用户名: 密码: 验证码:
地质雷达成像实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地质雷达是利用高频反射电磁波来探测近地表地质介质电性结构的一种高分辨率地球物理探测方法,具有探测精度高、操作灵活方便等特点,在工程地基础勘查、工程质量检测甚至考古等领域都有广泛的应用。地质雷达探测深度及精度主要由介质电导率、介电常数、天线中心频率等决定、受时空采样率收发天线间距及探测场地干扰等因素影响。如何准确选取合适的系统参数和观测方式、如何处理探测场地干扰因素以及准确估算勘探区域的地电参数等是地质雷达工程实践过程中亟待解决的问题。
     本文从电磁波的传播规律及地质雷达的工作原理入手,分析总结了部分典型地下介质的地质雷达理论分辨率极限;以正演模拟实验为手段,详细分析了影响地质雷达探测深度和分辨率的因素,同时讨论了电性参数、系统参数、收发天线间距等对地质雷达成像精度的影响;从实际资料处理入手,研究发展了不同干扰的消减方法;以实验场高清钻孔录像为标定,研究了地质雷达图像的分辨能力。
     论文的主要成果如下:
     (1)基于数值模拟实验,首次系统分析了电性参数和系统参数对地质雷达成像的影响。
     (2)系统分析了FIR滤波器、小波变换和主成分分析方法消减随机噪声与相干噪声上的效果,认为FIR带通滤波器和小波变换对随机干扰有较好抑制能力,而主成分分析滤波器对相干噪声有更好的消减效果。
     (3)以高清钻孔录像为参照首次实验研究了地质雷达图像对厘米级精细地质结构的分辨能力,证明Mhz级工作频率条件下,能分辨出厘米级的地质结构,实验同时表明,地质雷达的频散严重,对结果解释有很大影响。
Ground Penetrating Radar (GPR) may be used to explore the electrical structuredistribution of near-surface medium by reflection of high-frequency electromagnetic waves.As a high-resolution geophysical method with some characteristics such as high detectionaccuracy, flexible operation, and name a few, GPR has widely been applied to a variety offields, for example, the engineering geological exploration, engineering quality detection,archaeological probing, and so on. The depth and accuracy of GPR exploration is mainlydecided by conductivity, dielectric constant, the antenna center frequency, etc., and ismainly affected by the space-time sampling rate, the distance of transmitting and receivingantenna, the interference from detection site, and so forth. How to accurately select theappropriate system parameters and modes of observation, and how to deal with theinterference factors of exploration site, as well as an accurate estimate electrical parametersof the exploration area are the problems to be solved in GPR engineering practice.
     This paper analyzes and summarizes the theoretical resolution limit of GPR in sometypical subsurface medium based on propagation rules of electromagnetic wave and workprinciples of GPR. Using a tool of forward modeling, we give a detailed analysis of thefactors that affect the depth and resolution of GPR, and discuss the impact of the electricalparameters, system parameters, and the distance of transmitting and receiving antenna onthe accuracy of GPR imaging. At the same time, we research and provide differentdenoising methods for field data. Moreover, we study the discriminative ability of GPRimaging by the calibration with high-definition drilling video.
     The main productions of this paper are described as follows.
     (1) Based on numerical simulations, this paper is the first to analyze systematically the impact of the electrical parameters and system parameters on GPR imaging.
     (2) This paper shows a systematic analysis of the FIR filter, wavelet transform andprincipal component analysis methods to abate the effect of random noise and coherentnoise, and presents a conclusion that the FIR band-pass filter and wavelet transformhave the better ability to suppress random interference, while the principal componentanalysis filter can obtain the preferable results to eliminate coherent noise.
     (3) This paper presents the first experiment to study the discriminative ability of GPRimaging of fine geological structure with centimeter-level by the calibration withhigh-definition drilling video, and verifies that GPR can discriminate the geologicalstructure with centimeter-level in operating frequency with MHz level. Moreover, theexperiment also shows that the dispersion of GPR is serious and has a significantimpact on the interpretation of results.
引文
[1] Alvin K. Benson. Applications of ground penetrating radar in assessing some geological hazards:examples of groundwater contamination, faults, cavities [J]. Journal of Applied Geophysics,1995(33):177-193.
    [2] A. P. Annan, J. L. Davis, and D. Gendzwill. Radar sounding in potash mines, Saskatchewan,Canada [J]. Geophysics,1988,53(12):1556-1564.
    [3] Arcone S A, Delaney A J. Dielectric properties of thawed active layers overlying permafrost usingradarat VHF. Radio science,17:618-626,1982.
    [4] Ben K. Sternberg, James W. McGill. Archaeology studies in southern Arizona using groundpenetrating radar [J]. Journal of Applied Geophysics,1995(33):209-225.
    [5] Berenger J P. A perfectly matched layer for the absorption of electromagnetic waves [J], J.Comput. Phys., Oct.1994,114(2):185-200.
    [6] Berenger J P. Three-dimensional perfectly matched layer for the absorption of electromagneticwaves [J], J. Comput. Phys., Oct.1996,127(2):363-379.
    [7] Berenger J P. Perfectly matched layer for FDTD solution of wave-structure interaction problems[J], IEEE Trans. Antennas Propagat., Jan.1996, AP-44(1):110-117.
    [8] Carcione J M. Ground-penetrating radar: Wave theory and numerical simulation in lossyanisotropic media. Geophysics,61(6):1664-1677,1996.
    [9] Carr A R. A visual basic program for principal component transform of digital images. Computer&geosciences,1998,24(3):209-218.
    [10] Ce Liu and Liang C. Shen. Numerical Simulation of Subsurface Radar for Detecting Buried Pipes[J]. IEEE Trans. Geoscience and Remote Sensing,1991,29(5):795-798.
    [11] Cerveny V and Psencik I. Gaussian beams and paraxial ray approximation in three-dimensionalelastic in homogeneous media [J]. J. Geophys.,1983,53:1-15.
    [12] Cerveny V, and Psencik I. Gaussian beams and paraxial ray approximation in three-dimensionalelastic in homogeneous media. J. Geophys.,1983,53:1-15.
    [13] Cerveny V, Klimes L, and Psencik I. Paraxial ray approximations in the computation of seismicwavefields in inhomogeneous. Geophys. J. R. Astr. Soc.,1984,79:89-104.
    [14] C. J. Vaughan. Ground-penetrating radar surveys used in archaeological investigations [J].Geophysics,1986,51(3):595-604.
    [15] Daniels D J, Gunton D J, Scott H F. Introduction to subsurface radar. IEE proceedings,1988,135(4):278-320.
    [16] Daniels D J, ed., Ground penetrating radar (2nd ed.). Institution of engineering and technology,2004.
    [17] Daniels D J ed.. Ground penetrating radar (2nd ed.). London: The institution of electricalengineers,2004.
    [18] David L. Moffatt and R. J. Puskar. A Subsurface Electromagnetic Pulse Radar [J]. Geophysics,1976,41(3):506-518.
    [19] Donoho D L. Ideal spatial adaptation by wavelet shrinkage [J]. Biometrikia1994a,81(3):425-455.
    [18] Donoho D L, Johnstone I M. Ideal denoising in an orthonormal basis chosen from a library ofbases [J]. Comptes Rendus Acad. Sci., Ser. I,1994b:1317-1322.
    [19] Donoho D L. Denoising by soft-thresholding[J]. IEEE Trans. Information Theory,1995a,41(3):613-627.
    [20] Donoho D L. Adapting to unknown smoothness via wavelet shrinkage [J]. Journal of theAmerican Statistical Association,1995b,90:1200-1224.
    [21] Donoho D L, Johnstone I M.Minimax estimation via wavelet shrinkage [J]. Annals of Statistis,1998,26(3):879-921.
    [22] Duke S R. Calibration of ground penetrating radar and calculations of attenuation and dielectricpermittivity versus depth. M. Sc. Thesis, Boulder: Colorado school of mines,1990.
    [23] Grealy Michael. Resolution of ground-penetrating radar reflections at differing frequencies.Archaeological prospection,13:142-146,2006.
    [24] Hideki Hayakawa, Akira Kawanaka. Radar imaging of underground pipes by automatedestimation of velocity distribution versus depth [J]. Journal of Applied Geophysics,1998(40):37-48.
    [25] Hipp J E. Soil electromagnetic parameters as functions of frequency, soil density and soilmoisture. Proceedings of the IEEE,62(1):98-103,1974.
    [26] Hoekstra P, Delaney A. Dielectric properties of soils at UHF and microwave frequencies. Journalof geophysical research,79:1699-1708,1974.
    [27] Hongting Jia, Takashi Takenaka, and Toshiyuki Tanaka. Time-Domain Inverse Scattering Methodfor [28] Cross-Borehole Radar Imaging [J]. IEEE Trans. Geoscience and Remote Sensing,2002,40(7):P1640-1647.
    [29] Isabel C.Geerdes,Roger A. Young.Spectral decomposition of3D ground-penetrating radar datafrom an alluvial environment[J].The leading edge,2007,26(8):1024-1030.
    [30] Jacques R. Ernst, Klaus Holliger and Hansruedi Maurer. Full-waveform inversion of crossholegeoradar data [C]. Houston2005Annual Meeting, SEG,2573-2577.
    [31] J. Alan Roden and Stephen D. Gedney. Convolution PML(CPML): An Efficient FDTDImplementation of the CFS–PML for Arbitrary Media [J]. Microwave and Optical TechnologyLetters, Dec.2000,27(5):334-339.
    [32] Jol Harry M. Ground penetrating radar antennae frequencies and transmitter powers compared forpenetration depth, resolution and reflection continuity. Geophysical prospecting,43(5):693-709,1995.
    [33] Jol H M, ed., Ground penetrating radar theory and applications. Elsevier science,2009.
    [34] Jolliffe I T. Principal component analysis (2nd). New York: Springer,2002.
    [35] James D. Irving and Rosemary J. Knight. Removal of wavelet dispersion from ground-penetrating radar data [J]. Geophysics,2003,68(3):960–970.
    [36] Jeffrey J. Daniels, Roger Roberts, Mark Vendl. Ground penetrating radar for the detection ofliquid contaminants [J]. Journal of Applied Geophysics,1995(33):195-207.
    [37] John C. Cook. Radar Transparencies of Mine and Tunnel Rocks [J]. Geophysics,1975,40(5):865-885.
    [38] John E. Molyneux and Alan Witten. Diffraction Tomographic Imaging in a MonostaticMeasurement Geometry [J]. IEEE Trans. Geoscience and Remote Sensing,1993,31(2):507-511.
    [39] Jol Harry M. Ground penetrating radar antennae frequencies and transmitter powers compared forpenetration depth, resolution and reflection continuity. Geophysical prospecting,1995,43(5):P693-709.
    [40] Jos′e M. Carcione. Ground-penetrating radar=Wave theory and numerical simulation in lossyanisotropic media [J]. Geophysics,1996,61(6):1664–1677.
    [41] Jos′e M. Carcione and Michael A. Schoenberg.3-D ground-penetrating radar simulation andplane-wave theory in anisotropic media [J]. Geophysics,2000,65(5):1527–1541.
    [42] Jun Cai and George A. McMechan.2-D ray-based tomography for velocity, layer shape, andattenuation from GPR data [J]. Geophysics,2003,64(5):1579-1593.
    [43] J.Y. Fang and Z. H. Wu. Generalized perfectly matched layer-an extension of Berenger's perfectlymatched layer boundary condition [J]. IEEE Trans. Microwave and Guided Wave Letters, Dec1995,5(12):451-453.
    [44] J.Y. Fang and Z. H. Wu. Generalized Perfectly Matched Layers for the Absorption of Propagatingand Evanescent Waves in Lossless and Lossy Media [J]. IEEE Trans. Microwave Theory andTechniques, Dec1996,44(12):2216-2222.
    [45] Kans S. Yee. Numerical solution of initial boundary value problems involving Maxwell'sequations in isotropic media [J]. IEEE Trans. Antennas Propagat., May1966, AP-14(3):302-307.
    [58] Lai W L, Tsang W F, Fang H, et al.. Experimental determination of bulk dielectric properties andporosity of porous asphalt and soils using GPR and a cyclic moisture variation technique.Geophysics,2006.,71: K93-K102,
    [46] Levent Gürel, and Ugur Oguz. Three-Dimensional FDTD Modeling of a Ground-PenetratingRadar [J]. IEEE Trans. Geoscience and Remote Sensing,2000,38(4):1513-1521.
    [47] Mallat S著,杨力华等译.信号处理的小波导引(第二版).北京:机械工业出版社,2002.
    [48] Manning M J, Athavale K A. Dielectric properties of pyrite samples at1-100MHz. Geophysics,51(1):172-182,1986.
    [49] Nelson S O, Lindroth D P, Blake R L. Dielectric properties of selected minerals at1to22GHz.Geophysics,54(10):1344-1349,1989.
    [50] Oja E. Principal components, minor components, and linear neural networks. Neural networks,1992,5:927-935.
    [51] Olhoeft G R, and Capron D E. Laboratory measurements of the radio frequency electrical andmagnetic properties of soils from Yuma. Arizona: U.S.GS. Open-file report,1994,207-233.
    [52] Olhoeft G R. Electrical, magnetic, and geometric properties that determine ground penetratingradar performance. Proceedings of seventh international conference on ground penetrating radar,1998,5:27-30.
    [53] Webb A R. Statistical pattern recognition (2nd). Chichester: John Wiley&Sons Ltd.,2002.
    [54] Olhoeft G R. Electrical properties103fromto109Hz physics and chemistry. In2ndinternational symposium on the physics and chemistry of porous media, Banavar, Koplik andWinkler eds,281-298,1986.
    [55] Rea J, Knight R. Geostatistical analysis of ground-penetrating radar data: A means of describingspatial variation in the subsurface. Water resources research,34(3):329-339,1998.
    [56] Richard W. Larson, P.L. Jackson and Eric S. Kasischke. A Digital Calibration Method forSynthetic Aperture Radar Systems[J]. IEEE Trans. Geoscience and Remote Sensing,1988,26(6):753-763.
    [57] Robert A. Dielectric permittivity of concrete between50MHz and1GHz and GPRmeasurements for building materials evaluation. Journal of applied geophysics,40:89-94,1998.
    [58] Roden, J., Gedney, S. Convolution PML (CPML): an efficient FDTD implementation of theCFS-PML for arbitrary media [J]. IEEE Microwave and Optical Technology Letters,2000,27:334–339.
    [59] Sack Z. S, Kingsland D M, Lee D M and Lee J F. A Perfectly Matched Anisotropic Absorber forUse as an Absorbing Boundary Condition [J]. IEEE Trans. Antennas Propagat., Dec.1995,AP-43(12):1460-1463.
    [60] Scott J H, Carroll R D, Cunningham D R. Dielectric constant and electrical conductivitymeasurements of moist rock: a new laboratory method. Journal of geophysical research,72:5101-5115,1967.
    [61] S. D. Gedney An anisotropic perfectly matched layer-absorbing medium for the truncation ofFDTD Latiices [J]. IEEE Trans. Antennas Propagat., Dec.1996, AP-44(12):1630-1639.
    [62] S.Guha, S.Kruse,P. Wang.Joint time-frequency analysis of GPR data over layeredsequences[J].The Leading Edge2008,27(11):1454-1460.
    [63] Shen L C, Savre W C, Price J M, et al.. Dielectric properties of reservoir rocks at ultra-highfrequencies. Geophysics,50:692-704,1985.
    [64] Smith G S, Scott W R. Measurement of the electrical constitutive parameters of materials usingantennas, Part II. IEEE transactions on antennas and propagation, AP-35(8):962-967,1987.
    [65] Smith-Rose R L, The electrical properties of soil. Proceedings of the royal society,140:359-377,1933.
    [66] Smith-Rose R L. The electrical properties of soil at frequencies up to100MHz; with a note onthe resistivity of ground in the United Kindom. Proceedings of the physical society of London,47:923-935,1935.
    [67] Slob E, Sato M, Olhoeft G. Surface and borehole ground-penetrating-radar development.Geophysics,75(5):75A103-75A120,2010.
    [68] Taflove A and Brodwin M E. Numerical Solution of Steady-State Electromagnetic ScatteringProblems Using the Time-Dependent Maxwell's Equations. IEEE Trans. Microwave TheoryTech.,1975, MTT-23:623-630.
    [69] Taylor C D, Lam D H and Shumpert T H. Electromagnetic pulse scattering in time varyinginhomogeneous media [J]. IEEE Trans. Antennas Propagat., Sept.1969, AP-17(5):585-589.
    [70] Theimer B D, Nobes D C, Warner B G. A study of the geoelectrical properties of peatlands andtheir influence on ground-penetrating radar surveying. Geophysical prospecting,42:179-209,1994.
    [71] Thorkild B. Hansen, and Peter M. Johansen. Inversion Scheme for Ground Penetrating RadarThat Takes into Account the Planar Air–Soil Interface [J]. IEEE Trans. Geoscience and RemoteSensing,2000,38(1):496-506.
    [72] V.Cerveny. Synthetic body wave seismograms for laterally varying structures by the Gaussianbeam method [J]. Geophys. J. R. astr.Soc.1983,73:389-426.
    [73] Wensink W A. Dielectric properties of wet soils in the frequency range1-3000MHz.Geophysicalprospecting,41:671-696,1993.
    [74] Widess M B. How thin is a thin bed?. Geophysics,1973,38(6):1176-1180.
    [75] Yang J, Zhang D, Frangi A F, et al.. Two-dimensional PCA: A new approach t appearance-basedface representation and recognition. IEEE transactions on pattern analysis and machineintelligence,2004,26(1):131-137.
    [76] Yih Jeng, Yi-Wei Li, Chih-Sung Chen, and Hsin-Yi Chien. Adaptive filtering of random noise innear-surface seismic and ground-penetrating radar data. Journal of Applied Geophysics,2009(68):36-46.
    [77]戴前伟,吕绍林,肖彬.地质雷达的应用条件探讨.物探与化探,24(2):157-160,2000.
    [78]戴前伟,冯德山.探地雷达在高速公路桥址溶洞探测中的应用[J].勘察科学技术,2002,118(4): P61-63.
    [79]戴前伟,冯德山.探地雷达在高速公路桥址溶洞探测中的应用[J].勘察科学技术,2002,118(4):61-63.
    [80]戴前伟,冯德山,王启龙等.时域有限差分法在地质雷达二维正演模拟中的应用[J].地球物理学进展,2004,19(4):898-902.
    [81]底青云,王妙月.雷达波有限元仿真模拟[J].地球物理学报,1999,42(6):818-825.
    [82]底青云,伍法权,王光杰等.地球物理综合勘探技术在南水北调西线工程深埋长隧洞勘察中的应用[J].岩土力学工程学报,2005,24(20):3632-3638.
    [83]邓飞.剖面三维地质建模与高斯射线束正演的研究与实现[D].成都理工大学博士学位论文,2007.
    [84]邓世坤.探地雷达图像的正演合成[J].地球科学—中国地质大学学报,1993,18(3):285-293.
    [85]邓世坤.探地雷达野外工作参数选择的基本原则.工程地球物理学报,2(5):323-329,2005.
    [86]冯德山.探地雷达二维时域有限差分正演[D].中南大学硕士论文2003.
    [87]冯德山,戴前伟.用Visual C++开发探地雷达正演模拟软件[J].物探化探计算技术,2004,26(3):231-234.
    [88]冯德山.基于小波多分辨探地雷达正演及偏移处理研究[D],长沙:中南大学,2006.
    [89]高本庆.时域有限差分法[M].北京:国防工业出版社,1995.
    [90]高立兵,王赞,夏明军. GPR技术在考古勘探中的应用研究[J].地球物理学进展,2000,15(1):62-70.
    [91]葛德彪,闫玉波.电磁波时域有限差分法(第二版)[M].西安:西安电子科技大学出版社,2005.
    [92]何兵寿,李艳芳,张会星.理想频散关系在探地雷达剖面正演合成中的应用[J].物探化探计算技术,2000,22(2):113-116.
    [93]何兵寿,王辉,葛宝堂.时域有限差分法在地质雷达正演模拟中的应用[J].中国煤田地质,1998,10(4):81-83.
    [94]何兵寿.地质雷达的模拟计算与应用[D].中国矿业大学硕士学位论文,1999.
    [95]何兵寿,李艳芳,张会星.理想频散关系在地质雷达剖面正演合成中的应用[J].物探化探计算技术,2000a,22(2):113-116.
    [96]何兵寿,张会星.地质雷达正演中的频散压制和吸收边界改进方法[J].地质与勘探,2000b,36(3):59-63.
    [97]胡广书.数字信号处理:理论、算法与实现.北京:清华大学出版社,2003.
    [98]孔令讲,周正欧.浅地层探地雷达方位分辨率衡量方法研究.系统工程与电子技术,2005,27(5):795-798.
    [99]赖观其,郭文敬.挡土墙无损检测方法介绍[J].路基工程,2004(1):12-14.
    [100]李太全.探地雷达天线系统的设计、实现与优化[D].武汉大学博士学位论文,2004.
    [101]李钊.21世纪地雷达战装备[J].中国工程科学,2000,2(12):1-8.
    [102]李大洪.影响地质雷达工作频率选择的若干因素.矿业安全与环保,27(增刊):29-30,2000.
    [103]刘敦文,徐国元,黄仁东等.金属矿采空区探测新技术[J].中国矿业,2000,9(4):34-37.
    [104]刘胜峰.地质雷达应用于公路隧道衬砌无损检测的实验研究[D].长沙理工大学硕士学位论文,2007.
    [105]刘四新,曾昭发,徐波.三维频散介质中地质雷达信号的FDTD数值模拟[J],吉林大学学报(地球科学版),2006,36(1):
    [106]刘英利.地质雷达在工程物探中的应用研究[D],成都理工大学学位硕士论文,2008.
    [107]阮颖铮.地质雷达天线概论[J].成都电信工程学院学报,1980(1):102-114.
    [108]邵卫红.射线追踪法的现状和展望[J].土工基础,2007,21(4):74-76.
    [109]粟毅,黄春琳,雷文太等著.探地雷达理论与应用[M].北京:科学出版社,2006.
    [110]沈飚.探地雷达波波动方程研究及其正演模拟[D].物探化探计算技术,1994(1):29-33.
    [111]王秉中.计算电磁学[M],北京:科学出版社,2002年.
    [112]王长清,祝西里.电磁场计算中的时域有限差分方法[M].北京:北京大学出版社,1994.
    [113]王国群.探地雷达技术在堤坝工程中的应用[J].江苏地质,2000,24(2):101-104.
    [114]王亮.探地雷达数据正反演方法及在工程检测中的应用研究[D],成都理工大学博士学位论文,2010.
    [115]王水强,万明浩,谢雄耀等.不同地质雷达测量参数对数据采集效果的影响.物探与化探,1999,23(3):211-215,.
    [116]王兴舟,关长禄,吕得保等.地质雷达水平分辨率及探测有效深度试验研究.北方交通,(11):18-20,2010.
    [117]吴小平,电磁波的阻抗变换作用对地质雷达探测效果的影响.地球物理学报,21(1):251-255,2006.
    [118]肖明顺,昌彦军,曹中林,等.探地雷达数值模拟的吸收边界条件研究[J].资源环境与工程,2008,6(3):315-320.
    [119]薛桂玉,余志雄.地质雷达技术在堤坝安全监测中的应用[J].大坝与安全,2004,14(1):13-19.
    [120]徐建东,陈超纲.探地雷达收发天线极化方向变化对其电磁波响应的影响.公路工程,32(6):137-140,2007.
    [121]徐升才,刘峰.探地雷达在城市道路厚度检测中的研究与应用[J].华东交通大学学报,2000,17(41):24-28.
    [122]许建文,汪坚,吴江宁,高燕希.小波分析在地质雷达数据去噪中的运用[J].重庆交通学院学报,2007,26(1):108-111.
    [123]杨为民.雷达及超声波在隧道衬砌工程质量检测中的应用[J].2006,7(5):24-25.
    [124]喻振华,冯德山,戴前伟,何继善.复杂地电模型的探地雷达时域有限差分正演[J].物探化探计算技术,2005,27(4):279-283.
    [125]袁明德.浅析探地雷达的分辨率.物探与化探,27(1):28-31,2003.
    [126]詹应林,昌彦军,曹中林等.基于UPML吸收边界的探地雷达数值模拟研究[J].资源环境与工程,2008,4(2):235-238.
    [127]詹毅.地震资料叠前去噪方法研究[D].成都理工大学博士学位论文,2005.
    [128]曾昭发,高尔根.三维介质中探地雷达(GPR)波传播逐段迭代射线追踪方法研究和应用[J].吉林大学学报(地球科学版),2005,35(专辑):119-125.
    [129]曾昭发,刘四新,王者江等.探地雷达方法原理及应用.北京:科学出版社,2006.
    [130]曾昭发,刘四新,王者江等.探地雷达方法原理及应用[M].北京:科学出版社,2009.
    [131]曾校丰,许维进,钱荣毅等.水库坝体结构层的地质雷达高分辨率探测[J].地球物理学进展,2000,15(4):104-109.
    [132]张朝霞.高斯射线束在工程物探中的应用及研究[D].成都理工大学硕士学位论文,2007.
    [133]邹海林,宁书年,杨峰.多小波变换在GPR信号处理中的应用[J].计算机工程与应用,2004,16:213-216.
    [134]邹海林,徐俊艳,隋亚莉等.基于改进阈值的地质雷达图像多小波去噪[J].计算机工程与应用,2005b,14:65-68.
    [135]邹海林,隋亚莉,徐俊艳等.基于多小波变换的GPR图像去噪方法研究[J].系统仿真学报,2005c,17(4):855-858.
    [136]邹海林,宁书年,邹华胜.采用不同预处理方法的GPR图像去噪效果分析[J].地球物理学进展,2005a,20(2):469-475.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700