用户名: 密码: 验证码:
AIE功能化介孔和层状材料的制备及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无机多孔材料具有规则有序的孔道结构、较大的比表面积,使其成为负载客体分子的良好载体。功能有机基团修饰的无机多孔材料融合了多孔结构和有机功能基团的双重优势,在催化、吸附、生物医学等方面均展现了优异的性能和良好的应用。具有聚集诱导发光(AIE)性质的有机分子作为一种新颖的荧光材料,自被报道以来便引起人们的广泛关注,并迅速应用于检测、细胞成像、有机光电二极管等领域。其中分子内旋转受限(RIR)是该类分子具有较强荧光的一个主要原因。因此,我们提出如果将该类分子固载到具有刚性骨架结构的无机材料中,分子的旋转将会受到抑制,产生较强的荧光。本论文的工作主要是以无机介孔材料和层状磷酸盐为研究基础,发展了通过后嫁接、共合成以及离子交换插层等方法制备AIE生色团功能化的无机有机杂化材料,并系统探索了该类材料在药物传输、化学检测、细胞成像等方面的应用。本论文的结果主要分为以下几个部分:
     首次采用后嫁接的方式将AIE生色团四苯乙烯(TPE)修饰到介孔二氧化硅材料SBA-15上,并研究了其在药物传输和爆炸物检测等领域的应用。由于AIE分子连接到介孔材料后,其自身的旋转受到抑制,从而使复合材料发射出较强的蓝色荧光。材料对药物分子布洛芬具有较强的吸附能力,并且其荧光强度随着固载药物量的增加而增强,当药物释放达到平衡时,荧光强度又基本恢复到初始值。这种特性表明药物的释放过程有可能通过AIE功能化介孔材料的荧光强度变化监测,在生物医学领域展现出良好的应用价值。另外,该材料对爆炸物分子苦味酸(PA)具有较高灵敏的检测能力,随着AIE负载量的增加,其检测效果逐渐增强。当TPE的固载量为0.067mmol/g时,其在水溶液中的淬灭常数达到2.5×105M-1,远高于单纯TPE分子的淬灭常数。这是由于该材料对爆炸物分子存在富集作用,同时多孔结构有利于客体分子的传输,增强了检测效率。尤为重要的是,该材料可以多次循环使用,因此具有实际应用的意义。此外,我们将AIE分子修饰在介孔二氧化硅纳米粒子中,材料在2,4-二硝基甲苯(DNT)饱和蒸气中放置30秒时荧光强度淬灭了80%,表现出极灵敏的检测效率。材料对盐酸气体表现出较好的荧光淬灭效果,而在氨气中荧光可以完全恢复,并可以多次循环。实验结果表明这类AIE功能化介孔材料在化学传感等方面展现了较好的应用前景。
     通过共合成的方式将含有四苯乙烯基元的有机磷酸通过P-O-Ca共价键杂化到羟基磷灰石(HAP)骨架中,得到具有较好生物相容性的椭球形空心纳米胶囊。与纯的介孔HAP相比,该材料具有较强的蓝色荧光,较高的药物固载量以及相对缓慢的释放速率。材料的荧光强度在吸附药物分子之后显著增强,而当药物释放达到平衡时其荧光强度又显著下降,这表明药物的释放过程可以通过荧光强度的变化来监测,展现出良好的生物应用前景。
     采用离子交换插层法将AIE阳离子插入到纳米尺度的层状α-ZrP材料中,得到具有AIE发光性质的无机有机杂化材料。AIE阳离子插入后,α-ZrP层间距扩大为19.6A,并由于分子间静电相互作用限制了分子内转动,发射出较强的蓝色荧光。该复合材料不仅可以应用于细胞成像,而且对爆炸物分子苦味酸表现出相对较好的检测效果,淬灭常数为1.0×105M-1。
     此外,我们通过共合成的方式制备了氨基修饰的介孔羟基磷灰石和羧基修饰的介孔磷酸钛材料。氨基修饰的介孔羟基磷灰石具有较高的比表面积以及较小的粒径尺寸,对布洛芬具有较高的药物固载量及相对缓慢的药物释放速率。羧基功能化的介孔磷酸钛材料对钯具有较好的配位能力,形成的钯粒子尺寸约为3nm,在Suzuki偶联反应中具有良好的催化活性。
Inorganic porous materials are excellent carriers for loading guest molecules due to their unique properties such as ordered pore structure and large surface area. Inorganic porous materials functionalized with organic groups combine the advantages of porous materials and organic functional groups, and have been widely used in catalysis, adsorption, biomedicine, and so on. Since the first material with intriguing aggregation induced emission (AIE) was discovered, many AIE molecules have been synthesized and widely used as efficient electroluminescent materials, sensitive chemosenors, bioprobes, and so on. Restriction of intramolecular rotation is the main cause for the AIE effect, therefore we proposed that after these molecules were introduced into mesoporous materials with rigid skeleton, their internal rotation would be largely restricted, leading to highly emission. In this thesis, based on inorganic mesoporous materials as well as layered phosphates, we developed AIE functionalized inorganic-organic hybrid materials through post grafting, co-condensation and ion exchange, and systematically explored their applications in drug delivery, chemical detection, cell imaging, etc. The main results of this thesis include the following sections:
     We modified mesoporous SBA-15with AIE luminogen tetraphenylethene (TPE) for the first time through post grafting method and explored their applications in drug delivery and explosive detection. The internal rotation of AIE molecules was largely restricted by the rigid inorganic skeleton, leading to strong blue emission, so the composite materials exhibit typical AIE-like characteristics. The fluorescence intensity of the materials enhanced with the increasing amount of the drug adsorbed on the materials. When the drug release reached equilibrium, the fluorescence intensity can almost return to the initial value, showing great potential for biomedical application. In addition, such materials show high sensing performance to explosive molecules, e.g., picric acid (PA). When the amount of TPE modified on SBA-15reaches to0.067mmol/g, the quenching constant is about2.5×105M-1, much higher than that of TPE molecules. This is because PA molecules can quickly diffuse into the pores and be effectively adsorbed around fluorophores (TPE) via acid-base interaction, enhancing the fluorescence quenching efficiency. Furthermore, the materials are recyclable by washing with proper solvents, which is a key factor for future practical application. In addition, we fabricated AIE functionalized mesoporous silica nanoparticles, which are excellent solid-state sensors for2,4-dinitrotoluene (DNT) saturated vapors, with the fluorescence quenched by80%in30seconds, showing an extremely sensitive detection efficiency. The materials also have better detection ability for HC1gas with the fluorescence quenching, and can be recovered by NH3gas. Therefore, AIE luminogen-functionalized mesoporous materials promise to be excellent fluorescence probes for potential applications in biomedicine as well as chemical and explosive detections.
     The organic phosphate based on AIE molecule was fabricated into bioactive hydroxyapatite (HAP) by a one-pot condensation process with P-O-Ca covalent bond to form hollow mesoporous nanocapsules of ellipsoidal morphology. The as-prepared AIE luminogen bridged mesostructured HAP exhibits strong blue luminescence and good biocompatibility, and shows a high ibuprofen (IBU) storage capacity and favorable drug release behavior compared to pure mesoporous HAP. More importantly, the fluorescence intensity changes with the amount of drug molecules adsorbed to the materials, suggesting that the drug release may be tracked and monitored by the change of luminescence intensity, showing potential for bioapplications.
     AIE cation (TPEN) was successfully intercalated into layered nano a-ZrP by ion exchange to form organic-inorganic hybrid materials with the interlayer distance expanded to19.6A. The obtained materials emit strong blue fluorescence centered at474nm in aqueous media because internal rotation of AIE molecules was largely restricted caused by electrostatic interactions. This material can serve as an effective fluorescence visualizer for HeLa cells and sensitive fluorescent sensor for the detection of explosive PA in a water solution with the quenching constant of about1.0 ×105M-1.
     In addition, we prepared amino-modified mesoporous HAP and carboxyl-modified mesoporous titanium phosphate materials by co-concentration. Compared to pure mesoporous HAP, the amino-modified mesoporous HAP with larger surface area and smaller particles sizes, shows higher drug loading and relatively slower release rate. Carboxyl group functionalized mesoporous titanium phosphate shows better coordination for palladium, with the formation of the palladium particle size of about3nm, exhibiting better catalytic activity in the Suzuki coupling reaction.
引文
[1]EVERETT D. Manual of symbols and terminology for physicochemical quantities and units, Appendix Ⅱ, part Ⅰ, definitions, terminology and symbols in colloid and surface chemistry[J]. Pure and Applied Chemistry,1972,31: 578-638.
    [2]LI Y, FU Z Y and SU B L. Hierarchically structured porous materials for energy conversion and storage[J]. Advanced Functional Materials,2012,22(22): 4634-4667.
    [3]KRESGE C T, LEONOWICZ M E, ROTH W J, et al. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism[J]. Nature, 1992,359:710-712.
    [4]KRESGE C T and ROTH W J. The discovery of mesoporous molecular sieves from the twenty year perspective[J]. Chemical Society Reviews,2013, DOI:10.1039/C3CS60016E
    [5]SOLER-LLLIA G, SANCHEZ C, LEBEAU B, et al. Chemical strategies to design textured materials:from microporous and mesoporous oxides to nanonetworks and hierarchical structures[J]. Chemical Reviews,2002,102(11): 4093-4138.
    [6]徐如人.分子筛与多孔材料化学[M].北京:科学出版社,2004.
    [7]CHE S A, LIU Z, OHSUNA T, et al. Synthesis and characterization of chiral mesoporous silica[J]. Nature,2004,429:281-284.
    [8]FENG P, XIA Y, FENG J L, et al. Synthesis and characterization of mesostructured aluminophosphates using the fluoride route[J]. Chemical Communications,1997(10):949-950.
    [9]ZHAO D, LUAN Z and KEVAN L. Synthesis of thermally stable mesoporous hexagonal aluminophosphate molecular sieves[J]. Chemical Communications, 1997(11):1009-1010.
    [10]FERREIRA R, PIRES P, CASTRO B, et al. Zirconium organophosphonates as photoactive and hydrophobic host materials for sensitized luminescence of Eu(Ⅲ), Tb(Ⅲ), Sm(Ⅲ) and Dy(Ⅲ)[J]. New Journal of Chemistry,2004,28(12): 1506-1513
    [11]WU Z B, LIU Z M, TIAN P, et al. Template-assisted syntheses of two novel porous zirconium methylphosphonates[J]. Microporous and Mesoporous Materials,2005,81(1-3):175-183.
    [12]HOGARTH W H J, COSTA J C D, DRENNAN J, et al. Proton conductivity of mesoporous sol-gel zirconium phosphates for fuel cell applications[J]. Journal of Materials Chemistry,2005,15(7):754-758.
    [13]REN T Z, YUAN Z Y and SU B L. Thermally stable macroporous zirconium phosphates with supermicroporous walls:a self-formation phenomenon of hierarchy[J]. Chemical Communications,2004(23):2730-2371.
    [14]HOGARTH W H J, MUIR S S, WHITTAKER A, et al. Proton conduction mechanism and the stability of sol-gel titanium phosphates[J]. Solid State Ionics, 2007,177(39-40):3389-3394.
    [15]SHI Z C, WANG Q, YE W L, et al. Synthesis and characterization of mesoporous titanium pyrophosphate as lithium intercalation electrode materials[J]. Microporous and Mesoporous Materials,2006,88(1-3):232-237.
    [16]ZHANG X J, MA T Y and YUAN Z Y. Titania-phosphonate hybrid porous materials:preparation, photocatalytic activity and heavy metal ion adsorption[J]. Journal of Materials Chemistry,2008,18(17):2003-2010.
    [17]BHAUMIK A and INAGAKI S. Mesoporous titanium phosphate molecular sieves with ion-exchange capacity [J]. Journal of the American Chemical Society, 2001,123(4):691-696.
    [18]MA T Y, ZHANG X J, SHAO G S, et al. Ordered macroporous titanium phosphonate materials:synthesis, photocatalytic activity, and heavy metal ion adsorption[J]. The Journal of Physical Chemistry C,2008,112(8):3090-3096.
    [19]REN T Z, YUAN Z Y, AZIOUNE A, et al. Tailoring the porous hierarchy of titanium phosphates [J]. Langmuir,2006,22(8):3886-3894.
    [20]ZHANG J X, FUJIWARA M, XU Q, et al. Synthesis of mesoporous calcium phosphate using hybrid templates[J]. Microporous and Mesoporous Materials, 2008,111(1-3):411-416.
    [21]TIAN B Z, LIU X Y, Tu B, et al. Self-adjusted synthesis of ordered stable mesoporous minerals by acid-base pairs[J]. Nature Materials,2003,2(3): 159-163.
    [22]HENCH L and WILSON J. Surface-active biomaterials[J]. Science,1984, 226(4675):630-636.
    [23]WANG H N, LI Y B, ZUO Y, et al. Biocompatibility and osteogenesis of biomimetic nano-hydroxyapatite/polyamide composite scaffolds for bone tissue engineering[J]. Biomaterials,2007,28(22):3338-3348.
    [24]YAO J, TJANDRA W, CHEN Y Z, et al. Hydroxyapatite nanostructure material derived using cationic surfactant as a template[J]. Journal of Materials Chemistry, 2003,13(12):3053-3057.
    [25]SUN R X, CHEN K Z and LU Y P. Fabrication and dissolution behavior of hollow hydroxyapatite microspheres intended for controlled drug release[J]. Materials Research Bulletin,2009,44(10):1939-1942.
    [26]GUO Y P, YAO Y B, GUO Y J, et al. Hydrothermal fabrication of mesoporous carbonated hydroxyapatite microspheres for a drug delivery system[J]. Microporous and Mesoporous Materials,2012,155:245-251.
    [27]MA M Y, ZHU Y J, LI L, et al. Nanostructured porous hollow ellipsoidal capsules of hydroxyapatite and calcium silicate:preparation and application in drug delivery[J]. Journal of Materials Chemistry,2008,18(23):2722-2727.
    [28]KRUK M, JARONIEC M, RYOO R, et al. Characterization of ordered mesoporous carbons synthesized using MCM-48 silicas as templates[J]. Journal of Physical Chemistry B,2000,104(33):7960-7968.
    [29]LEE J, KIM J and HYEON T. Recent progress in the synthesis of porous carbon materials[J]. Advanced Materials,2006,18(16):2073-2094.
    [30]LIANG C D, LI Z J and DAI S. Mesoporous carbon materials:synthesis and modification[J]. Angewandte Chemie International Edition,2008,47(20): 3696-3717.
    [31]KIM T W, RYOO R, GIERSZAL K P, et al. Characterization of mesoporous carbons synthesized with SBA-16 silica template[J]. Journal of Materials Chemistry,2005,15(15):1560-1571.
    [32]CHUENCHOM L, KRAEHNERT R and SMARSLY B M. Recent progress in soft-templating of porous carbon materials[J]. Soft Materials,2012,8(42): 10801-10812.
    [33]JUN S, JOO S H, RYOO R, et al. Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure[J]. Journal of the American Chemical Society, 2000,122(43):10712-10713.
    [34]MENG Y, GU D, ZHANG F Q, et al. A family of highly ordered mesoporous polymer resin and carbon structures from organic-organic self-assembly[J]. Chemisty of Materials,2006,18(18):4447-4464.
    [35]WAN Y and ZHAO D Y. On the controllable soft-templating approach to mesoporous silicates[J]. Chemical Reviews,2007,107(7):2821-2860.
    [36]KLEITZ F, CHOI S H and RYOO R. Cubic Ia3d large mesoporous silica: synthesis and replication to platinum nanowires, carbon nanorods and carbon nanotubes[J]. Chemical Communications,2003(17):2136-2137.
    [37]WAN Y, YANG H and ZHAO D Y. "Host-guest" chemistry in the synthesis of ordered nonsiliceous mesoporous materials[J]. Accounts of Chemical Research, 2006,39(7):423-432.
    [38]LI W and ZHAO D Y. An overview of the synthesis of ordered mesoporous materials[J]. Chemical Communications,2013,49(10):943-946.
    [39]HUI Q S, MARGOLESE D I, CIESLA U, et al. Organization of organic molecules with inorganic molecular species into nanocomposite biphase arrays[J]. Chemistry of Materials,1994,6(8):1176-1191.
    [40]WAN Y, SHI Y and ZHAO D Y. Designed synthesis of mesoporous solids via nonionic-surfactant-templating approach[J]. Chemical Communications,2007(9): 897-926.
    [41]LIU Q, WANG A Q, WANG X D, et al. Ordered crystalline alumina molecular sieves synthesized via a nanocasting route[J]. Chemistry of Materials,2006, 18(22):5153-5155.
    [42]FAN J, LEI J, YU C Z, et al. Hard-templating synthesis of a novel rod-like nanoporous calcium phosphate bioceramics and their capacity as antibiotic carriers[J]. Materials Chemistry and Physics,2007,103(2-3):489-493.
    [43]SHI Y F, WAN Y, ZHANG R Y, et al. Synthesis of self-supported ordered mesoporous cobalt and chromium nitrides[J]. Advanced Functional Materials, 2008,18(16):2436-2443.
    [44]VALLET-REGI M, RAMILA A, REAL R P D, et al. A new property of MCM-41: drug delivery system[J]. Chemistry of Materials,2001,13():308-311.
    [45]CHEN Y, CHEN H R, MA M, et al. Double mesoporous silica shelled spherical/ellipsoidal nanostructures:Synthesis and hydrophilic/hydrophobic anticancer drug delivery [J]. Journal of Materials Chemistry,2011,21(14): 5290-5298.
    [46]CORMA A, NAVARRO M T and PARIENTE J P. Synthesis of an ultralarge pore titanium silicate isomorphous to MCM-41 and its application as a catalyst for selective oxidation of hydrocarbons[J]. Journal of the Chemical Society, Chemical Communications,1994(2):147-148.
    [47]CORMA A. From microporous to mesoporous molecular sieve Materials and their use in catalysis[J]. Chemical Reviews,1997,97(6):2373-2419.
    [48]THOMAS S W, JOLY G D and SWAGER T M. Chemical sensors based on amplifying fluorescent conjugated polymers[J]. Chemical Reviews,2007,107(4): 1339-1386.
    [49]LUO J D, XIE Z L, LAM J W Y, et al. Aggregation-induced emission of 1-methy1-1,2,3,4,5-pentaphenylsilole[J]. Chemical Communications,2001(18): 1740-1741.
    [50]HONG Y, LAM J W Y and TANG B Z. Aggregation-induced emission[J]. Chemical Society Reviews,2011,40(11):5361-5388.
    [51]CHI Z G, ZHANG X Q, XU B J, et al. Recent advances in organic mechanofluorochromic materials[J]. Chemical Society Reviews,2012,41(10): 3878-3896.
    [52]LIU J Z, LAM J W Y and TANG B Z. Aggregation-induced emission of silole molecules and polymers:fundamental and applications[J]. Journal of Inorganic and Organometallic Polymers and Materials,2009,19(3):249-285.
    [53]CHEN J W, XU B, OUYANG X Y, et al. Aggregation-induced emission of cis,cis-1,2,3,4-tetraphenylbutadiene from restricted intramolecular rotation[J]. Journal of Physical Chemistry A,2004,108(37):7522-7526.
    [54]ZHAO Z J, LAM J W Y and TANG B Z. Aggregation-induced emission of tetraarylethene luminogens[J]. Current Organic Chemistry,2010,14(18): 2109-2132.
    [55]BANERJEE M, EMOND S J, LINDEMAN S V, et al. Practical synthesis of unsymmetrical tetraarylethylenes and their application for the preparation of [triphenylethylene-spacer-triphenylethylene] triads[J]. Journal of Organic Chemistry,2007,72(21):8054-8061.
    [56]DUAN X F, ZENG J, LU J W, et al. Insights into the general and efficient Cross mcMurry reactions between ketones[J]. Journal of Organic Chemistry,2006, 71(26):9873-9876.
    [57]AN B K, KWON S K, JUNG S D, et al. Enhanced emission and its switching in fluorescent organic nanoparticles[J]. Journal of the American Chemical Society, 2002,124(48):14410-14415.
    [58]AN B K, JOHANNES G and PARK S Y.π-Conjugated cyanostilbene derivatives: a unique self-assembly motif for molecular nanostructures with enhanced emission and transport[J]. Accounts of Chemical Research,2012,45(4): 544-554.
    [59]AN B K, GIHM S H, CHUNG J W, et al. Color-tuned highly fluorescent organic nanowires/nanofabrics:easy massive fabrication and molecular structural origin[J]. Journal of the American Chemical Society,2009,131(11):3950-3957.
    [60]XU Y, XUE P C, XU D F, et al. Multicolor fluorescent switches in gel systems controlled by alkoxyl chain and solvent[J]. Organic & Biomolecular Chemistry, 2010,8(19):4289-4296.
    [61]ZHANG Y P and JIANG S M. Fluoride-responsive gelator and colorimetric sensor based on simple and easy-to-prepare cyano-substituted amide[J]. Organic & Biomolecular Chemistry,2012,10(34):6973-6979.
    [62]XUE P C, SUN J B, XU Q X, et al. Anion response of organogels:dependence on intermolecular interactions between gelators[J]. Organic & Biomolecular Chemistry,2013,11(11):1840-1847.
    [63]HONG Y N, LAM J W Y and TANG B Z. Aggregation-induced emission: phenomenon, mechanism and applications[J]. Chemical Communications, 2009(29):4332-4353.
    [64]ZHAO J Z, JI S M, CHEN Y H, et al. Excited state intramolecular proton transfer (ESIPT):from principal photophysics to the development of new chromophores and applications in fluorescent molecular probes and luminescent materials[J]. Physical Chemistry Chemical Physics,2012,14(25):8803-8817.
    [65]LI S Y, HE L M, XIONG F, et al. Enhanced fluorescent emission of organic nanoparticles of an intramolecular proton transfer compound and spontaneous formation of one-dimensional nanostructures[J]. Journal of Physical Chemistry B, 2004,108(30):10887-10892.
    [66]QIAN Y, LI S, ZHANG G, et al. Aggregation-induced emission enhancement of 2-(2'-hydroxyphenyl)benzothiazole-based excited-state intramolecular proton-transfer compounds[J]. Journal of Physical Chemistry B,2007,111(21): 5861-5868.
    [67]ALAM P, KARANAM M, ROY CHOUDHURY A, et al. One-pot synthesis of strong solid state emitting mono-cyclometalated iridium(Ⅲ) complexes:study of their aggregation induced enhanced phosphorescence[J]. Dalton Transactions, 2012,41(31):9276-9279.
    [68]LIU S J, SUN H B, MA Y, et al. Rational design of metallophosphors with tunable aggregation-induced phosphorescent emission and their promising applications in time-resolved luminescence assay and targeted luminescence imaging of cancer cells[J]. Journal of Materials Chemistry,2012,22(41): 22167-22173.
    [69]SHAN G G, LI H B, QIN J S, et al. Piezochromic luminescent (PCL) behavior and aggregation-induced emission (AIE) property of a new cationic iridium(iii) complex[J]. Dalton Transactions, 12,41(32):9590-9593.
    [70]SHAN G G, ZHANG L Y, LI H B, et al. A cationic iridium(iii) complex showing aggregation-induced phosphorescent emission (AIPE) in the solid state:synthesis, characterization and properties[J]. Dalton Transactions,2012,41(2):523-530.
    [71]SHEN X Y, YUAN W Z, LIU Y, et al. Fumaronitrile-based fluorogen:red to near-infrared fluorescence, aggregation-induced emission, solvatochromism, and twisted intramolecular charge transfer[J]. The Journal of Physical Chemistry C, 2012,116(19):10541-10547.
    [72]WU J S, LIU W M, GE J C, et al. New sensing mechanisms for design of fluorescent chemosensors emerging in recent years[J]. Chemical Society Reviews,2011,40(7):3483-3495.
    [73]CHEN J W, LAW C C W, LAM J W Y, et al. Synthesis, light emission, nanoaggregation, and restricted intramolecular rotation of 1,1-substituted 2,3,4,5-tetraphenylsiloles[J]. Chemistry of Materials,2003,15(7):1535-1546.
    [74]LI Z, DONG Y Q, MI B X, et al. Structural control of the photoluminescence of silole regioisomers and their utility as sensitive regiodiscriminating chemosensors and efficient electroluminescent materials[J]. Journal of Physical Chemistry B,2005,109(20):10061-10066.
    [75]SPANO F C. The spectral signatures of frenkel polarons in H-and J-aggregates[J]. Accounts of Chemical Research,2010,43(3):429-439.
    [76]DU X B, QI J, ZHANG Z Q, et al. Efficient non-doped near infrared organic light-emitting devices based on fluorophores with aggregation-induced emission enhancement[J]. Chemistry of Materials,2012,24(11):2178-2185.
    [77]WANF X P, QIAN Y, ZHU T J, et al. Non-doped white organic light-emitting diodes based on ultra-thin emitting layer with aggregation-induced emission[J]. Physica Status Solidi (a),2012,209(2):373-377.
    [78]LIU Y, TAO X T, WANG F Z, et al. Aggregation-induced emissions of fluorenonearylamine derivatives:A new kind of materials for nondoped red organic light-emitting diodes[J]. Journal of Physical Chemistry C,2008,112(10): 3975-3981.
    [79]ZHAO Z J, LAM J W Y and TANG B Z. Tetraphenylethene:a versatile AIE building block for the construction of efficient luminescent materials for organic light-emitting diodes[J]. Journal of Materials Chemistry,2012,22(45): 23726-23740.
    [80]KIM H N, REN W X, KIM J S, et al. Fluorescent and colorimetric sensors for detection of lead, cadmium, and mercury ions[J]. Chemical Society Reviews, 2012,41(8):3210-3244.
    [81]LIU L, ZHAGN G X, XIANG J F, et al. Fluorescence "turn On" chemosensors for Ag+and Hg2+based on tetraphenylethylene motif featuring adenine and thymine moieties[J]. Organic Letters,2008,10(20):4581-4584.
    [82]LIU Y, TANG Y H, BARASHKOV N N, et al. Fluorescent chemosensor for detection and quantitation of carbon dioxide gas[J]. Journal of the American Chemical Society,2010,132(40):13951-13953.
    [83]TIAN T, CHEN X, LI H, et al. Amidine-based fluorescent chemosensor with high applicability for detection of CO2:a facile way to "see" CO2[J]. The Analyst, 2013,138(4):991-994.
    [84]SALINAS Y, MARTINEZ-MANEZ R, MARCOS M D, et al. Optical chemosensors and reagents to detect explosives[J]. Chemical Society Reviews, 2012,41(3):1261-1296.
    [85]GERMAIN M E and KNAPP M J. Optical explosives detection:from color changes to fluorescence turn-on[J]. Chemical Society Reviews,2009,38(9): 2543-2555.
    [86]LI Z, DONG Y Q, LAM J W Y, et al. Functionalized siloles:versatile synthesis, aggregation-induced emission, and sensory and device applications[J]. Advanced Functional Materials,2009,19(6):905-917.
    [87]LIU J Z, ZHONG Y C, LU P, et al. A superamplification effect in the detection of explosives by a fluorescent hyperbranched poly(silylenephenylene) with aggregation-enhanced emission characteristics[J]. Polymer Chemistry,2010,1(4): 426-429.
    [88]HU X M, CHEN Q, ZHOU D, et al. One-step preparation of fluorescent inorganic-organic hybrid material used for explosive sensing[J]. Polymer Chemistry,2011,2(5):1124-1128.
    [89]LIU J Z, ZHONG Y C, LAM J W Y, et al. Hyperbranched conjugated polysiloles: synthesis, structure, aggregation-enhanced emission, multicolor fluorescent photopatterning, and superamplified detection of explosives[J]. Macromolecules, 2010,43(11):4921-4936.
    [90]WANG J, MEI J, YUAN W Z, et al. Hyperbranched polytriazoles with high molecular compressibility:aggregation-induced emission and superamplified explosive detection[J]. Journal of Materials Chemistry,2011,21(12):4056-4059.
    [91]YUAN W Z, ZHAO H, SHEN X Y, et al. Luminogenic polyacetylenes and conjugated polyelectrolytes:synthesis, hybridization with carbon nanotubes, aggregation-induced emission, superamplification in emission quenching by explosives, and fluorescent assay for protein quantitation[J]. Macromolecules, 2009,42(24):9400-9411.
    [92]ZHENG Y S and HU Y J. Chiral recognition based on enantioselectively aggregation-induced emission[J]. The Journal of Organic Chemistry,2009, 74(15):5660-5663.
    [93]ZHENG Y S, HU Y J, LI D M, et al. Enantiomer analysis of chiral carboxylic acids by AIE molecules bearing optically pure aminol groups[J]. Talanta,2010, 80(3):1470-1474.
    [94]LI D M and ZHENG Y S. Highly enantioselective recognition of a wide range of carboxylic acids based on enantioselectively aggregation-induced emission[J]. Chemical Communications,2011,47(36):10139-10141.
    [95]LEUNG C W T, HONG Y N, CHEN S J, et al. A photostable AIE luminogen for specific mitochondrial imaging and tracking[J]. Journal of the American Chemical Society,2013,135(1):62-65.
    [96]WANG M, ZHANG G X, ZHANG D Q, et al. Fluorescent bio/chemosensors based on silole and tetraphenylethene luminogens with aggregation-induced emission feature[J]. Journal of Materials Chemistry,2010,20(10):1858-1867.
    [97]SHI H B, LIU J Z, GENG J L, et al. Specific detection of integrin avβ3 by light-up bioprobe with aggregation-induced emission characteristics[J]. Journal of the American Chemical Society,2012,134(23):9569-9572.
    [98]WANG M, ZHANG D Q, ZHANG G X, et al. Fluorescence turn-on detection of DNA and label-free fluorescence nuclease assay based on the aggregation-induced emission of silole[J]. Analytical Chemistry,2008,80(16): 6443-6448.
    [99]LIU Y, DENG C M, TANG L, et al. Specific detection D-glucose by a tetraphenylethene-based fluorescent sensor[J]. Journal of the American Chemical Society,2011,133(4):660-663.
    [100]HU X M, CHEN Q, WANG J X, et al. Tetraphenylethylene-based glycoconjugate as a fluorescence "turn-on" sensor for cholera toxin[J]. Chemistry-An Asian Journal,2011,6(9):2376-2381.
    [101]YU Y, FENG C, HONG Y N, et al. Cytophilic fluorescent bioprobes for long-term cell tracking[J]. Advanced Materials,2011,23(29):3298-3302.
    [102]GENG J L, LI K, DING D, et al. Lipid-PEG-folate encapsulated nanoparticles with aggregation induced emission characteristics:cellular uptake mechanism and two-photon fluorescence imaging[J]. Small,2012,8(23):3655-3663.
    [103]MAHTAB F, LAM J W Y, YU Y, et al. Covalent immobilization of aggregation-induced emission luminogens in silica nanoparticles through click reaction[J]. Small,2011,7(10):1448-1455.
    [104]MAHTAB F, HONG Y N, LIU J Z, et al. Fabrication of fluorescent silica nanoparticles hybridized with AIE luminogens and exploration of their applications as nanobiosensors in intracellular imaging[J]. Chemistry-A European Journal,2010,16(14):4266-4272.
    [105]MAHTAB F, YU Y, LAM J W Y, et al. Fabrication of silica nanoparticles with both efficient fluorescence and strong magnetization and exploration of their biological applications[J]. Advanced Functional Materials,2011,21(9): 1733-1740.
    [106]DESCALZO A B, MARTINEZ-MANEZ R, SANCENON F, et al. The supramolecular chemistry of organic-inorganic hybrid materials[J]. Angewandte Chemie International Edition,2006,45(36):5924-5948.
    [107]HOFFMANN F, CORNELIUS M, MORELL J, et al. Silica-based mesoporous organic-inorganic hybrid materials[J]. Angewandte Chemie International Edition. 2006,45(20):3216-3251.
    [108]HOFFMANN F and FROBA M. Vitalising porous inorganic silica networks with organic functions-PMOs and related hybrid materials[J]. Chemical Society Reviews,2011,40(2):608-620.
    [109]LINARES N, SERRANO E, RICO M, et al. Incorporation of chemical functionalities in the framework of mesoporous silica[J]. Chemical Communications,2011,47(32):9024-9035.
    [110]MIZOSHITA N, TANI T and INAGAKI S. Syntheses, properties and applications of periodic mesoporous organosilicas prepared from bridged organosilane precursors[J]. Chemical Society Reviews,2011,40(2):789-800.
    [111]YANG Q H, KAPOOR M P, INAGAKI S, et al. Catalytic application of sulfonic acid functionalized mesoporous benzene-silica with crystal-like pore wall structure in esterification[J]. Journal of Molecular Catalysis A:Chemical,2005, 230(1-2):85-89.
    [112]ZHANG H D and LI C. Asymmetric epoxidation of 6-cyano-2,2-dimethylchromene on Mn(salen) catalyst immobilized in mesoporous materials[J]. Tetrahedron,2006,62(28):6640-6649.
    [113]MANZANO M and VALLET-REGI M. New developments in ordered mesoporous materials for drug delivery[J]. Journal of Materials Chemistry,2010, 20(27):5593-5604.
    [114]GIRI S, TREWYN B G, STELLMAKER M P, et al. Stimuli-responsive controlled-release delivery system based on mesoporous silica nanorods capped with magnetic nanoparticles[J]. Angewandte Chemie International Edition,2005, 44(32):5038-5044.
    [115]AZNAR E, MONDRAGON L, ROS-LIS J V, et al. Finely tuned temperature-controlled cargo release using paraffin-capped mesoporous silica nanoparticles[J]. Angewandte Chemie International Edition,2011,50(47): 11172-11175.
    [116]ANGELOS S, YANG Y W, PATEL K, et al. pH-Responsive supramolecular nanovalves based on cucurbit[6]uril pseudorotaxanes[J]. Angewandte Chemie International Edition,2008,47(12):2222-2226.
    [117]KAPOOR S and BHATTACHARYYA A J. Ultrasound-triggered controlled drug delivery and biosensing using silica nanotubes[J]. Journal of Physical Chemistry C,2009,113(17):7155-7163.
    [118]VIVERO-ESCOTO J L, SLOWING I I, WU C W, et al. Photoinduced intracellular controlled release drug delivery in human cells by gold-capped mesoporous silica nanosphere[J]. Journal of the American Chemical Society, 2009,131(10):3462-3463.
    [119]MENDES P M. Stimuli-responsive surfaces for bio-applications[J]. Chemical Society Reviews,2008,37(11):2512-2529.
    [120]YANG Q, WANG S C, FAN P W, et al. pH-Responsive carrier system based on carboxylic acid modified mesoporous silica and polyelectrolyte for drug delivery[J]. Chemistry of Materials,2005,17(24):5999-6003.
    [121]LAI C Y, TREWYN B G, JEFTINIJA D M, et al. A mesoporous silica nanosphere-based carrier system with chemically removable CdS nanoparticle caps for stimuli-responsive controlled release of neurotransmitters and drug molecules[J]. Journal of the American Chemical Society,2003,125(15): 4451-4459.
    [122]RADU D R, LAI C Y, JEFTINJIA K, et al. A polyamidoamine dendrimer-capped mesoporous silica nanosphere-based gene transfection reagent[J]. Journal of the American Chemical Society,2004,126(41): 13216-13217.
    [123]VIVERO-ESCOTO J L, SLOWING I I, TREWYN B G, et al. Mesoporous silica nanoparticles for intracellular controlled drug delivery[J]. Small,2010, 6(18):1952-1967.
    [124]LEE C H, CHENG S H, WANG Y J, et al. Near-infrared mesoporous silica nanoparticles for optical imaging:characterization and in vivo biodistribution[J]. Advanced Functional Materials,2009,19(2):215-222.
    [125]KIM S, YOON S J and PARK S Y. Highly fluorescent chameleon nanoparticles and polymer films:multicomponent organic systems that combine FRET and photochromic switching[J]. Journal of the American Chemical Society,2012, 134(29):12091-12097.
    [126]MIZOSHITA N, GOTO Y, TANI T, et al. Efficient visible-light emission from dye-doped mesostructured organosilica[J]. Advanced Materials,2009,21(47): 4798-4801.
    [127]MIZOSHITA N, GOTO Y, MAEGAWA Y, et al. Tetraphenylpyrene-bridged periodic mesostructured organosilica films with efficient visible-light emission[J]. Chemistry of Materials,2010,22(8):2548-2554.
    [1]FELDMANN C. Luminescent nanomaterials[J]. Nanoscale,2011,3(5): 1947-1948.
    [2]BAE S W, TAN W H and HONG J I. Fluorescent dye-doped silica nanoparticles: new tools for bioapplications[J]. Chemical Communications,2012,48(17): 2270-2282.
    [3]LEE J E, LEE N, KIM H, et al. Uniform mesoporous dye-doped silica nanoparticles decorated with multiple magnetite nanocrystals for simultaneous enhanced magnetic resonance imaging, fluorescence imaging, and drug delivery[J]. Journal of the American Chemical Society,2010,132(2):552-557.
    [4]LU D L, YANG L G, TIAN Z D, et al. Core-shell mesoporous silica nanospheres used as Zn2+ratiometric fluorescent sensor and adsorbent[J]. RSC Advances, 2012,2(7):2783-2789.
    [5]MONTALTI M, RAMPAZZO E, ZACCHERONI N, et al. Luminescent chemosensors based on silica nanoparticles for the detection of ionic species[J]. New Journal of Chemistry,2013,37(1):28-34.
    [6]PATRA A and SCHERF U. Fluorescent microporous organic polymers:potential testbed for optical applications [J]. Chemistry-A European Journal,2012,18(33): 10074-10080.
    [7]XU Y H, NAGAI A and JIANG D L. Core-shell conjugated microporous polymers:a new strategy for exploring color-tunable and-controllable light emissions[J]. Chemical Communications,2013,49(16):1591-1593.
    [8]SHUSTOVA N B, ONG T C, COZZOLINO A F, et al. Phenyl ring dynamics in a tetraphenylethylene-bridged metal-organic framework:implications for the mechanism of aggregation-induced emission[J]. Journal of the American Chemical Society,2012,134(36):15061-15070.
    [9]QIN A J, TANG L, LAM J W Y, et al. Metal-free click polymerization:synthesis and photonic properties of poly(aroyltriazole)s[J]. Advanced Functional Materials,2009,19(12):1891-1900.
    [10]WU W B, YE S H, HUANG L J, et al. A conjugated hyperbranched polymer constructed from carbazole and tetraphenylethylene moieties:convenient synthesis through one-pot "A2+B4" Suzuki polymerization, aggregation-induced enhanced emission, and application as explosive chemosensors and PLEDs[J]. Journal of Materials Chemistry,2012,22(13):6374-6382.
    [11]KOKER S D, HOOGENBOOM R and GEEST B G D. Polymeric multilayer capsules for drug delivery[J]. Chemical Society Reviews,2012,41(7): 2867-2884.
    [12]WANG S B. Ordered mesoporous materials for drug delivery[J]. Microporous and Mesoporous Materials,2009,117(1-2):1-9.
    [13]WANG X F, LIU P and TIAN Y. Ordered mesoporous carbons for ibuprofen drug loading and release behavior[J]. Microporous and Mesoporous Materials,2011, 142(1):334-340.
    [14]NAKAMURA M, OZAKI S, ABE M, et al. One-pot synthesis and characterization of dual fluorescent thiol-organosilica nanoparticles as non-photoblinking quantum dots and their applications for biological imaging[J]. Journal of Materials Chemistry,2011,21(12):4689-4695.
    [15]PAN J, WAN D and GONG J. PEGylated liposome coated QDs/mesoporous silica core-shell nanoparticles for molecular imaging[J]. Chemical Communications,2011,47(12):3442-3444.
    [16]DIEZ I and RAS R H A. Fluorescent silver nanoclusters[J]. Nanoscale,2011, 3(5):1963-1970.
    [17]XU Z H, GAO Y, HUANG S S, et al. A luminescent and mesoporous core-shell structured Gd203:Eu3+@nSi02@mSi02 nanocomposite as a drug carrier[J]. Dalton Transactions,2011,40(18):4846-4854.
    [18]HE Q J, SHI J L, CUI X Z, et al. Rhodamine B co-condensed spherical SBA-15 nanoparticles:facile co-condensation synthesis and excellent fluorescence features[J]. Journal of Materials Chemistry,2009,19(21):3395-3403.
    [19]ZHAO X J, BAGWE R P and TAN W H. Development of organic-dye-doped silica nanoparticles in a reverse microemulsion[J]. Advanced Materials,2004, 16(2):173-176.
    [20]KOKUBO T and TAKADAMA H. How useful is SBF in predicting in vivo bone bioactivity[J]? Biomaterials,2006,27(15):2907-2915.
    [21]SALINAS Y, MARTINEZ-MANEZ R, MARCOS M D, et al. Optical chemosensors and reagents to detect explosives[J]. Chemical Society Reviews, 2012,41(3):1261-1296.
    [22]EWING R G, ATKINSON D A, EICEMAN G A, et al. A critical review of ion mobility spectrometry for the detection of explosives and explosive related compounds[J]. Talanta,2001,54(3):515-529.
    [23]ZHANG Y, MA X, ZHANG S, et al. Direct detection of explosives on solid surfaces by low temperature plasma desorption mass spectrometry[J]. The Analyst,2009,134(1):176-181.
    [24]CAULFIELD J. BRUNO T J and MILLER K E. Enthalpy of solution and kovats retention indices for nitroaromatic compounds on stationary phases using gas chromatography[J]. Journal of Chemical and Engineering Data,2009,54(6): 1814-1822.
    [25]THOMAS S W, JOLY G D and SWAGER T M. Chemical sensors based on amplifying fluorescent conjugated polymers[J]. Chemical Reviews,2007,107(4): 1339-1386.
    [26]GERMAIN M E and KNAPP M J. Optical explosives detection:from color changes to fluorescence turn-on[J]. Chemical Society Reviews,2009,38(9): 2543-2555.
    [27]WU W B, YE S H, YU G, et al. Novel functional conjugative hyperbranched polymers with aggregation-induced emission:synthesis through one-pot "A2+B4" polymerization and application as explosive chemsensors and PLEDs[J]. Macromolecular Rapid Communications,2012,33(2):164-171.
    [28]QIN A J, LAM J W Y, TANG L, et al. Polytriazoles with aggregation-induced emission characteristics:synthesis by click polymerization and application as explosive chemosensors[J]. Macromolecules,2009,42(5):1421-1424.
    [29]HE G, PENG H N, LIU T H, et al. A novel picric acid film sensor via combination of the surface enrichment effect of chitosan films and the aggregation-induced emission effect of siloles[J]. Journal of Materials Chemistry, 2009,19(39):7347-7353.
    [30]MIZOSHITA N, YAMANAKA K, HIROTO S, et al. Energy and electron transfer from fluorescent mesostructured organosilica framework to guest dyes[J]. Langmuir,2012,28(8):3987-3994.
    [31]TAO S Y, YIN J X and LI G T. High-performance TNT chemosensory materials based on nanocomposites with bimodal porous structures[J]. Journal of Materials Chemistry,2008,18(40):4872-4878.
    [32]Sanchez J C, DiPasquale A G, Rheingold A L, et al. Synthesis, luminescence properties, and explosives sensing with 1,1-tetraphenylsilole-and 1,1-silafluorene-vinylene polymers[J]. Chemistry of Materials,2007,19(26): 6459-6470.
    [33]MUTHUKUMAR P, JOHN S A. Highly sensitive detection of HC1 gas using a thin film of meso-tetra(4-pyridyl)porphyrin coated glass slide by optochemical method[J]. Sensors and Actuators B:Chemical,2011,159(1):238-244.
    [34]KALIMUTHU P and ABRAHAM J S. Optochemical sensing of hydrogen chloride gas using meso-tetramesitylporphyrin deposited glass plate[J]. Analytica Chimica Acta,2008,627(2):247-253.
    [35]XIE Y Z, SHAN G Q ZHOU Z Y, et al. Schiff-base as highly sensitive and reversible chemosensors for HC1 gas[J]. Sensors and Actuators B:Chemical, 2013,177:41-49.
    [36]DUAN X F, ZENG J, L J W, et al. Insights into the general and efficient cross mcMurry reactions between ketones[J]. Journal of Organic Chemistry,2006, 71(26):9873-9876.
    [1]ZHU J, LIAO L, BIAN X, et al. pH-Controlled delivery of doxorubicin to cancer cells, based on small mesoporous carbon nanospheres[J]. Small,2012,8(17): 2715-2720.
    [2]LEE J E, LEE N, KIM T, et al. Multifunctional mesoporous silica nanocomposite nanoparticles for theranostic applications[J]. Accounts of Chemical Research,2011,44(10):893-902.
    [3]GUO Y P, YAO Y B, GUO Y J, et al. Hydrothermal fabrication of mesoporous carbonated hydroxyapatite microspheres for a drug delivery system[J]. Microporous and Mesoporous Materials,2012,155:245-251.
    [4]CHEN Y, CHU C, ZHOU Y C, et al. Reversible pore-structure evolution in hollow silica nanocapsules:large pores for siRNA delivery and nanoparticle collecting[J]. Small,2011,7(20):2935-2944.
    [5]JOO J B, ZHANG Q, LEE I, et al. Mesoporous anatase titania hollow nanostructures though silica-protected calcination[J]. Advanced Functional Materials,2012,22(1):166-174.
    [6]YOU B, YANG J, SUN Y Q, et al. Easy synthesis of hollow core, bimodal mesoporous shell carbon nanospheres and their application in supercapacitor[J]. Chemical Communications,2011,47(45):12364-12366.
    [7]DU X and HE J H. Spherical silica micro/nanomaterials with hierarchical structures:synthesis and applications[J]. Nanoscale,2011,3(10):3984-4002.
    [8]MA M Y, ZHU Y J, LI L, et al. Nanostructured porous hollow ellipsoidal capsules of hydroxyapatite and calcium silicate:preparation and application in drug delivery[J]. Journal of Materials Chemistry,2008,18(23):2722-2727.
    [9]YANG P P, QUAN Z W, LI C X, et al. Bioactive, luminescent and mesoporous europium-doped hydroxyapatite as a drug carrier[J]. Biomaterials,2008,29(32): 4341-4347.
    [10]WANG D, QIAN J, HE S L, et al. Aggregation-enhanced fluorescence in PEGylated phospholipid nanomicelles for in vivo imaging[J]. Biomaterials,2011, 32(25):5880-5888.
    [1]LI S D, LU J, WEI M, et al. Tris(8-hydroxyquinoline-5-sulfonate)aluminum intercalated Mg-Al layered double hydroxide with blue luminescence by hydrothermal synthesis[J]. Advanced Functional Materials,2010,20(17): 2848-2856.
    [2]CHU N K, SUN Y H, ZHAO Y S, et al. Intercalation of organic sensitisers into layered europium hydroxide and enhanced luminescence property[J]. Dalton Transactions,2012,41(24):7409-7414.
    [3]SUN L Y, BOO W J, BROWNING R L, et al. Effect of crystallinity on the intercalation of monoamine in α-zirconium phosphate layer structure[J]. Chemistry of Materials,2005,17(23):5606-5609.
    [4]LIU L M, ZHANG H T, SHEN B, et al. pH-Induced fabrication of DNA/ chitosan/a-ZrP nanocomposite and DNA release[J]. Nanotechnology,2010, 21(10):105102.
    [5]SUN L Y, Boo W J, SUE H J, et al. Preparation of a-zirconium phosphate nanoplatelets with wide variations in aspect ratios[J]. New Journal of Chemistry, 2007,31(1):39-43.
    [6]ROMING M, LUNSDORF H, DITTMAR K E J, et al. ZrO(HPO4)1-x(FMN)x: quick and easy synthesis of a nanoscale luminescent biomarker[J]. Angewandte Chemie International Edition,2010,49(3):632-637.
    [7]MARTI A A and COLON J L. Photophysical characterization of the interactions among tris(2,2'-bipyridyl)ruthenium(II) complexes ion-exchanged within zirconium phosphate[J]. Inorganic Chemistry,2010,49(16):7298-7303.
    [8]RIVERA E J, BARBOSA C, TORRES R, et al. Luminescence rigidochromism and redox chemistry of pyrazolate-bridged binuclear platinum(II) diimine complex intercalated into zirconium phosphate layers[J]. Inorganic Chemistry, 2012,51(5):2777-2784.
    [9]SANTIAGO-BERRIOS M E B, DECLET-FLORES C, DAVID A, et al. Direct intercalation of bis-2,2',2",6-terpyridylcobalt(III) into zirconium phosphate layers for biosensing applications[J]. Langmuir,2012,28(9):4447-4452.
    [10]HU H, MARTIN J C, ZHANG M, et al. Immobilization of ionic liquids in θ-zirconium phosphate for catalyzing the coupling of CO2 and epoxides[J]. RSC Advances,2012,2(9):3810-3815.
    [11]MARTl A A and COLON J L. Direct ion exchange of tris(2,2'-bipyridine) ruthenium(II) into an a-zirconium phosphate framework[J]. Inorganic Chemistry, 2003,42(9):2830-2832.
    [12]DIAZ A, SAXENA V, GONZALEZ J, et al. Zirconium phosphate nano-platelets: a novel platform for drug delivery in cancer therapy[J]. Chemical Communications,2012,48(12):1754-1756.
    [13]ZHANG X, SHI S K, LIU Q, et al. Tris-(8-hydroxy-quinoline) aluminium/ zirconium phosphate:a novel hybrid assembly with strong luminescence and prolonged lifetime[J]. Chemical Communications,2011,47(22):6359-6361.
    [14]XU J P, SONG Z G, FANG Y, et al. Label-free fluorescence detection of mercury(II) and glutathione based on Hg2+-DNA complexes stimulating aggregation-induced emission of a tetraphenylethene derivative[J]. The Analyst, 2010,135(11):3002-3007.
    [1]YU D H, QIAN J S, XUE N H, et al. Mesoporous nanotubes of iron phosphate: synthesis, characterization, and catalytic property[J]. Langmuir,2007,23(2): 382-386.
    [2]WANG Q F, YU H J, ZHONG L, et al. Incorporation of silver ions into ultrathin titanium phosphate films:in situ reduction to prepare silver nanoparticles and their antibacterial activity[J]. Chemistry of Materials,2006,18(7):1988-1994.
    [3]WU Z B, LIU Z M, TIAN P, et al. Template-assisted syntheses of two novel porous zirconium methylphosphonates[J]. Microporous and Mesoporous Materials,2005,81(1-3):175-183.
    [4]KIMURA T. Synthesis of novel mesoporous aluminum organophosphonate by using organically bridged diphosphonic acid[J]. Chemistry of Materials,2003, 15(20):3742-3744.
    [5]SHI X, YANG J and YANG Q H. Mesoporous aluminium organophosphonates functionalized with chiralL-proline groups in the pore[J]. European Journal of Inorganic Chemistry,2006,2006(10):1936-1939.
    [6]SHI X, LIU J, LI C M, et al. Pore-size tunable mesoporous zirconium organophosphonates with chiral L-proline for enzyme adsorption[J]. Inorganic Chemistry,2007,46(19):7944-7952.
    [7]MERGET R, BAUER T, KUPPER H U, et al. Health hazards due to the inhalation of amorphous silica[J]. Archives of Toxicology,2002,75(11-12): 625-634.
    [8]CHOI H W, LEE H J, KIM K J, et al. Surface modification of hydroxyapatite nanocrystals by grafting polymers containing phosphonic acid groups[J]. Journal of Colloid and Interface Science,2006,304(1):277-281.
    [9]WANG A L, YIN H B, LIU D, et al. Size-controlled synthesis of hydroxyapatite nanorods in the presence of organic modifiers[J]. Materials Letters,2007,61(10): 2084-2088.
    [10]MALTI W E, LAURENCIN D, GUERRERO G, et al. Surface modification of calcium carbonate with phosphonic acids[J]. Journal of Materials Chemistry, 2012,22(3):1212-1218.
    [11]SHI X T, WANG Y J, VARSHNEY R R, et al. In-vitro osteogenesis of synovium stem cells induced by controlled release of bisphosphate additives from microspherical mesoporous silica composite[J]. Biomaterials,2009,30(23-24): 3996-4005.
    [12]KIECZYKOWSKI G R, JOBSON R B, MELILLO D Q et al. Preparation of (4-amino-l-hydroxybutylidene)bisphosphonic acid sodium salt, MK-217 (alendronate sodium). an improved procedure for the preparation of 1-hydroxy-1,1-bisphosphonic acids[J]. Journal of Organic Chemistry,1995, 60(25):8310-8312.
    [13]KORNARAKIS I, SOPASIS G, MILIOS C J, et al. Incorporation of a high-spin heptanuclear [CuⅡ6Gd] cluster into carboxyl-functionalized mesoporous silica[J]. RSC Advances,2012,2(26):9809-9815.
    [14]BRUZZONITI M C, PRELLE A, SARZANINI C, et al. Retention of heavy metal ions on SBA-15 mesoporous silica functionalised with carboxylic groups[J]. Journal of Separation Science,2007,30(15):2414-2420.
    [15]KAO H M, CHUNG C H, SAIKIA D, et al. Highly carboxylic-acid-functionalized ethane-bridged periodic mesoporous organosilicas:synthesis, characterization, and adsorption properties[J]. Chemistry-An Asian Journal,2012, 7(9):2111-2117.
    [16]HAN L, TERASAKI O and CHE S A. Carboxylic group functionalized ordered mesoporous silicas[J]. Journal of Materials Chemistry,2011,21(30): 11033-11039.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700