用户名: 密码: 验证码:
面向服务的区域性地震数据共享平台研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
胡锦涛主席曾在两院会议上指出,要把自然灾害预测预报、防灾减灾工作作为关系经济社会发展全局的一项重大工作进一步抓紧抓好。他还提出防灾减灾工作未来的发展方向是:加强灾害研究的基础上加强灾害监测能力,深入研究灾害和社会发展的关系,加快遥感、地理信息等技术成果的转化,整合各类科学数据为防灾减灾作出贡献。众多科学数据中,地震科学数据是防灾减灾工作中的重要数据基础之一,因此,对地震科学数据的充分利用是地震信息化建设的关键工作。
     几十年来,上海形成了较为完整的地震信息监测系统,记录了大量的地震科学数据。由于地震科学数据具有时间性、空间性、综合性、信息海量性、采集多源性等特点,长期以来,地震科学数据的共享建设始终是摆在地震工作者面前的一个难题。如何更大程度地发挥地震科学数据的资源效益,让地震科学数据能够更直观、更便利地提供信息服务,作为政府管理工作的决策支持等问题,成为地震科学研究的重要工作内容。
     本文在阐述上海市地震科学数据共享平台(以下简称共享平台)的研究背景、科学数据共享的问题及现状、上海市地震科学数据的共享情况等内容的基础上,依托“上海市地震科学数据共享平台建设”课题取得的创新成果有:
     1,制定共享平台的标准
     对共享平台中使用地震科学数据的用户进行了分类分级,提出适应上海市地震科学数据共享的数据标准体系,并以服务标准和数据标准为例进行说明。共享平台的标准作为开发和利用的基础,建设与管理的前提,运行服务的保障,推广应用的支撑,对保证基础性、战略性信息资源的可持续具有重要意义。
     2,搭建了共享平台
     在标准化建设的基础上,根据共享平台的总体目标,整合当代先进的SOA、B/S、GIS等技术,搭建了基于上海市地震科学数据的共享平台,此平台具有跨专业部门、跨级别、跨平台、高复用、高聚合、低技术要求等多种特点。
     3,开发了区域性地震科学数据服务功能
     ①实现了测震信息的交互式操作,用户可根据测震数据在线绘制地震波形图;②根据本共享平台收录的地震目录,利用GIS技术在线绘制地震分布图;③开发了基于强震数据的地震动响应计算、频谱分析和等震线图展示功能;④通过对高分辨率遥感影像和电子地图的二次加工处理,实现了对上海市部分建筑物的矢量化分析;⑤通过NOAA卫星数据对地表及海洋表面进行亮温反演;⑥利用遥感影像中的建筑物阴影进行建筑物高度计算。
     4,对地震数据服务算法进行优化改进
     ①利用强震数据、土层材质、土层横波速制定场地地震动响应计算步骤。对精确法计算反应谱时,随着0t的增加,偏离理论极点坐标,导致模拟传递函数与理论传递函数的共振频率点不重合,产生相位误差的问题进行优化。②采用统计平均法计算遥感影像中垂直于建筑物主方向的阴影长度M,调整太阳高度角和太阳方位角As,计算出建筑物实际高度H。结果表明,这种利用统计影像目标距离计算阴影长度的方法不仅容易实现,而且能够更好的减小误差。
     虽然本文中取得了一定成绩,但共享平台中还存在一些不足,尚需如进行应用服务、检索能力、增值服务、地震云等方面的改进。
President Hu Jintao pointed out on the bicameral conference that forecastnatural disaster, prevent and mitigate disasters should be considered as a significantwork related to economic and social development, we should do it well. Moreover,he proposed that the further direction of the development of disaster prevention andmitigation is: Enhance the capability of monitoring disaster based on strengtheningdisaster research, study the relationship between disasters and social developmentdeeply, accelerate the conversion of the technology achievement such as remotesensing, geographic information technology, and integrate various types of scientificdata to contribute to disaster prevention and mitigation. Earthquake science data isone of the most important fundamental data during many types of disaster preventionand mitigation efforts. As a result take full advantage of earthquake science data isthe key of seismic information construction work.
     Decades, it has been formed a relatively complete earthquake informationmonitoring system in Shanghai, recording a large number earthquake science data.For a long time, sharing construction of earthquake science data is always a difficultproblem to earthquake workers because its temporality, spatiality,comprehensiveness, massive information and multi-source acquisition. As a result,how to play the effectiveness of earthquake science data resources, to make theearthquake science data providing information services more intuitive and moreconvenient to, as government management decision support, become the futureearthquake scientific research work content.
     In this paper, we describe the research background of sharing platform, theissues and the status quo of the scientific data sharing, Shanghai earthquake sciencedata sharing content based on the subject: relying on “Shanghai Earthquake ScienceData Sharing Platform”, we make innovations as follows:
     1. Build sharing platform standard system
     Classify users of earthquake science data sharing platform, give a data standardto adapt Shanghai earthquake science data sharing system description, and give someinstructions in taking the service standard and data standard as an example. Standardsharing platform as the foundation, construction and management of thedevelopment and use of the premise, the running service protection, promotion andapplication support, to ensure the basic, strategic information resources forsustainable significance.
     2, Set up a sharing platform
     On the basis of standardized construction, according to the overall goals of theShanghai earthquake science data sharing platform, we built Shanghai EarthquakeScience Data Sharing Platform based on Shanghai earthquake science by integratingof state-of-the-art contemporary SOA, B/S, GIS technology. This platform has amulti-disciplinary departments, cross-level, cross-platform, high multiplexing, highpolymerization, low technology and many other features.
     3. The development of a regional earthquake science data service functions
     ①The interactive operation of the seismic information, the user can drawearthquake waveform based on seismic data online;②To draw seismic mapsearthquake catalog under the shared platform included the use of GIS technologyonline;③Developed calculated based on the strong motion data of groundvibration response spectrum analysis and is coseismal diagram shows the function;④Realized through secondary processing of high-resolution remote sensing imagesand electronic maps, vector analysis of some of the buildings of Shanghai;⑤NOAA satellite data on surface and ocean surface brightness temperature inversion;⑥The use of remote sensing images of buildings shadow building height.
     4. Optimized and improved algorithm of seismic data services
     ①Strong motion data, soil material, soil shear wave speed the development ofground motion response calculation steps. Calculate the response spectrum of theexact method, along with the increase0tin deviation from the theoretical pole coordinates, resulting in the simulated transfer function and the theoretical transferfunction of the resonance frequency does not coincide, generating a phase erroroptimization.②Statistical average method to calculate the length of the shadow Mperpendicular to the main direction of the building in remote sensing image, adjustthe height of the sun angle and solar azimuthAs, calculated building the actualheight H. The results showed that this use of the statistical image target distance tocalculate the length of the shadow of the method are not only easy to implement, butbetter able to reduce the error.
     Although this article has made some achievements, there are still somedeficiencies in the sharing platform, for instance, the application of services, searchcapabilities and value-added services, earthquake cloud improvements.
引文
【1】.刘润达.科学数据门户及其构建实践研究[D].地理科学与资源研究所,北京:中国科学院,2009
    【2】.孙九林.推进科学数据共享,增强知识创新力[A].李展平主编.科学数据库与信息技术论文集[C].北京:中国环境科学出版社,2002.
    【3】.“科学数据共享”调研组.实施科学数据共享工程,增强国家科技创新力[M].北京:中国科学技术出版社,2002.
    【4】.李德仁等.面向服务的数字城市共享平台框架的设计与实现[J].《武汉大学学报(信息科学版)》2008,9.
    【5】.《国家地理信息公共服务平台技术设计指南》,国家测绘局,2009.
    【6】.孙鸿烈,刘闯.国际科学技术与数据前沿领域发展研究[J].地球科学进展,2003,18(3):329-333.
    【7】.何建邦,阎国年,吴平生.地理信息共享的原理与方法[M],北京:科学出版社,2003.
    【8】.“国际科技数据委员会网站”.[Online]Available: http://www.codata.org.
    【9】.王国复,李集明,邓莉,等.中国气象科学数据共享服务网总体设计与建设[J].应用气象学报,2004(3):10-16.
    【10】.“ISC”,[Online]Available: http://www.isc.ac.uk/index.html(2011/10/20)
    【11】.“USGS”,[Online]Available: http://www.usgs.gov(2011/10/20)
    【12】.“IRIS”,[Online]Available: http://www.iris.edu/hq/(2011/10/20)
    【13】.“ANSS”,[Online]Available: http://earthquake.usgs.gov/monitoring/anss/(2011/10/20)
    【14】.“GSN”,[Online]Available: http://www.iris.edu/hq/programs/gsn(2011/10/20)
    【15】.“ERI”,[Online]Available: http://www.eri.u-tokyo.ac.jp/(2011/10/21)
    【16】.“NEID”,[Online]Available: http://www.bosai.go.jp/e/index.html(2011/10/21)
    【17】.“RCEP DPRI”,[Online]Available: http://www.rcep.dpri.kyoto-u.ac.jp/main/HomeJ.html(2011/10/21)
    【18】.“J-SHIS”,[Online]Available: http://www.j-shis.bosai.go.jp/en/(2011/10/21)
    【19】.国外地震机构设置与工作状况,[Online]Available: http://www.csi.ac.cn/manage/html/4028861611c5c2ba0111c5c558b00001/_content/10_05/17/1274085352948.html
    【20】.张光辉.日本的灾害防治机制与应急新闻报道及对我国的启示[J].河南社会科学,2009.17(6):166-167.
    【21】.路鹏,刘瑞丰,李志雄,陈华静,王松.地震科学数据的分级分类探讨[J].西北地震学报,2007.29(3):248-255.
    【22】.刘瑞丰,蔡晋安,彭克银,单新建,代光辉,田力,庞丽娜,张爱武,地震科学数据共享工程[J].地震,2007.27(2):9-16.
    【23】.刘瑞丰,吴忠良,阴朝民,等.中国地震台网数字化改造的进展[J].地震学报,2003,25(5):535-540.
    【24】.“科技部试点项目地震科学数据共享工程进展顺利,”[Online]Available: http://www.gov.cn/gzdt/2007-01/08/content_489503.htm(2011/10/21)
    【25】.尹继尧,朱元清.上海数字地震台网监测能力评估[J].地震研究,2011,34(4):476-481.
    【26】.王卷乐,孙九林.世界数据中心(WDC)中国学科中心数据共享进展[J].中国基础科学,2007(2):36-40.
    【27】.刘峰.基于网格服务的地理空间信息共享平台关键技术研究[D].山东:山东科技大学博士学位论文,2007.
    【28】.陈运泰,吴忠良,王培德,许力生,李鸿吉.数字地震学[M].北京:地震出版社,2000.
    【29】.黄鼎成,郭增艳.科学数据共享管理研究[M].北京:中国科学技术出版社,2002.
    【30】.张文,晓梅.基于Web的可视化研究与实现[J].计算机工程与科学,2002,24(3):25-27.
    【31】. Larkin J H, Simon H A. Why a Diagram is (Sometimes) Worth Ten ThousandWords[J]. Cognitive Science,1987,11:65-99.
    【32】.汤国安,赵牡丹.地理信息系统[M].北京:科学出版社,2000
    【33】. Maguire DJ. An Overview and Definition of GIS, Geographic Information System[M]. London: Longman Inc,1991:9-19
    【34】.陈宁.面向GIS的工作流技术研究[D].南京:江苏大学硕士学位论文,2007.
    【35】.姚保华,谢礼立,陶夏新,等.基于WebGIS的防震减灾系统研究及其实现方法[J].地震工程与工程震动,2003,23(1):1-8.
    【36】.史榕,许惠平,陈华根.三维WebGIS在防震减灾中的应用研究[J].地震研究,2008,31(2):193-196.
    【37】.汤爱平,谢礼立,陶夏新.基于GIS的城市地震应急反应系统[J].东北地震研究,2001,17(2):35-40.
    【38】.章熙海,吴洪,安琪伟.基于GIS的江苏省地震应急指挥系统[J].地震学刊,2002,22(3):55-60.
    【39】.帅向华.地震应急信息管理技术研究和指挥首长信息查询系统实现[J].地震,2006,26(3):93-98.
    【40】.杨斌,蒋晓君. WebGIS技术在地震应急指挥信息系统中的应用[J].内陆地震,2008,22(1):48-54.
    【41】.杨斌,何政伟. WebGIS技术在地震灾害防御中的设计探讨[J].中国地质灾害与防治学报,2007,18(4):70-73.
    【42】.屈春燕,叶洪,刘治. WebGIS基本原理及其在地学研究中的应用前景[J].地震地质,2001(3):447-454.
    【43】.单德华,刘哲,韩绍欣,蒋本铁. Web GIS技术在辽宁地震数据管理中的应用[J].东北地震研究,2002(4):44-48.
    【44】.陈琳,廖丽霞,董奕.构筑基于WebGIS的地震信息发布平台[J].福建地震,2005(Z1):31-33+39.
    【45】.刘英利,朱丽,朱庆杰.基于WebGIS的防灾信息网络发布系统[J].自然灾害学报,2008,17(2):122-126.
    【46】.蔡宗文,危福泉,方伟,等.基于WebGIS的区域震害快速评估系统设计与实现[J].地震地质,2006,28(3):463-469.
    【47】.于海英,解全才,周正华,等.基于WebGIS的强震动台网数据发布系统研究[J].世界地震工程,2007,23(3):13-17.
    【48】. Laurence Cret,Fumio Yamazaki,Shigeru Nagata,Tsuneo Katayama. Earthquake damage estimation and decision analysis for emergency shut-off of city gas networks using fuzzy set theory[J]. Structural Safety,1993,12(1):1–19.
    【49】. S. Feyza Cinicioglu, Ilknur Bozbey, Sadik Oztoprak, M. Kubilay Kelesoglu. Anintegrated earthquake damage assessment methodology and its application for two districts in Istanbul, Turkey [J]. Engineering Geology,2007,94(3-4):145-165.
    【50】. Jiu-ping XU, Yi LU. Meta-Synthesis Pattern of Analysis and Assessment ofEarthquake Disaster System[J]. Systems Engineering-Theory&Practice,2009,29(11):1–18.
    【51】. Mahdi Hashemi, Ali Asghar Alesheikh. A GIS-based earthquake damage assessment and settlement methodology[J]. Soil Dynamics and Earthquake Engineering,2011,31(11):1607–1617.
    【52】. Vera Pessina, Fabrizio Meroni. A WebGis tool for seismic hazard scenarios andrisk analysis[J]. Soil Dynamics and Earthquake Engineering,2009,29(9):1274–1281.
    【53】. Muhammad Shafique,Mark van der Meijde,Mark van der Meijde. Regolith modeling and its relation to earthquake induced building damage: A remote sensingapproach[J]. Journal of Asian Earth Sciences,2011,42(1-2):65–75.
    【54】. F. Yamazaki. Applications of remote sensing and GIS for damage assessment[J].Structural Safety and Reliability Corotis et al.(eds),2001.
    【55】.欧阳霞辉. ArcGIS地理信息系统大全[M].北京:科学出版社,2010
    【56】.孙其政.计算机在地震综合观测中应用的新进展[J].地震地磁观测与研究.1983(03).
    【57】.徐永林,周生良,熊里军,火恩杰,张奕麟,王炜.上海数字强震观测网[J].地震地磁观测与研究,2002.23(6):37-43.
    【58】.管烨.数据光盘库及数据格式[J].地球学报,2001.22(6):513-516.
    【59】. FDSN/IRIS/USGS. Standard for the Exchange of Earthquake Data Reference Manual SEED Format Version2.3,1993.http://www.iris.edu/.
    【60】.刘瑞丰,杨辉,邹立晔等.“国家数字地震台网分中心地震波形数据管理和服务”系统[J].国际地震动态,2004(309):33-37.
    【61】. Beibei Cao, Jingyuan Yin. The Seismic Data Sharing Platform of User Classification Model [J] Advances in Information Sciences and Service Sciences,2012,4(13):404-411.
    【62】.沈同,邢造宇.标准化理论与实践(第二版)[M].北京:中国计量出版社,2010.
    【63】.李学京.标准化综论[M].北京:中国标准出版社,2008.
    【64】.洪生伟.标准化工程[M].北京:中国标准出版社,2008.
    【65】.中国标准出版社第一编辑室.标准化工作导则、指南和编写规则标准汇编[M].北京:中国标准出版社,2004.
    【66】.全国地理信息标准化技术委员会,中国GIS协会标准化与质量控制专业委员会.地理信息国家标准手册[M].北京:中国标准出版社,2004.
    【67】.阎正.城市地理信息系统标准化指南[M].北京:科学出版社,1999.
    【68】. Magie Bill.SOA的特征及其应用[M].北京:电子工业出版社,2004.
    【69】.郭春燕.基于SOA的企业应用的研究与实现[D].硕士论文.大连理工大学,大连,2005.
    【70】.张卓.基于SOA的企业信息系统架构设计[D].硕士论文.吉林大学,长春,2008.
    【71】. Martin Fowler.企业应用架构模式[M].北京:机械工业出版社,2004,7.
    【72】.希赛.SOA专题[EB/OL].http://se.csai.cn/zt/SOA/indes.asp.
    【73】.朱美珍.应用SOA构建新一代企业信息管理系统[D].东北财经大学,沈阳,2006,12.
    【74】.赖志诚.软件体系结构的形式化描述[D].广州:广东工业大学硕士学位论文,2005.
    【75】.喻坚,韩燕波.面向服务的计算-原理和应用[M].北京:清华大学出版社.2006.
    【76】. James Bean. SOA and Web Services Interface Design Principles, Techniques, and Standards[M]. Morgan Kaufmann,2009
    【77】.梁爱虎.精通SOA:基于服务总线的Struts+EJB+Web Service整合应用开发[M].北京:电子工业出版社,2007
    【78】.毛雪涛,薛胜军.一种面向需求的网格服务发现框架[J].计算机系统应用,2007,4:65-68.
    【79】. M Endrei.Patterns Service-oriented Architecture and Web Services-2004-IBM Corp.,International Technical Support Organization.
    【80】.张晓.面向服务架构中基于语义图服务组合的研究[D].济南:山东大学硕士学位论文,2007.
    【81】. Wong-Busbby.Egan.Isaacson.A Case Study in SOA and Re-architecture at Company ABC.
    【82】.郑文锋.面向服务的空间数据共享[D].成都.成都理工大学博士学位论文,2007.
    【83】. Eric Newcomer,Greg Lomow.Understanding SOA with Web Services[M].US:Addison-Wesley Professional.2004.12.
    【84】. http://www.w3.org/TR/rdf-primer/[EB/OL].
    【85】.叶鹏.软件体系结构模型的形式化研究[D].武汉:武汉大学硕士学位论文,2005.
    【86】. Medvidovie N.Taylor R N.A Classification and Comparison Framework for Software Architecture.
    【87】. Description Languages [J].IEEE TRANSACTIONS ON SOFTWARE ENGINEERING VOL.26.NO.l.Jan2000.
    【88】. Herzun P. Web services and service-oriented architectures[J]. Cutter DistributedEnterprise Architecture Advisory Service Executive Report,2002,4(10):35-63.
    【89】. Eric Newcomer, Creg Lomow. Understanding SOA with Web Services. AddisonWesley Professional,2004.128-153.
    【90】.温永宁,张宏.基于Web服务的分布式空间数据共享模型[J].计算机工程,2005,31(6):25-27.
    【91】.包世泰,余应刚.地理数据共享与互操作技术[J].测绘工程,2000,9(4):32-36.
    【92】.胡诚,陈方林,刘俊亮.空间数据共享与互操作技术探讨[J].现代测绘,2003,26(6):31-33.
    【93】.于海龙,邬伦,刘瑜,李大军,刘丽萍.基于Web services的GIS与应用模型集成研究[J].测绘学报,2006,35(2):153-165.
    【94】.胡春春,孟令奎.基于Web service的GIS多源数据集成模型研究[J].地理空间信息,2005,3(6):22-25.
    【95】.郑晓东,王志坚,周晓峰等.一种基于Webservice的分布式计算模型研究及其实现[J].计算机工程与应用,2004,(l):144-146.
    【96】.易曙贤.基于web服务的GIS互操作模型研究[D].武汉:武汉大学,2004:1-68.
    【97】.宋亚超,间国年,张宏.基于Web service的Internet GIS集成与应用[J].地球信息科学,2004,6(l):44-45.
    【98】.邹伦,唐大仕,刘瑜.基于Web Service的分布式互操作的GIS[J].地理与地理信息科学,2003,19(4):28-32.
    【99】.任泰明.基于B/S结构的软件开发技术[M].西安:西安电子科技大学出版社,2006.
    【100】.“国家地震科学数据共享中心”,[Online]Available: http://data.earthquake.cn/index.do(2011/11/2)
    【101】.“地震数据管理与服务系统,”[Online]Available: http://www.csndmc.ac.cn/newweb/index.jsp(2011/11/2)
    【102】.“国家地震前兆台网中心,”[Online]Available: http://qzweb.seis.ac.cn/twzx/(2011/11/2)
    【103】. Beibei Cao, Jingyuan Yin. User-oriented services in a regional study of seismicdata sharing platform[C]//Proceeding of the ICECC, NingBo,2011,5:2990-2994.
    【104】. Graham S,Treadwess J.Web Services Resource Properties (WS-Resource Properties)[EB/OL].
    【105】. http://docs.ogsis-open.org/wrf/wsrf-ws_resource_prpperties-1[1].2-spec-pr-02.pdf.
    【106】.吕炜.基于语义的Web服务发现[D].武汉:武汉大学硕士学位论文,2006.
    【107】.陈伟.语义Web服务关键技术的研究[D].兰州:西北工业大学硕士论文,2006.
    【108】.陈书雷.基于工作流的空间信息服务聚合技术研究[D].长沙:国防科技大学博士学位论文,2006.
    【109】.冯名正.Web服务组合研究综述[J].计算机应用与软件,2007,24(2):23-26.
    【110】. OASIS Standard. Web Services Resource Lifetime1.2[EB/OL]. http://www. oasis-open.org/specs/index.php#wsrfv1.2.
    【111】. OASIS Standard. Web Services Resource Properties1.2[EB/OL]. http://www. oasis-open.org/specs/index.php#wsrfv1.2.
    【112】. OASIS Standard. Web Services Base Faults1.2[EB/OL]. http://www. oasis-open.org/specs/index.php#wsrfv1.2.
    【113】. OASIS Standard. Web Services Notification1.2[EB/OL]. http://www. oasis-open.org/specs/index.php#wsrfv1.2.
    【114】. R Kazman, SJ Carrière: Playing detective.Reconstructing software architecture from available evidence-Automated[J]. Software Engineering,1999-Springer.
    【115】. Marcel Frehner, and Martin Br ndli. Virtual database: Spatial analysis in a Web-based data management system for distributed ecological data[J]. EnvironmentalModelling&Software,2006,21(6):1544-1554.
    【116】. Kakumoto S, Hatayama M, Kameda H, et al.1997. Develpoment of disaster management spatial information system[J]. Proc GISp97Conf GISWorld, Inc. Fort Collins, USA.595-598.
    【117】. DaleN Anderson, et al Trends in Nuclear Explosion Monitoring[C]//The26th Seismic Research Review Trends in Nuclear Explosion Monitoring,2004.
    【118】. National nuclear security administration, Nuclear Explosion Monitoring Researchand Engineering Programstrategic plan, DOE/NNSA/NA-22-NEM-RE-2004.
    【119】.刘瑞丰.国家数字地震台网分中心的数据管理与服务[J].国际地震动态,2001,(8):37-42.
    【120】.李永强,龚强,王景来.基于GIS的数字等震线模型[J].地震研究,2006,29(4):401-406.
    【121】.蒋溥,戴丽思.工程地震学概论[M].北京:地震出版社,1993.
    【122】.首培烋,刘曾武,朱镜清.地震波在工程中的应用[M].北京:地震出版社,1982.
    【123】.曹蓓蓓,尹京苑.基于B/S架构的地震动反应谱研究[J].微计算机信息,2011,27(9):131-138.
    【124】. Beibei Cao, Jingyuan Yin. Using Wave Method to Calculate Earthquake Response Spectrum [J] Journal of Convergence Information Technology,2012.
    【125】.李大华.地震动峰值分析与应用[D].哈尔滨:中国地震局工程力学研究所博士论文,1991.
    【126】. Baillard C, Dissard O, JametO, et al.1998. Extraction and textural characterization of above ground areas from aerialstereo pairs: a quality assessment [J].ISPRS Journal of Photogrammetry&Remote and Sensing,53(3):130-141.
    【127】.程承旗,马廷.高分辨率卫星影像上地物线性特征的自动识别[J].遥感学报,2003,7(1):26-30
    【128】.巩丹超,张永生.基于航空影像的建筑物半自动提取技术研究[J].测绘通报,2002,(10):15-18
    【129】.王仁生,贾晓光,周建林.从空间遥感图像的自然背景中提取人造目标的研究[J].中国图象图形学报,1997,2(7):476-483
    【130】.宋继强,苏丰等.基于种子段的方向无关的直线矢量化方法[J].软件学报,2000,11
    【131】.栗全庆.基于误差控制的点阵图形矢量化方法研究[J].中国图象图形学报,2002,7
    【132】.袁捷,胡正仪,王延平.用Hough变换的方法提取图像拐点[J].武汉大学学报(自然科学版),1998,44(1):85-88
    【133】.屈春燕,闫丽莉,温少妍,单新建.首都圈地区卫星热红外亮温变化特征研究[J].地球科学进展,2011,(2):202-211.
    【134】.高翔,赵冬玲,张蔚.利用高分辨率遥感影像获取建筑物高度信息方法的分析[J].测绘通报,2008,9(3):41-43.
    【135】. F Cheng, K H Thiel. Deliniting the building heights in a city from the shadowin panchromatic SPOT-image-part1-test of forty two buildings [J]. Int J Remote Sensing,1995,16(3):409-415.
    【136】. Ph Hartl, F Cheng, Delimiting the building heights in a city from the shadow in panchromatic SPOT-image-part1-test of a complete city[J]. Int J Remote Sensing,1995,16(15):2829-2842.
    【137】. Baillard C, Maitre H.1999.3D reconstruction of urban scenes from aerial stereo imagery: a focus strategy [J]. ComputerVision and Image Understanding,76(3):244-258.
    【138】.何国金,陈刚,何晓云,等.利用SPOT图像阴影提取城市建筑物高度及其分布信息[J].中国图像形学报,2001,6(5):426-428.
    【139】.田新光,张继贤,张永红.利用QuickBird影像的阴影提取建筑物高度[J].测绘科学,2008,32(2):88-89.
    【140】.董玉森,詹云军,杨树文.利用高分辨率遥感图像阴影信息提取建筑物高度[J].咸宁师专学报,2002,22(3):93-96.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700