Sequestration of metal cations with zerovalent iron nanoparticles-A study with high resolution X-ray photoelectron spectroscopy (HR-XPS) [J]. J. Phys. Chem. C:2007, 111:6939-6946.
    [59]E. Ascher, H. Rieder, H. Schmid. Some properties of ferromagnetoelectric nickel-iodine boracite, Ni3B7O13I [J]. J. Appl. Phys.:1966,37:1404-1407.
    [60]H. Schmid. Multi-ferroic magnetoelectrics [J]. Ferroelectrics:1994,162:665-685.
    [61]F. Li, C. Vipulanandan, K. K. Mohanty. Microemulsion and solution approaches to nanoparticle iron production for degradation of trichloroethylene [J]. Colloid Surf. A:Physicochem. Eng.: 2003,223:103-112.
    [62]Y. Q. Liu, S. A. Majetich, R. D. Tilton, et al. TCE dechlorination rates, pathways, and efficiency of nanoscale iron particles with different properties [J]. Environ. Sci. Technol.:2005,39: 1338-1345.
    [63]C. B. Wang, W. X. Zhang. Synthesizing nanoscale iron particles for rapid and complete dechlorination TCE and PEBs [J]. Environ. Sci. Technol.:1997,31:2154-2156
    [64]Y. Xu, W. X. Zhang. Subcolloidal Fe/Ag particles for reductive dehalogenation of chlorinated benzenes [J]. Ind. Eng. Chem. Res.:2000,39:2238-2244.
    [65]W. X. Zhang. Nanoscale iron particles for environmental remediation:An overview [J]. J. Nanopart. Res.:2003,5:323-332.
    [66]W. X. Zhang, C. B. Wang, H. L. Lien. Treatment of chlorinated organic contaminants with nanoscale bimetallic particles [J]. Catal. Today:1998,40:387-395.
    [67]S. Dixit, J. G. Hering. Comparison of arsenic(Ⅴ) and arsenic(Ⅲ) sorption onto iron oxide minerals:implications for arsenic mobility [J]. Environ. Sci. Technol.:2003,37:4182-4189.
    [68]S. R. Kanel, B. Manning, L. Charlet, et al. Removal of arsenic (Ⅲ) from groundwater by nanoscale zero-valent iron [J]. Environ. Sci. Technol.:2005,39:1291-1298.
    [69]S. M. Ponder, J. G. Darab, J. Bucher, et al. Surface chemistry and electrochemistry of supported zero-valent iron nanoparticles in the remediation of aqueous metal contaminants [J]. Chem. Mater.:2001,13:479-486.
    [70]S. Choe, Y. Chang, K. Hwang, et al. Kinetics of reductive denitrification by nanoscale zero-valent iron [J]. Chemosphere:2000,41:1307-1311.
    [71]P. Li, D. E. Miser, S. Rabiei, et al. The removal of carbon monoxide by iron oxide nanoparticles [J]. Appl. Catal. B:Environ.:2003,43:151-162.
    [72]G. V. Lowry, K. M. Johnson. Congener-specific dechlorination of dissolved PCBs by microscale and nanoscale zero valent iron in a water/methanol solution [J]. Environ. Sci. Technol.:2004,38: 5208-5216.
    [73]H. L. Lien, W. X. Zhang. Transformation of chlorinated methanes by nanoscale iron particles [J]. J. Environ. Eng.:1999,125:1042-1047.
    [74]P. He, D. Y. Zhao. Preparation and characterization of a new class of starchstabilized bimetallic nanoparticles for degradation of chlorinated hydrocarbons in water [J]. Environ. Sci. Technol.: 2005,39:3314-3320.
    [75]B. Schrick, J. L. Blough, A. D. Jones, et al. Hydrodechlorination of trichloroethylene to hydrocarbons using bimetallic nickel-iron nanoparticles [J]. Chem. Mater.:2002,14:5140-5147.
    [76]R. Schick, I. Strasser, H. H. Stabel. Fluorometric determination of low concetrations of H2O2 in water:Comparison with two other methods and application to environmental samples and drinking-water treatment [J]. Water. Res.:1997,31:1371-1378.
    [77]M. Elsner, S. B. Haderlein, T. Kelerhals, et al. Mechanisms and products of surface-mediated reductive dehalogenation of carbon tetrachloride by Fe(Ⅱ) on goethite [J]. Environ. Sci. Technol.: 2004,38:2058-2066.
    [78]M. L. McCormick, P. Adriaens. Carbon tetrachloride transformation on the surface of nanoscale biogenic magnetite particles [J]. Environ. Sci. Technol.:2004,38:1045-1053.
    [79]K. Pecher, S. B. Haderlein, R. P. Schwarzenbach. Reduction of polyhalogenated methanes by surface-bound Fe(Ⅱ) in aqueous suspensions of iron oxide [J]. Environ. Sci. Technol.:2002,36: 1734-1741.
    [80]K. Mondal, G Jegadeesan, S. Lelvani. Removal of selenate by Fe and NiFe nanosized particles [J]. Ind. Eng. Chem. Res.:2004,43:4922-4934.
    [81]S. J. Morrison, D. R. Metzler, B. P. Dwyer. Removal of As, Mn, Mo, Se, U, V and Zn from groundwater by zero-valent iron in a passive treatment cell:Reaction progress modeling [J]. J. Contam. Hydrol.:2002,56:99-116.
    [82]C. F. Chew, T. C. Zhang. In-situ remediation of nitrate-contaminated ground water by electrokinetics/iron wall processes [J]. Water Sci. Technol.:1998,38:135-142.
    [83]D. P. Siantar, C. G. Schreier, S. S. Chou, et al. Treatment of 1,2-dibromo-3-chloropropane and nitrate-contaminated water with zero-valent iron or hydrogen/palladium catalysts [J]. Water Res.: 1996,30:2315-2322.
    [84]H. J. H. Fenton. On a new reaction of tartaric acid [J]. Chem. News:1876,33:190-190.
    [85]H. J. H. Fenton. Oxidation of tartaric acid in presence of iron [J]. J. Chem. Soc.:1894,65: 899-910.
    [86]H. J. H. Fenton. Constitution of a new dibasic acid, resulting from the oxidation of tartaric acid [J]. J. Chem. Soc.Trans.:1896,69:546-562.
    [87]A. C. K. Yip, F. L. Y. Lam, X. Hu. Chemical-vapor-deposited copper on acid-activated bentonite clay as an applicable heterogeneous catalyst for the photo-Fenton-like oxidation of textile organic pollutants [J]. Ind. Eng. Chem. Res.:2005,44:7983-7990.
    [88]T. Nakayama, T. A. Yamamoto, Y. H. Choa, et al. Synthesis and magnetic properties of nanocluster composite [J]. Cera. Trans.:2000,108:257-259.
    [89]H. Gleiter. Nanocrystalline materials [J]. Prog. Mater. Sci.:1989,33:223-315.
    [90]J. C. Sanchez-Lopez, A. Justo, A. Fernandez, et al. Preparation and thermal evolution of vapor-condensed nanocrystalline iron [J]. Philos. Mag. B:1997,76:663-667.
    [91]T. Nakayama, Y. H. Choa, T. A. Yamamoto, et al. Nanocrystalline iron oxide manufactured by IGC-PECS process [J]. Powder Metall.:1998,45:1207-1211.
    [92]M. P. Dallimore. Mechanochemical processing-A versatile, low cost technology for the manufacture of nano-powders [J]. J. Mater. Sci. Technol.:1999,14:4-10.
    [93]N. R. Tao, M. L. Sui, J. Lu, et al. Surface nanocrystallization of iron induced by ultrasonic shot peening [J]. Nano Struc. Mater.:1999,11:433-440.
    [94]E. E. Carpenter. Iron nanoparticles as potential magnetic carriers [J]. J. Magn. Magn. Mater.: 2001,225:17-20.
    [95]Z. L. Liu, H. B. Wang, Q. H. Lu, et al. Synthesis and characterization of ultrafine well-dispersed magnetic nanoparticles [J]. J. Magn. Magn. Mater.:2004,283:258-262.
    [96]C. J. Choi, X. L. Dong, B. K. Kim. Characterization of Fe and Co nanoparticles synthesized by chemical vapor condensation [J]. Scripta Mater.:2001,44:2225-2229.
    [97]C. West, R. Mokaya. Nanocasting of high surface area mesoporous Ga2O3 and GaN semiconductor materials [J]. Chem. Mater.:2009,21:4080-4086.
    [98]H. F. Yang, Q. H. Shi, B. Z. Tian, et al. One-step nanocasting synthesis of highly ordered single crystalline indium oxide nanowire arrays from mesostructured frameworks [J]. J. Am. Chem. Soc.:2003,125:4724-4725.
    [99]F. Zhang, Y. Wan, Y. F. Shi, et al. Ordered mesostructured rare-earth fluoride nanowire arrays with upconversion fluorescence [J]. Chem. Mater.:2008,20:3778-3784.
    [100]L. Chen, Y. H. Shen, A. J. Xie, et al. Bacteria-mediated synthesis of metal carbonate minerals with unusual morphologies and structures [J]. Cryst. Growth Des.:2009,9:743-754.
    [101]S. M. Zhu, D. Zhang, Z. Q. Li, et al. Precision replication of hierarchical biological structures by metal oxides using a sonochemical method [J]. Langmuir:2008,24:6292-6299.
    [102]J. Toster, K. S. Iyer, R. Burtovyy, et al. Regiospecific assembly of gold nanoparticles around the pores of diatoms:Toward three-dimensional nanoarrays [J]. J. Am. Chem. Soc.:2009,131: 8356-8357.
    [103]S. Sotiropoulou, Y. Sierra-Sastre, S. S. Mark, et al. Biotemplated nanostructured materials [J]. Chem. Mater.:2008,20:821-834.
    [104]F. C. Meldrum, H. Ceolfen. Controlling mineral morphologies and structures in biological and synthetic systems [J]. Chem. Rev.:2008,108:4332-4432.
    [105]S. L. Mao, J. J. Zhao, S. Y. Zhang, et al. Synthesis and electrochemical properties of PbSe nanotubes [J]. J. Phys. Chem. C:2009,113:18091-18096.
    [106]R. A. Ojifinni, N. S. Froemming, J. L. Gong, et al. Water-enhanced low-temperature CO oxidation and isotope effects on atomic oxygen-covered Au(111) [J]. J. Am. Chem. Soc.:2008, 130:6801-6812.
    [107]G. Parravano. Ferroelectric transitions and heterogenous catalysis [J]. J. Chem. Phys.:1952,20: 342-343.
    [108]W. F. Libby. Promising catalyst for auto exhaust [J]. Science:1971,171:499-500.
    [109]X. P. Dai, Q. Wu, R. J. Li, et al. Hydrogen production from a combination of the water-gas shift and redox cycle process of methane partial oxidation via lattice oxygen over LaFeO3 perovskite catalyst [J]. J. Phys. Chem. B:2006,110:25856-25862.
    [110]S. Guntuka, S. Banerjee, S. Farooq, et al. A-and B-site substituted lanthanum cobaltite perovskite as high temperature oxygen sorbent,1. Thermogravimetric analysis of equilibrium and kinetics [J]. Ind. Eng. Chem. Res.:2008,47:154-162.
    [111]D. Wang, X. F. Chu, M. L. Gong. Single-crystalline LaFeO3 nanotubes with rough tube walls: synthesis and gas-sensing properties [J]. Nanotechnology:2006,17:5501-5505.
    [112]M. Siemons, A. Leifert, U. Simon. Preparation and gas sensing characteristics of nanoparticulate p-type semiconducting LnFeO3 and LnCrO3 materials [J]. Adv. Funct. Mater.: 2007,17:2189-2197.
    [113]A. D. Paoli, A. A. Barresi. Deep oxidation kinetics of trieline over LaFeO3 perovskite catalyst [J]. Ind. Eng. Chem. Res.:2001,40:1460-1464.
    [114]K. S. W. Sing, D. H. Everett, R. A. W. Haul, et al. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity [J]. Pure Appl. Chem.:1985,57:603-619.
    [115]M. L. Wen, Q. Li, Y. T. Li. Magnetic, electronic and structural properties of ZnxFe3-xO4 [J]. J. Electron. Spectrosc. Relat. Phenom.:2006,153:65-70.
    [116]X. X. Guo, Z. H. Chen, D. F. Cui, et al. The colossal magnetoresistance (LaxSn1-x) (y)MnO3-delta films studied by X-ray photoemission spectroscopy [J]. J. Cryst. Growth:2000, 219:404-408.
    [117]J. Lin, M. Yu, C. Lin, et al. Multiform oxide optical materials via the versatile pechini-type sol-gel process:synthesis and characteristics [J]. J. Phys. Chem. C:2007,111:5835-5845.
    [118]J. J. Zhu, Z. Zhao, D. H. Xiao, et al. CO oxidation, NO decomposition, and NO plus CO reduction over perovskite-like oxides La2CuO4 and La2-xSrxCuO4:An MS-TPD study [J]. Ind. Eng. Chem. Res.:2005,44:4227-4233.
    [119]B. G Tilset, H. Fjellvag, A. Kjekshus, et al. Properties of LaCo1-tCrtO3.3. Catalytic activity for CO oxidation [J]. Appl. Catal. A:1996,147:189-205.
    [120]P. D. Hunter, A. N. Tyler, D. J. Gilvear, et al. Using remote sensing to aid the assessment of human health risks from blooms of potentially toxic cyanobacteria [J]. Environ. Sci. Technol.: 2009,43:2627-2633.
    [121]H. W. Paerl, J. Huisman. Climates:blooms like it hot [J]. Science:2008,320:57-58.
    [122]N. Bandow, R. Altenburger, G. Streck, et al. Effect-directed analysis of contaminated sediments with partition-based dosing using green algae cell multiplication inhibition [J]. Environ. Sci. Technol.:2009,43:7343-7349.
    [123]J. A. Westrick, D. C. Szlag, B. J. Southwell, et al. A review of cyanobacteria and cyanotoxins removal/inactivation in drinking water treatment [J]. Anal. Bioanal. Chem.:2010,397: 1705-1714.
    [124]J. S. Metcalf, S. A. Banack, J. Lindsay, et al. Co-occurrence of beta-N-methylamino-L-alanine, a neurotoxic amino acid with other cyanobacterial toxins in British waterbodies,1990-2004. [J]. Environ. Microbiol.:2008,10:702-708.
    [125]W. W. Carmichael. The cyanotoxins. [J]. Adv. Bot. Res.:1997,27:211-256.
    [126]L. Wormer, M. Huerta-Fontela, S. Cires, et al. Natural photodegradation of the cyanobacterial toxins microcystin and cylindrospermopsin [J]. Environ. Sci. Technol.:2010,44:3002-3007.
    [127]D. J. Barrington, A. Ghadouani. Application of hydrogen peroxide for the removal of toxic cyanobacteria and other phytoplankton from wastewater [J]. Environ. Sci. Technol.:2008,42: 8916-8921.
    [128]M. G. Antoniou, A. A. Cruz, D. D. Dionysiou. Cyanotoxins:newgeneration of water contaminants [J]. J. Environ. Eng.:2005,131:1239-1243.
    [129]P. J. Oberholster, A. M. Botha, J. U. Grobbelaar. M. aeruginosa:Source of toxic microcystins in drinking water [J]. Afr. J. Biotechnol.:2004,3:159-168.
    [130]M. G. Ghobrial, M. A. Okbah, S. M. Gharib, et al. Influence of barley straw and submerged macrophytes on fishpond wastewater quality [J]. Egypt. J. Aquat. Res.:2007,33:68-87.
    [131]A. S. Ball, M. Williams, D. Vincent, et al. Algal growth control by a barley straw extract [J]. Bioresour. Technol.:2001,77:177-181.
    [132]P. R. F. Barrett, L. W. Littlejohn, J. Cumow. Long-term algal control in a reservoir using barley straw [J]. Hydrobiologia:1999,415:309-313.
    [133]J. A. Menendes, M. Inguanzo, J. J. Pis. Microwave-induced pyrolysis of sewage sludge [J]. Water Res.:2002,36:3261-3264.
    [134]L. L. Bo, X. Quan, X. C. Wang, et al. Preparation and characteristics of carbon-supported platinum catalyst and its application in the removal of phenolic pollutants in aqueous solution by microwaveassisted catalytic oxidation [J]. J. Hazard. Mater.:2008,157:179-186.
    [135]C. Y. Cha, D. S. Kim. Microwave induced reactions of sulfur dioxide and nitrogen oxides in char and anthracite bed [J]. Carbon:2001,39:1159-1166.
    [136]D. A. Jones, T. P. Lelyveld, S. D. Mavrofidis, et al. Microwave heating applications in environmental engineering-a review. [J]. Resour. Conserv. Recy.:2002,34:75-90.
    [137]L. X. Xia, S. W. Lu, G. Y. Cao. Demulsification of emulsions exploited by enhanced oil recovery system [J]. Sep. Sci. Technol.:2003,38:4079-4094.
    [138]D. D. Link, P. J. Walter, H. M. Kingston. Wastewater standards and extraction chemistry in validation of microwave-assisted EPA method. [J]. Environ. Sci. Technol.:1999,33:2469-2473.
    [139]C. J. Jou, C. R. Wu. Granular activated carbon coupled with microwave energy for treating pentachlorophenol-containing wastewater [J]. Environ. Prog.:2008,27:111-116.
    [140]X. T. Liu, X. Quan, L. L. Bo, et al. Temperature measurement of GAC and decomposition of PCP loaded on GAC and GAC-supported copper catalyst in microwave irradiation [J]. Appl. Catal. A:Gen.:2004,264:53-58.
    [141]H. K. Lichtenthaler, A. R. Wellburn. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents [J]. Biochem. Soc. Trans.:1983,11:591-592.
    [142]W. Y. Liang, J. H. Qu, L. B. Chen, et al. Inactivation of Microcystis aeruginosa by continuous electrochemical cycling process in tube using Ti/RuO2 electrodes [J]. Environ. Sci. Technol.: 2005,39:4633-4639.
    [143]C. W. K. Chow, J. House, R. M. A. Velzeboer, et al. The effect of ferric chloride flocculation on cyanobacterial cells [J]. Water Res.:1998,32:808-814.
    [144]C. H. Wang, G. F. Li, Y. Wu, et al. Role of bipolar pulsed DBD on the growth of M. aeruginosa in three-phase discharge plasma reactor [J]. Plasma Chem. Plasma Process:2007,27:65-83.
    [145]X. S. Yang, C. Dong, G. X. Ren. Effect of soyasaponins-rich extract from soybean on acute alcohol-induced hepatotoxicity in mice [J]. J. Agric. Food Chem.:2011,59:1138-1144.
    [146]L. Banci, M. Benvenuti, I. Bertini, et al. From an inactive prokaryotic SOD homologue to an active protein through sitedirected mutagenesis [J]. J. Am. Chem. Soc.:2005,127:13287-13292.
    [147]C. F. Ken, T. M. Hsiung, Z. X. Huang, et al. Characterization of the Fe/Mn-superoxide dismutase from diatom thallassiosira weissflogii:cloning, expression, and property [J]. J. Agric. Food Chem.:2005,9:1470-1474.
    [148]A. Jos, S. Pichardo, A. I. Prieto, et al. Toxic cyanobacterial cells containing microcystins induce xidative stress in exposed tilapia fish (Oreochromis sp.) under laboratory conditions [J]. Aquat. Toxicol.:2005,72:261-271.
    [149]A. P. Grosvenor, B. A. Kobe, M. C. Biesinger, et al. Investigation of multiplet splitting of Fe2p XPS spectra and bonding in iron compounds [J]. Surf. Interface Anal.:2004,36:1564-1574.
    [150]Z. H. Ai, L. R. Lu, J. P. Li, et al. Fe@Fe2O3 core-shell nanowires as the iron reagent.2. An efficient and reusable sono-Fenton system working at neutral pH [J]. J. Phys. Chem. C:2007, 111:7430-7436.
    [151]S. X. Chen, H. M. Zeng. Improvement of the reduction capacity of activated carbon fiber [J]. Carbon:2003,41:1265-1271.
    [152]G. Dukovic, B. E. White, Z. Y. Zhou, et al. Reversible surface oxidation and efficient luminescence quenching in semiconductor single-wall carbon nanotubes [J]. J. Am. Chem. Soc.: 2004,126:15269-15276.
    [153]D. Zhan, L. Sun, Z. H. Ni, et al. FeCl3-based few-layer graphene intercalation compounds: single linear dispersion electronic band structure and strong charge transfer doping [J]. Adv. Funct. Mater.:2010,20:3504-3509.
    [154]R. C. Jin, W. L. Gao, J. X. Chen, et al. Photocatalytic reduction of nitrate ion in drinking water by using metal-loaded MgTiO3-TiO2 composite semiconductor catalyst [J]. J. Photochem. Photobiol. A:2004,162:585-590.
    [155]Z. H. Ai, Y. N. Wang, M. Xiao, et al. Microwave-induced catalytic oxidation of RhB by a nanocomposite of Fe@Fe2O3 core-shell nanowires and carbon nanotubes [J]. J. Phys. Chem. C: 2008,112:9847-9853.
    [156]A. S. Stasinakis. Use of selected advanced oxidation processes (AOPs) for wastewater treatment-a mini review [J]. Global NEST:2008,10:376-385.
    [157]W. H. Glaze. Drinking-water treatment with ozone [J]. Environ. Sci. Technol.:1987,21: 224-230.
    [158]A. Lopez, M. Pagano, A. Volpe, et al. Fenton's pretreatment of mature landfill leachate [J]. Chemosphere:2004,54:1000-1005.
    [159]S. E. Page, M. Sander, W. A. Arnold, et al. Hydroxyl radical formation upon oxidation of reduced humic acids by oxygen in the dark [J]. Environ. Sci. Technol.:2012,46:1590-1597.
    [160]J. E. Grebel, J. J. Pignatello, W. A. Mitch. Effect of halide ions and carbonates on organic contaminant degradation by hydroxyl radical-based advanced oxidation processes in saline waters [J]. Environ. Sci. Technol.:2010,44:6822-6828.
    [161]E. Neyens, J. Baeyens. A review of classic Fenton's peroxidation as an advanced oxidation technique [J]. J. Hazard. Mater.:2003,98:33-50.
    [162]J. J. Pignatello, E. Oliveros, A. Mackay. Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry [J]. Crit. Rev. Environ. Sci. Technol.:2006,36:1-84.
    [163]P. R. Gogate, A. B. Pandit. A review of imperative technologies for wastewater treatment I: oxidation technogies at ambient conditions [J]. Adv. Environ. Res.:2004,8:501-551.
    [164]J. A. Zazo, J. A. Casas, A. F. Mohedano, et al. Chemical pathway and kinetics of phenol oxidation by Fenton reagent [J]. Environ. Sci. Technol.:2005,39:9295-9302.
    [165]A. Vinu, D. P. Sawant, K. Ariga, et al. Benzylation of benzene and other aromatics by benzyl chloride over mesoporous AISBA-15 catalysts [J]. Micropor. Mesopor. Mater.:2005,80: 195-203.
    [166]A. Ventura, G. Jacquet, A. Bermond, et al. Electrochemical generation of the Fenton's reagent: application to atrazine degradation [J]. Water Res.:2002,36:3517-3522.
    [167]B. Gozmen, M. A. Oturan, N. Oturan. Indirect electrochemical treatment of bisphenol A in water via electrochemically generated Fenton's reagent [J]. Environ. Sci. Technol.:2003,37: 3716-3723.
    [168]E. Brillas, J. C. Calpe, J. Casado. Mineralization of 2,4-D by advanced electrochemical oxidation processes. [J]. Water Res.:2000,34:2253-2262.
    [169]J. Casado, J. Fornaguera, M. I. Galaan. Mineralization of aromatics in water by sunlight-assisted electro-Fenton technology in a pilot reactor [J]. Environ. Sci. Technol.:2005, 39:1843-1847.
    [170]I. Sibel, I. Y. Halil, E. Oktay. Degradation of 4-chloro-2-methylphenol in aqueous solution by electro-Fenton and photoelectro-Fenton processes [J]. Appl. Catal. B:2006,63:243-248.
    [171]张乃东,郑威,彭永臻.电-Fenton法处理难降解有机物的研究进展[J].上海环境科学:2002,21:440-441.
    [172]B. Gozmen, M. A. Oturan, N. Oturan, et al. Indirect electrochemical treatment of bisphenol A in water via electrochemically generated Fenton's reagent [J]. Environ. Sci. Technol.:2003,37: 3716-3723.
    [173]J. P. Li, Z. H. Ai, L. Z. Zhang. Design of a neutral electro-Fenton system with Fe@Fe2O3/ACF composite cathode for wastewater treatment [J]. J. Hazard. Mater.:2008,164:18-25.
    [174]L. R. Lu, Z. H. Ai, J. P. Li, et al. Synthesis and characterization of Fe@Fe2O3 core-shell nanowires and nanonecklaces [J]. Cryst. Growth Des.:2007,7:459-464.
    [175]G. G. Guilbault, P. J. Brignac, J. M. New substrates for the fluorometric determination of oxidative enzymes [J]. Anal. Chem.:1968,40:1256-1263.
    [176]G. G. Guilbault, P. Brignac, M. Zimmer. Analytical application of the peroxidase, glucose oxidase, and xanthine oxidase systems [J]. Anal. Chem.:1968,40:190-196.
    [177]W. L. Miller, D. Kester. Hydrogen peroxide measurement in seawater by (p-hydroxyphenyl) acetic acid dimerization [J]. Anal. Chem.:1988,60:2711-2715.
    [178]J. M. Mccord, I. Fridovic. Superoxide dismutase and enzyme function for erythrocuprein (hemocuprein) [J]. J. Biol. Chem.:1969,244:6049-6053.
    [179]庞欣,王东红,彭安.稀土离子对超氧阴离子自由基生成的抑制作用[J].环境化学:2001,20:557-560.
    [180]田益玲,陈冠华,崔同.动力学分光光度法测定中药对超氧阴离子自由基的清除率[J].光谱学与光谱学分析:2005,25:617-619.
    [181]B. H. J. Bielski, G. G. Shiue, S. Bajuk. Reduction of nitro blue tetrazolium by CO2- and O2-radicals [J]. J. Phys.Chem.:1980,84:830-833.
    [182]谢英,金处,李大珍.停流法研究Cu(Ser)2及Cu(Gly-Gly)2催化·O2-歧化反应动力学[J].高等学校化学学报:1998,19:1288-1291.
    [183]G. G. Krueger, B. E. Ogden, W. L. Weston. In vitro quantitation of cell-mediated immunity in guinea-pigs by macrophage reduction of nitro-blue tetrazolium [J]. Cin. Exp. Immunol.:1976,23: 517-524.
    [184]X. X. Xu, X. Duan, Z. Y. Yi, et al. Photocatalytic production of superoxide ion in the aqueous suspensions of two kinds of ZnO under simulated solar light [J]. Catal. Commun.:2010,12: 169-172.
    [185]V. Ramanathan. The greenhouse theory of climate change:a test by an inadvertent global experiment [J]. Science:1988,240:293-299.
    [186]C. Oloman, H. Li. Electrochemical processing of carbon dioxide [J]. Chemsuschem:2008,1: 385-391.
    [187]R. Lal. Sequestration of atmospheric CO2 in global carbon pools [J]. Energy Environ. Sci.:2008, 1:86-100.
    [188]J. Desilvestro, S. Pons. The cathodic reduction of carbon-dioxide in acetonitrle-An electrochemical and infrared spectroelecrochemical study [J]. J. Electroanal. Chem.:1989,267: 207-220.
    [189]B. Z. Nikolic, H. Huang, D. Gervasio, et al. Electroreduction of carbon-dioxide on platinum single-crystal electrodes-electrochemical and insitu ftir studies [J]. J. Electroanal. Chem.:1990, 295:415-423.
    [190]K. Hara, A. Tsuneto, A. Kudo, et al. Change in the product selectivity for the electrochemical CO2 reduction by adsorption of sulfide ion on metal electrodes [J]. J. Electroanal. Chem.:1997, 434:239-243.
    [191]K. Hara, A. Kudo, T. Sakata. Electrochemical CO2 reduction on a glassy carbon electrode under high pressure [J]. J. Electroanal. Chem.:1997,421:1-4.
    [192]M. Mikkelsen, M. Jorgensen, F. C. Krebs. The teraton challenge. A review of fixation and transformation of carbon dioxide [J]. Energy Environ. Sci.:2010,3:43-81.
    [193]D. H. Park, J. G. Zeikus. Improved fuel cell and electrode designs for producing electricity from microbial degradation [J]. Biotechnol. Bioeng.:2003,81:348-355.
    [194].G. C. Gil, I. S. Chang, B. H. Kim. Operational parameters affecting the performance of a mediator-less microbial fuel cell [J]. Biosens. Bioelectron.:2003,18:327-334.
    [195]S. Kapusta, N. Hackerman. The electroreduction of carbon dioxide and formic acid on tin and indim electrodes [J]. J. Electroanal. Chem.:1983,130:607-613.
    [196]K. Ohta, M. Kawamoto, T. Mizuno. Electrochemical reduction of carbon dioxide in methanol at ambient temperature and pressure [J]. J. Appl. Electrochem.:1998,28:717-724.
    [197]M. Gattrell, N. Gupta, A. Co. A review of the aqueous electrochemical reduction of CO2 to hydrocarbons at copper [J]. J. Electroanal. Chem.:2006,594:1-19.
    [198]Y. B. Vassiliev, V. S. Bagotzky, N. V. Osertrova. Electroreduciton of carbon dioxide 1. The mechanism and kinetics of electroreduction of CO2 in aqueous-solutions on metal with high and moderate hydrogen overvoltages [J]. J. Electroanal. Chem.:1985,189:271-294.
    [199]C. H. Feng, F. B. Li, H. J. Mai, et al. Bio-electro-Fenton process driven by microbial fuel cell for wastewater treatment [J]. Environ. Sci. Technol.:2010,44:1875-1880.
    [200]L. Liu, F. B. Li, C. H. Feng. Microbial fuel cell with an azo-dye-feeding cathode [J]. Appl. Microbiol. Biotechnol.:2009,85:175-183.
    [201]B. E. Logan, B. Hamelers, R. Rozendal. Microbial fuel cells:methodology and technology [J]. Environ. Sci. Technol.:2006,40:5181-5192.
    [202]K. Rabaey, N. Boon, S. D. Siciliano. Microbial phenazine production enhances electron transfer in biofuel cells [J]. Environ. Sci. Technol.:2005,70:3401-3408.
    [203]B. E. Logan, B. Hamelers, R. L. Rozendal. Microbial fuel cells:methodology and technology [J]. Environ. Sci. Technol.:2006,40:5181-5192.
    [204]C. Paipa, M. Mateo, I. Godoy. Comparative study of alternative methods for the simultaneous determination of Fe3+ and Fe2+ in leaching solutions and in acid mine drainages [J]. Miner. Eng.: 2005,18:1116-1119.
    [205]R. Nakamura, K. Ishii, K. Hashimoto. Electronic absorption spectra and redox properties of c type cytochromes in living microbes [J]. Angew. Chem. Int. Ed.:2009,48:1606-1608.
    [206]L. Shi, C. S. Thomas, J. M. Zachara, et al. Respiration of metal (hydr)oxides by Shewanella and geobacter:a key role for mulihaem c-type electrochemical cell [J]. Mol. Microbiol.:2007,65: 12-20.
    [207]C. R. Myers, J. M. Myers. Ferric reductase is associated with the membranes of anaerobically grown Shewanella putrefaciens MR-1 [J]. FEMS Microbiol. Lett.:1993,108:15-22.
    [208]D. R. Lovley, P. K. Widman, J. Woodward. Reduction of uranium by cytochrome c3 of desulfovibrio vulgaris [J]. Appl. Environ. Microbiol.:1993,59:3572-3576.
    [209]C. R. Myers, J. M. Myers. Localization of cytochromes to the outer membrane of anaerobically grown Shewanella putrefaciens MR-1 [J]. J. Bacteriol.:1992,174:3429-3438.
    [210]C. R. Myers, J. M. Myers. Cloning and sequence of cymA, a gene encoding a tetraheme cytochrome c required for reduction of iron(Ⅲ), fumarate, and nitrate by Shewanella putrefaciens MR-1 [J]. J. Bacteriol.:1997,179:1143-1152.
    [211]A. S. Beliaev, D. A. Saffarini, J. L. McLaughlin. MtrC, an outer membrane decahaem c cytochrom required for metal reduction in Shewanella putrefaciens MR-1 [J]. Mol. Microbiol.: 2001,39:722-730.
    [212]K. Inoue, X. L. Qian, L. Morgado. Purification and characterization of omcZ, an outer-surface, octaheme c-type cytochrome essential for optimal current production by Geobacter sulfurreducens [J]. Appl. Environ. Microbiol.:2010,76:3999-4007.
    [213]T. Borch, R. Kretzschmar, A. Kappler. Biogeochemical redox processes and their impact on contaminant dynamics [J]. Environ. Sci. Technol.:2010,44:15-23.
    [214]张琪,李军.不同电解液离子对CO2电还原的影响[J].舰船科学技术:2010,32:60-64.
    [215]H. Z. Zhao, Y. Zhang, B. Zhao, et al. Electrochemical reduction of carbon dioxide in an MFC-MEC system with a layer-by-layer self-assembly carbon nanotube/cobalt phthalocyanine modified electrode [J]. Environ. Sci. Technol.:2012,46:5198-5204.
    [216]Y. H. Chen, M. W. Kanan. Tin oxide dependence of the CO2 reduction efficiency on tin electrodes and enhanced activity for tin/tin oxide thin-film catalysts [J]. J. Am. Chem. Soc:2012, 134:1986-1989.
    [217]Y. H. Chen, C. W. Li, M. W. Kanan. Aqueous CO2 reduction at very low overpotential on oxide-derived Au nanoparticles [J]. J. Am. Chem. Soc.:2012,134:19969-19972.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700