用户名: 密码: 验证码:
柴西地区第三系沉降与抬升差异与断裂、裂缝的关系及油气成藏特点
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对柴达木盆地西部地区(简称柴西地区)第三系E1+2、E31、E32、N1、N21、N22的地层沉积与沉降特征进行了分析,对N23沉积末期以来的地层剥蚀厚度进行了恢复,在此基础上分析了第三系主力烃源岩E31在E32、N1、N21、N22、N23沉积期及第四纪(Q)的沉降及抬升剥蚀的差异。通过对柴西地区第三系地震反射层构造格局研究、岩心及薄片裂缝发育特征观察及相关的岩石力学实验,分析了主力烃源岩在关键地质时期的沉降与抬升的差异与断裂、裂缝的关系。在以上研究基础上分析了柴西地区第三系油气运移驱动力和输导体系的关系及油气成藏特点。取得的主要认识如下:
     (1)柴西地区第三系沉积、沉降、剥蚀与主力烃源岩系沉降与抬升的差异
     ①柴西地区第三系E1+2、E31、E32、N1、N21、N22沉积期主要以不均衡的沉积沉降为主, N23晚期至第四纪(Q)以来以不均衡的沉积沉降及剥蚀为主。
     E1+2至N22沉积期,各组地层的沉积中心是有差别的,但沉降中心基本一致。E1+2沉积中心位于狮子沟附近,E31沉积中心位于花土沟-茫崖一带,E32沉积中心位于花土沟-南翼山-茫崖一带,N11沉积中心位于花土沟-尖顶山-茫崖一带,N12沉积中心位于咸水泉-尖顶山-茫崖一带,N21沉积中心位于南翼山-鄂博山一带,N22沉积中心位于南翼山-茫崖-一里坪一带。柴西地区第三系E1+2、E31、E32、N1、N21、N22沉降中心基本稳定在一里坪附近。
     N23沉积期以来是柴西地区最主要的剥蚀时期,柴西地区的强剥蚀区(剥蚀厚度大于500m)主要位于甘森、茫崖、英雄岭至干柴沟一带,另外在东柴山、南翼山、尖顶山、黑尾梁、红沟子一带也有分布。中剥蚀区(剥蚀厚度200-500m)主要分布于落雁山、大风山、南翼山以及七个泉西北的地区。其它地区为沉降为主区(剥蚀厚度小于200m)。
     ②柴西地区第三系主力烃源岩E31在E32、N1、N21、N22、N23、第四系(Q)沉积期,沉降幅度(上覆岩层厚度)最大区域主要位于茫崖-一里坪之间,在E32沉积期沉降幅度(上覆岩层厚度)已超过2000m,在N23沉积期沉降幅度(上覆岩层厚度)超过10000m。在第四系(Q)达到12000m。沉降幅度(上覆岩层厚度)向盆地西北方向逐渐减少,在七个泉-花土沟一带为2000m。
     (2)柴西地区第三系沉降、抬升差异与断裂、裂缝的关系。
     ①柴西地区第三系主力烃源岩系现今构造最大埋深区与关键地质时期的沉降幅度较大区域基本一致,按照构造最大埋深区与断裂的组合可把现今构造分成两个区:东北部鼻状斜坡构造区及西南部凹、隆、坡构造区。
     柴西地区第三系主力烃源岩系现今构造最大埋深区与E1+2沉积期以来的最大沉降区基本一致。柴西地区主力烃源岩现今构造最大埋深区域位于一里沟-一里坪一带,此构造格局在E1+2沉积期已具雏形,在E31、E32、N1、N21、N22、N23、第四纪(Q)沉积期连续发育,自E1+2沉积期以来构造最深区域位置相对稳定。
     根据构造最大埋深区与断裂组合的关系,研究区平面构造带划分为两个区域:东北部鼻状斜坡构造区及西南部凹、隆、坡构造区。在东北部鼻状斜坡构造区,北西向断裂总体指向一里沟、一里坪一带的最大构造埋深区,并向东南方向的最大构造埋深区收敛,构成鼻状斜坡与顺鼻断裂的组合。在西南部凹、隆、坡构造区,该凹、隆、坡相间的构造同时被北西向、近南北向与北东向的断裂切割,构成凹、隆、坡与网状断裂的组合。
     ②柴西地区第三系沉降与抬升的差异对其裂缝的形成和演化有重要影响。地层沉降埋藏过程的演化可分成三个阶段:压实阶段、弹塑性压缩阶段和破裂阶段。柴西地区砂泥岩裂缝有平行层面裂缝、低角度斜向缝及垂直层面裂缝,其中平行层面裂缝有缝面滑移的现象。平行层面裂缝多沿岩石层面及不同岩性界面发育。垂直层面裂缝多发育在均质岩石中。垂直层面裂缝一般不穿平行层面裂缝,二者整体构成“工”型裂缝组合。在地层近于水平时,裂缝开始大量发育的深度界限大致为2000m。当地层存在横向收缩时,这一深度界限会变浅。地表剥蚀也可使这一界限变浅。
     (3)柴西地区第三系沉降与抬升的差异及断裂、裂缝的组合对油气运移驱动力与输导体系的耦合有重要影响,进而影响了油气藏的形成与分布。
     ①柴西地区第三系主力烃源岩系沉降幅度最大的区域一般对应于油气运移驱动力最大的区域。自E32沉积期以来,该区域基本位于一里坪-一里沟一带。由此向四周驱动力逐渐变小。不同构造中驱动力略有差异。单斜构造下倾方向驱动力大于上倾方向、背斜构造两翼中的驱动力大于背斜核部(静岩压力不全部作用在流体上,但静岩压力的高低趋势影响了作用在流体上的运移驱动力的相对大小)。
     ②砂、泥岩的孔隙、裂缝及断层具有不同的输导性能。没有裂缝发育时,平行层面方向渗透率大于垂直层面方向渗透率(泥质岩平行层面渗透率与垂直层面渗透率的比值一般在1.18-60.3之间,砂岩平行层面渗透率与垂直层面渗透率的比值一般在1.81-11.01之间);有裂缝发育时,发育裂缝的岩石的渗透率大于不发育裂缝的岩石(发育裂缝的泥质岩的渗透率与无裂缝泥质岩渗透率的比值超过3.9×105,发育裂缝的砂岩渗透率是孔隙型砂岩渗透率的4.15倍)。
     ③单斜构造带中砂泥岩裂缝及孔隙是主要的输导介质,整体上表现为平行层面方向渗透率高于垂直层面方向渗透率。背斜构造带翼部中砂泥岩裂缝及孔隙是主要的输导介质,整体上表现为平行层面方向渗透率高于垂直层面方向渗透率;背斜核部有穿层的垂直裂缝发育,整体表现为垂直层面方向渗透率相对较高。断层由位移和宽度较大的裂缝组成,其输导性能取决于裂缝的发育程度和裂缝的可维持程度。在刚性较强的岩石破裂阶段和岩石弹塑性压缩阶段,断裂活动所形成的裂缝不容易闭合,其输导性能取决于砂、泥岩裂缝的输导性。在岩石塑性较强的压实阶段,断裂活动形成时的裂缝容易闭合,其输导性能取决于砂、泥岩孔隙的输导性。断层两侧地层的输导性取决于地层中的裂缝和孔隙的输导性。
     ④在不同构造带中,油气运移驱动力和输导介质耦合关系不同,其成藏特点也不同。在单斜构造中,从最大力源区开始,烃源岩中的烃类在充满烃源岩层系的孔隙裂缝后主要沿平行层面方向向上倾方向岩性圈闭中运聚成藏。在背斜构造中,从最大力源区开始,烃类沿烃源岩的层面或层面裂缝及砂泥岩的层面、层面缝首先由背斜两翼向背斜核部运移,并在背斜核部的裂缝及孔隙中聚集。随着烃类富集程度的增加,油气可通过背斜核部的垂向裂缝或断裂向浅部地层运移聚集成藏。断层中烃类在浮力驱动下很容易上浮至断层的顶部,并沿断面顶端向上倾部位运移,在相邻的圈闭和储集层中聚集。
     ⑤在柴西地区的勘探中,应重视断层走向顶端高部位的圈闭。对单斜构造中油气勘探应首先对构造上倾方向中的砂体和岩性圈闭进行勘探,然后逐步勘探构造下倾部位。在背斜构造中油气勘探以主力烃源岩层系为底限,由深部向浅部进行勘探,砂岩、泥岩的界面以及泥质岩、泥灰岩、泥晶碳酸盐岩的界面等非常规储层是有利的含油气部位。
Through the analysis of deposition and subsidence features in the Tertiary western Qaidam, E1+2, E31, E32, N1, N21, N22and map compilation, erosion thickness restoration of N23,the difference of deposition and subsidence features of major hydrocarbon source rocks, such as E31, subside and uplift in E32, N1, N21, N22sedimentary period and map compilation, erosion thickness restoration of N23and the Quaternary. Through the analysis of seismic reflector in Tertiary, core and slice observation of fracture, the experiments of rock mechanics, and porosity and permeability of rock, the relationship between the major hydrocarbon source rocks and the faults&cracks, Based on the above research, the characteristics of reservoir forming in the Tertiary western Qaidam is discussed. The main conclusion as follows:
     (1)The deposition,subsidence and erosion in Tertiary western Qaidam and the difference of deposition and subsidence features of major hydrocarbon source rocks
     ①At western of Qaidam Basin, the subsidence and uplift of Tertiary, in E31, E32, N1, N21, N22sedimentary period are unbalanced. In N23and the Quaternary, sedimentary period occur unbalanced subsidence,uplift and erosion.
     From E1+2to N22sedimentary period the depocenter is different but subsidence center is steady. The depocenter of E1+2sedimentary period is near Shizigou. The depocenter of E31sedimentary period is near Huatugou and Mangya. The depocenter of E32sedimentary period is near Huatugou-Nanyishan-Mangya. The depocenter of N1sedimentary period is near Huatugou-Jiandingshan-Mangya. The depocenter of N21sedimentary period is near Nanyishan-Eboshan. The depocenter of N22sedimentary period is near Nanyishan-Mangya-Yiliping. The subsidence center of Tertiary western Qaidam is steadily located near Yilipng area.
     N23and the Quaternary. sedimentary period is the main erosion period. The consuming eroded area(erosion thickness more than500m) is Gansen, Mangya, Yingxiongling-Ganchaigou, Dongchaishan, Nanyishan, Jiandingshan, Heiweiliang, Honggouzi. The medium eroded area (erosion thickness between200m and500m) is Luoyanshan, Dafengshan, Nanyishan and northwest of Qigequan area. The other area is subsidence area(erosion thickness less than200m).
     ②In Tertiary western Qaidam,the largest degree of subsidence of the major hydrocarbon source rocks, the depocenter of E31, in E32, N1, N21, N22, N23and the Quaternary sedimentary period is near Manya-Yiliping area. In E32sedimentary period the thickness of stratum is more than2000m, in N22sedimentary period the thickness of stratum is more than10000m, in Quaternary sedimentary period the thickness of stratum is more than12000m. The thickness decreases from Yiligou and Yiliping to Qigequan-Huatugou area, with thickness of2000m.
     (2)The differences of subsidence, uplift and the relationship with faults and cracks in Tertiary western Qaidam.
     ①Differences of subsidence and uplift is closely related to tectonic framework and faults in Tertiary western Qaidam. At western of Qaidam Basin, the deepest area of regional structure is Yiligou-Yiliping.This formation is formed since E1+2sedimentary period and developed in Tertiary. Based on the relationship between the regional structure and faults, Study area is divided into two areas. One area is at nose construction in the northeast, with faults spreading in northwest, pointing the maximum thickness area of overlying strata. The other area is at southwest slope area, with network faults.
     ②Differences of subsidence and uplift have a major impact on formation and evolution of cracks in Tertiary western Qaidam.
     The burial process of stratum could divided into three phase:compaction phase, elastic-plastic compression phase, fracturing phase. At western of Qaidam Basin, there is parallel crack, vertical crack and oblique crack in rocks, there are slip plane in the parallel crack. Parallel crack usually develop along level and lithology boundaries. Vertical crack usually develop in homogeneous rock. Vertical crack don't cross the parallel crack. The main kind of fracture is "gong" assemblage type. When the strata is horizontal, the boundary of a large number of development of cracks is2000m. When there is transverse shrinkage in the strata, the boundary is less than2000m. Denudation could also lead the same result.
     (3)Differences of subsidence,uplift and the combination of faults and cracks have a major impact on coupling relationship of driving force and passage system, and the formation and distribution of oil and gas reservoirs, in Tertiary western Qaidam.
     ①The greatest source region of Tertiary at western Qaidam is areas of deepest burial. The area is near Yiligou-Yiliping since E32sedimentary period.. The greatest driving force distribute in down-dip direction of the monoclinic structure and flank of anticline structures.
     ②Pores of the sandstone and mudstone, cracks and faults have different properties of transporting When there is no fracture, parallel permeability is greater than the vertical (Parallel permeability is1.18-60.3times of vertical permeability in mudstone, parallel permeability of sandstone is1.81-11.01times of vertical permeability). When there is fracture, Fractured permeability is greater than the others(Fractured mudstone permeability is393942times of no crack mudstone. Fractured sandstone permeability is4.15times of no crack sandstone.).
     ③Pores of the sandstone and mudstone, cracks are main transporting medium in the monoclinic structure. The main transporting direction of monoclinic structure along the direction of bedding plane to up dip direction. The main transporting direction of anticline along the direction of bedding plane in the anticline wing and along the crack to the shallow formation in the axes. Faults formed by the cracks, the transporting properties depends on the development and stability of cracks. In elastic-plastic compression phase and fracturing phase, cracks formed by fault movement is not easy to close. The transporting properties depends on the cracks of the sandstone and mudstone, in the compaction phase, cracks formed by fault movement is easy to close. The transporting properties depends on the pores of the sandstone and mudstone. In the strata on both sides of fault, the main transporting properties depends on the pores of the sandstone and mudstone.
     ④In different structural belt,different coupling relationship of driving force and passage system, related to the different formation and distribution of oil and gas reservoirs. In the monoclinic structure, the hydrocarbon mainly move along the parallel direction to the traps and accumulated after filled the pores and cracking of source rock. In the anticline structure, the hydrocarbon mainly move along the parallel direction in the wing and the crack in the axes. Hydrocarbon first filled the deep strata, then the shallow formation in the axes. In fault structure, the buoyancy-driven hydrocarbon easily float up to the top of the fault, and move along the top of the fault, gathered in the adjacent traps and reservoir.
     ⑤In the exploration in the western Qaidam, attention should be paid to the top of the high parts of the fault traps. The sand body and lithologic traps in updip direction of monoclinal structure should be exploration at first, then the downdip direction. In the anticline, oil and gas exploration should start from the main source rocks for the bottom line, from deep to shallow. Boundary of sandstone and mudstone, boundary of argillaceous rock,marl, carbonate rock is unconventional reservoir, which beneficial to oil and gas accumulation.
引文
[1]Capuano RM. Evidence of fluid flow in microfractures in geopressured shales[J]. AAPG Bulletin. 1993,77(8):1303-1314.
    [2]Chapman RE. Primary Migration of Petroleum from Clay Source Rocks[J]. AAPG Bulletin.1972, 56(11 Part 1):2185-2191.
    [3]Cordell RJ. How oil migrates in clastic sediments; Part 1[J]. World Oil.1976,183(6):107-126.
    [4]Cordell RJ. How oil migrates in clastic sediments; Part 2[J]. World Oil.1976,183(7):75-80.
    [5]Cordell RJ. How oil migrates in clastic sediments; Part 3[J]. World Oil.1977,184(1):97-100.
    [6]Cordell RJ. How oil migrates in clastic sediments; Part 4[J]. World Oil.1977,184(2):36-38.
    [7]Dembicki H, Anderson MJ. Secondary migration of oil; experiments supporting efficient movement of separate, buoyant oil phase along limited conduits[J]. AAPG Bulletin.1989,73(8):1018-1021.
    [8]Dow WG. Kerogen studies and geological interpretations[J]. Journal of Geochemical Exploration. 1977,7:79-99.
    [9]Fang X, Zhang W, Meng Q et al. High-resolution magnetostratigraphy of the Neogene Huaitoutala section in the eastern Qaidam Basin on the NE Tibetan Plateau, Qinghai Province, China and its implication on tectonic uplift of the NE Tibetan Plateau[J]. Earth and Planetary Science Letters.2007, 258(1-2):293-306.
    [10]Fulljames J, Zijerveld L, Franssen R. Fault seal processes:systematic analysis of fault seals over geological and production time scales[J]. Norwegian Petroleum Society Special Publications.1997,7: 51-59.
    [11]Graham Wall BR, Girbacea R, Mesonjesi A et al. Evolution of fracture and fault-controlled fluid pathways in carbonates of the Albanides fold-thrust belt[J]. AAPG Bulletin.2006,90(8):1227-1249.
    [12]Hooper E. Fluid migration along growth faults in compacting sediments[J]. Journal ol Petroleum Geology.1991,14(2):161-180.
    [13]Hubbert MK. History of petroleum geology and its bearing upon present and future exploration[J]. AAPG Bulletin.1966,50(12):2504-2518.
    [14]Hunt T. Notes on the history of petroleum or rock oil[J]. Annual report of the board of regents of the Smithsonian Institution, showing the operations, expenditures, and condition of the institution for the year.1861:319-329.
    [15]King Hubbert M,W W Rubey. Role of fluid pressure in mechanics of overthrust faulting:i. mechanics of fluid-filled porous solids and its application to overthrust faulting [J]. Geological Society of America Bulletin,1959.70(2):115-166
    [16]Knipe R. Faulting processes and fault seal[J]. Structural and Tectonic Modelling and its Application to Petroleum Geology. Norwegian Petroleum Society Special Publication.1992,1:325"C342.
    [17]Knipe R. Juxtaposition and seal diagrams to help analyze fault seals in hydrocarbon reservoirs[J]. AAPG Bulletin.1997,81:187-195.
    [18]Leythaeuser D, Schaefer RG, Yukler A. Role of diffusion in primary migration of hydrocarbons[J]. AAPG Bulletin.1982,66(4):408-429.
    [19]Logan S. Geological Survey of Canada, Report of Progress for the Year 1844. In:Montreal; 1846.
    [20]Losh S, Eglinton L, Schoell M et al. Vertical and lateral fluid flow related to a large growth fault, South Eugene Island Block 330 Field, offshore Louisiana[J]. AAPG Bulletin.1999,83(2):244-276.
    [21]Magoon L, Dow W. The petroleum system from source to trap[J]. AAPG Memoir.1994,60:3-24.
    [22]Magara K. Thickness of removed sedimentary rocks, paleopore pressure, and paleotemperature, southwestern part of Western Canada Basin[J]. AAPG Bulletin.1976,60(4):554.
    [23]Matth i SK, Roberts SG. The influence of fault permeability on single-phase fluid flow near fault-sand intersections:Results from steady-state high-resolution models of pressure-driven fluid flow[J]. AAPG Bulletin-American Association of Petroleum Geologists.1996,80(11):1763.
    [24]Nansheng Q, Yongshang K, Zhijun J. Temperature and pressure field in the Tertiary succession of the western Qaidam basin, northeast Qinghai-Tibet Plateau, China[J]. Marine and Petroleum Geology. 2003,20(5):493-507.
    [25]Nansheng Q. Geothermal regime in the Qaidam basin, northeast Qinghai-Tibet Plateau[J]. Geological Magazine.2003,140(6):707-719.
    [26]Nansheng Q. Tectono-thermal evolution of the Qaidam Basin, China:evidence from Ro and apatite fission track data[J]. Petroleum Geoscience.2002,8(3):279-285.
    [27]Schowalter TT. Mechanics of secondary hydrocarbon migration and entrapment[J]. AAPG Bulletin. 1979,63(5):723-760.
    [28]Secor DT. Role of fluid pressure in jointing[J]. Am J Sci.1965,263(8):633-646.
    [29]Van Hinte J. Geohistory analysis-application of micropaleontology in exploration geology[J]. AAPG Bulletin.1978,62(2):201.
    [30]Wang E, Xu F-Y, Zhou J-X et al. Eastward migration of the Qaidam basin and its implications for Cenozoic evolution of the Altyn Tagh fault and associated river systems[J]. Geological Society of America Bulletin.2006,118(3-4):349-365.
    [31]White I. The geology of natural gas[J]. Science.1885, (125):521.
    [32]Wilson T, Paulsen T. Brittle Deformation Patterns of CRP-2/2A, Victoria Land Basin, Antarctica[J]. Terra Antartica.2000,7:287-298.
    [33]Wilson T, Paulsen T. Fault and fracture patterns in CRP-3 core, Victoria Land Basin, Antarctica[J]. This volume.2001.
    [34]Xia W, Zhang N, Yuan X et al. Cenozoic Qaidam Basin, China:A Stronger Tectonic Inversed, Extensional Rifted Basin[J]. AAPG Bulletin.2001,85(4):715-736.
    [35]Xiaozhi C, Hao X, Dazhen T et al. Characteristics of Abnormal Pressure Systems and Their Responses of Fluid in Huatugou Oil Field,Qaidam Basin[J]. Acta Geologica Sinica(English Edition). 2009, (05).
    [36]Yielding G, Freeman B, Needham DT. Quantitative fault seal prediction[J]. AAPG Bulletin.1997, 81(6):897-917.
    [37]Yin A, Dang Y-Q, Wang L-C et al. Cenozoic tectonic evolution of Qaidam basin and its surrounding regions (Part 1):The southern Qilian Shan-Nan Shan thrust belt and northern Qaidam basin
    [38]Yin A, Dang Y-Q, Zhang M et al. Cenozoic tectonic evolution of the Qaidam basin and its surrounding regions (Part 3):Structural geology, sedimentation, and regional tectonic reconstruction[J]. Geological Society of America Bulletin.2008,120(7-8):847-876.
    [39]Yin A, Dang Y, Zhang M et al. Cenozoic tectonic evolution of Qaidam Basin and its surrounding regions; (Part 2), Wedge tectonics in southern Qaidam Basin and the eastern Kunlun Range[J]. Geological Society of America Bulletin.2008,120(7-8):813-846.
    [40]Yue Y, Liou JG. Two-stage evolution model for the Altyn Tagh fault, China[J]. Geology.1999,27(3): 227-230.
    [41]L B马贡著,张刚等译.含油气系统:从烃源岩到圈闭[M].北京:石油工业出版社;1998.
    [42]蔡李梅.东营凹陷牛庄洼陷沙三中亚段砂岩透镜体油藏成藏动力学过程分析[D]:中国地质大学(武汉):2009.
    [43]曹国强,陈世悦,徐凤银,等.柴达木盆地西部中-新生代沉积构造演化[J].中国地质.2005,(01):33-40.
    [44]曹海防,闫林,夏斌,等.柴西南古近系和新近系异常压力与油气成藏[J].新疆石油地质.2007,(03):282-285.
    [45]曹伟.川西侏罗系致密砂岩气藏裂缝特征[J].石油实验地质.1999,(01):14-19.
    [46]陈冬霞,庞雄奇,姜振学.透镜体油气成藏机理研究现状与发展趋势[J].地球科学进展.2002,(06):871-876.
    [47]陈恭洋.地层压实恢复的定量计算[J].江汉石油学院学报.1996,(01):1-6.
    [48]陈荷立,汤锡元.试论泥岩压实作用与油气初次运移[J].石油与天然气地质.1981,(02):114-122.
    [49]陈少军,罗群,王铁成,等.柴达木盆地断裂特征及其对油气分布的控制作用[J].新疆石油地质.2004,(01):22-25.
    [50]陈淑兰,罗群.柴达木盆地北缘西段断裂发育特征与油气聚集[J].天然气工业.2004,(03):22-26.
    [51]陈艳鹏,刘震,李鹤永,等.柴西南区古近系岩性圈闭形成期次分析[J].西安石油大学学报(自然科学版).2007,(01):17-20.
    [52]陈迎宾,袁剑英,陈启林,等.柴达木盆地西部南区断裂发育特征及对成藏的控制作用[J].天然气地球科学.2006,(05):645-648.
    [53]陈治华.含油气盆地埋藏史与油气成藏关系[D]:西北大学;2003.
    [54]戴俊生.柴达木盆地构造样式控油作用分析[J].石油实验地质.2000,(02):121-124.
    [55]董刚.柴达木盆地第三系高精度层序地层及层序演化模式研究[D]:中国海洋大学;2009.
    [56]董文举,张道伟,邵毅,等.柴达木盆地红柳泉地区下干柴沟组E31Ⅰ和E31Ⅱ砂层组沉积微相及沉积演化研究[J].天然气地球科学.2008,95(01):111-115.
    [57]窦齐丰,彭仕宓,黄述旺,等.柴达木盆地红柳泉油田储层沉积相研究——针对下干柴沟组下 段油藏上砂组层段[J].西安石油学院学报(自然科学版).2003,(01):4-7.
    [58]杜春国,邹华耀,邵振军,等.砂岩透镜体油气藏成因机理与模式[J].吉林大学学报(地球科学版).2006,(03):370-376.
    [59]杜业波.柴达木盆地上第三系岩相古地理研究及砂体预测[D]:石油大学(北京);2002.
    [60]段毅,孙涛,吴保祥,等.柴达木盆地西部尕斯库勒油田油气成藏动力学特征[J].天然气地球科学.2009,(03):309-315.
    [61]方向,江波,张永庶.柴达木盆地西部地区断裂构造与油气聚集[J].石油与天然气地质.2006,(01):56-61.
    [62]付广,薛永超,付晓飞.油气运移输导系统及其对成藏的控制[J].新疆石油地质.2001,(01):24-26.
    [63]付广,孟庆芬.断层静止期同一断裂带封油封气的差异性研究[J].断块油气田.2004,(06):7-9.
    [64]高长海,查明.柴达木盆地北缘断裂构造与油气聚集[J].石油天然气学报.2007,(01):11-15.
    [65]龚再升,杨甲明.油气成藏动力学及油气运移模型[J].中国海上油气.地质.1999,(04)235-239.
    [66]顾树松,徐旺,薛超.中国石油地质志卷十四(青藏油气区)[M]:北京:石油工业出版社;1990.
    [67]关德范,王国力,张金功,等.成烃成藏理论新思维[J].石油实验地质.2005,(05):5-12.
    [68]官大勇,胡望水,张文军,等.柴西地区逆断裂类型及其与油气运聚的关系[J].新疆石油地质.2004,(06):621-623.
    [69]郭泽清,刘卫红,李本竞,等.柴达木盆地西部埋藏史分析与油气关系类型[J].地球学报.2005,(05):81-87.
    [70]华保钦.构造应力场、地震泵和油气运移[J].沉积学报.1995,(02):77-85.
    [71]黄慧君.苗栗汶水地区第三纪沈积岩层面之黑色发亮物质研究[D]:国立中央大学;2003.
    [72]黄杏珍,邵宏舜,顾树松.柴达木盆地的油气形成与寻找油气田方向[M].兰州:甘肃科学技术出版社;1993.
    [73]黄润秋,张倬元,王士天.黄河拉西瓦水电站高边坡稳定性的系统工程地质研究[M].成都:成都科技大学出版社;1991.
    [74]姜振学,庞雄奇,金之钧,等.地层抬升过程中的砂体回弹作用及其油气成藏效应[J].地球科学.2004,(04):420-426.
    [75]金之钧,李京昌,汤良杰,等.柴达木盆地新生代波动过程及与油气关系[J].地质学报.2006,(03):359-365.
    [76]康永尚,邱楠生,吴文旷,等.柴达木盆地西部油气成藏流体动力系统分析[J].石油学报.2000,(05):12-15.
    [77]康永尚,郭黔杰,朱九成,等.裂缝介质中石油运移模拟实验研究[J].石油学报.2003,(04):44-47.
    [78]孔屏.宇宙成因核素在地球科学中的应用[J].地学前缘.2002,(03):41-48.
    [79]李传亮,张景廉,杜志敏.油气初次运移理论新探[J].地学前缘.2007,(04):132-142.
    [80]李海兵,杨经绥,许志琴,等.阿尔金断裂带对青藏高原北部生长、隆升的制约[J].地学前缘.2006,(04).
    [81]李鹤永,刘震,陈艳鹏,等.柴达木盆地西部地区隐蔽油气藏形成与分布[J].西安石油大学学报(自然科学版).2007,(05):21-24.
    [82]李鹤永,刘震,党玉琪,等.柴达木盆地西部地区地温—地压系统演化及其与油气成藏的关系[J].地质科学.2006,(04):564-577.
    [83]李鹤永,刘震,党玉琪,等.柴西地区地温-地压系统特征及其与油气分布的关系[J].石油与天然气地质.2006,(01):37-43.
    [84]李鹤永,刘震,张延华,等.柴达木盆地西部南区同沉积逆断层控制下的输导系统特征及其勘探意义[J].西安石油大学学报(自然科学版).2009,(02):1-4.
    [85]李明诚.有关油气初次运移问题的探讨[J].石油实验地质.1984,(01):41-47.
    [86]李明诚,李伟.利用平衡浓度研究天然气的扩散——扩散量模拟的一种新方法[J].天然气工业.1996,(01):1-5.
    [87]李明诚.石油与天然气运移研究综述[J].石油勘探与开发.2000,(04):3-10.
    [88]李明诚,单秀琴,马成华,等.砂岩透镜体成藏的动力学机制[J].石油与天然气地质.2007,(02):209-215.
    [89]李明诚.石油与天然气运移(第三版)[M].北京:石油工业出版社;2004.
    [90]李丕龙,庞雄奇,陈冬霞,等.济阳坳陷砂岩透镜体油藏成因机理与模式[J].中国科学(D辑:地球科学).2004,(S1):143-151.
    [91]李绍虎,吴冲龙,吴景富,等.一种新的压实校正法[J].石油实验地质.2000,(02):110-114.
    [92]李仕远,王亚东,张跃中,等.柴达木西部地区新生代主控断裂演化过程及其意义[J].地质科学.2010,45(3):666-680.
    [93]李元奎,铁占元,王波,等.柴达木盆地狮子沟构造N1-E1+2裂缝性储层评价及油气富集控制因素[J].青海石油.2010,(02):1-6.
    [94]李元奎,王铁成.柴达木盆地狮子沟地区中深层裂缝性油藏[J].石油勘探与开发.2001,(06):12-15.
    [95]李元奎.南翼山裂缝性油气藏特征及分布规律探讨[J].天然气工业.2000,(03):22-25.
    [96]李元奎.狮子沟构造中深层裂缝性油气藏储层特征及油气富集规律[C]:第一届全国特种油气藏技术研讨会论文集;2004.
    [97]林景晔,门广田,黄薇.砂岩透镜体岩性油气藏成藏机理与成藏模式探讨[J].大庆石油地质与开发.2004,(02):5-7.
    [98]刘庆,张林晔,沈忠民,等.东营凹陷富有机质烃源岩顺层微裂隙的发育与油气运移[J].地质论评.2004,(06):593-597.
    [99]刘艳红.新生代阿尔金断裂带对柴西构造的控制和山体隆升对柴西沉积的影响[D]:吉林大学; 2005.
    [100]柳祖汉,吴根耀,杨孟达,等.柴达木盆地西部新生代沉积特征及其对阿尔金断裂走滑活动的响应[J].地质科学.2006,(02):344-354.
    [101]楼谦谦.柴达木新生代盆地原型恢复的探讨[D]:浙江大学;2010.
    [102]路琳琳,纪友亮,刘云田,等.柴达木盆地红柳泉—跃东地区新近系下油砂山组沉积体系展布特征及控制因素[J].古地理学报.2008,(02):139-149.
    [103]吕延防.天然气的加速式二次运移过程研究[J].现代地质.2008,(04):576-579.
    [104]罗晓容.油气运聚动力学研究进展及存在问题[J].天然气地球科学.2003,(05):337-346.
    [105]梅廉夫,徐思煌,李春梅,等.江汉盆地王场地区泥岩储层裂缝演化及其模拟[J].地球科学.1995,(03):256-263.
    [106]闵琪,付金华,席胜利,等.鄂尔多斯盆地上古生界天然气运移聚集特征[J].石油勘探与开发.2000,(04):26-29
    [107]牟中海.计算地层古厚度的一种方法[J].石油实验地质.1993,(04):414-422.
    [108]牟中海,唐勇,崔炳富,等.塔西南地区地层剥蚀厚度恢复研究[J].石油学报.2002,(01):40-44.
    [109]罗群,黄捍东,李玉喜.柴达木盆地北缘浅层滑脱断裂下盘油气富集规律及控藏模式[J].中国石油大学学报(自然科学版).2009,(03):34-38.
    [110]罗群,庞雄奇.柴达木盆地断裂特征与油气区带成藏规律[J].西南石油学院学报.2003,(01):1-5.
    [111]罗群,杨竞,魏分粮.柴北缘地区断裂控藏综合模式[J].油气地质与采收率.2009,(02):1-3.
    [112]庞雄奇,陈冬霞,李丕龙,等.隐蔽油气藏资源潜力预测方法探讨与初步应用[J].石油与天然气地质.2004,(04):370-376.
    [113]邱楠生,康永尚,樊洪海,等.柴达木盆地西部地区第三系温度压力和油气分布相互关系探讨[J].地球物理学报.1999,(06).
    [114]沈显杰,汪缉安,张菊明,等.沉积埋藏史控制油气成熟史的机理——以青海柴达木盆地为例[J].中国科学(B辑化学生命科学地学).1995,(04):441-448.
    [115]沈云清,丁中一.柴达木盆地沉降演化机制的研究[J].北京大学学报(自然科学版).1994,(02).
    [116]石广仁.油气盆地模拟方法[M].北京:石油工业出版社;1994.
    [117]孙德君,罗群.柴达木盆地断裂系统特征与油气勘探战略方向[J].石油实验地质.2003,(05):426-431.
    [118]孙国强,郑建京,胡慧芳,等.关于压陷型沉降拗陷盆地的讨论——以柴达木盆地为例[J].天然气地球科学.2004,(04):395-400.
    [119]孙秀建,刘应如,乐幸福,等.柴达木盆地红柳泉地区岩性油藏主控因素分析[J].天然气地球科学.2010,(05):801-808.
    [120]孙兆元.从压(扭)性垂向交叉断裂对柴达木盆地七一沟深层含油气预测[J].石油勘探与开发. 1991,(04):18-26.
    [121]汤良杰,金之钧,戴俊生,等.柴达木盆地及相邻造山带区域断裂系统[J].地球科学.2002,(06):676-682.
    [122]汤玉平,刘运黎.烃类垂向微运移的地球化学效应及其机理讨论[J].石油实验地质.2002,(05):431-436.
    [123]田丰华,姜振学,夏淑华.砂体回弹在大庆油田形成过程中的贡献[J].中国石油大学学报(自然科学版).2008,(02):16-20.
    [124]田丰华,姜振学,张晓波,等.地层抬升剥蚀对油气成藏贡献初探[J].地质学报.2007,(02):277-283.
    [125]田丰华,姜振学.剥蚀减压过程中的砂体回弹作用及其成藏效应研究综述[J].地质科技情报.2008,(01):64-68.
    [126]田丰华,姜振学.地层抬升剥蚀对油气成藏的促进作用[J].西南石油大学学报(自然科学版).2008,(05):37-40+13.
    [127]童亨茂,曹戴勇.柴达木盆地西部裂缝的成因机制和分布模式[J].石油与天然气地质.2004,(06):639-643.
    [128]万晓龙,邱楠生,张善文,等.东营凹陷砂岩透镜体油气藏成藏特征探讨——以营11岩性油藏为例[J].中国海上油气.2004,(02):18-21.
    [129]汪劲草,胡勇,刘云田.多世代旋转正断层对断陷盆地沉积迁移的控制——柴达木早、中侏罗世盆地性质[J].地质学报.2006,(08):1141-1148.
    [130]王风华,罗群,李玉喜,等.柴达木盆地断裂上下盘油气差异聚集效应与成因[J].油气地质与采收率.2007,(02):19-22.
    [131]王建伟,宋书君,王新征,等.东营凹陷牛庄洼陷砂岩透镜体的成藏机理[J].石油学报.2007,(05):39-44.
    [132]王小凤,武红岭,马寅生,等.构造应力场、流体势场对柴达木盆地西部油气运聚的控制作用[J].地质通报.2006,(Z2):1036-1044.
    [133]王亚东.柴达木盆地西部地区断裂类型及油气勘探意义[J].地质科学.2009,44(3):9.
    [134]吴光大,葛肖虹,刘永江,等.柴达木盆地地球物理场及其深部地质特征[J].新疆石油地质.2005,(01):13-16.
    [135]吴光大,魏嘉.柴达木盆地红柳泉地区地震资料岩性处理及储层横向预测[J].石油物探.1992,(3):36-46.
    [136]吴花果,戴俊生,杨国权,等.柴达木盆地背斜构造类型及含油气性[J].石油大学学报(自然科学版).2001,(01):1-3.
    [137]夏新宇,宋岩.沉降及抬升过程中温度对流体压力的影响[J].石油勘探与开发.2001,(03):8-11.
    [138]夏新宇,曾凡刚,宋岩.构造抬升是异常高压的成因吗?[J].石油实验地质.2002,(06):496-500.
    [139]徐凤银,施俊,张少云,等.柴达木盆地柴中断裂带演化及其对成盆作用的控制[J].石油学报.2009,(06).
    [140]徐林生.通渝深埋隧道岩芯饼裂特征与地应力研究[C]:2009年全国公路隧道学术会议论文集;2009.
    [141]阎福礼,贾东,卢华复,等.东营凹陷油气运移的地震泵作用[J].石油与天然气地质.1999,(04):295-298.
    [142]尹安,党玉琪,陈宣华,等.柴达木盆地新生代演化及其构造重建-基于地震剖面的解释[J].地质力学学报.2007,(03):193-211.
    [143]余一欣,汤良杰,马达德,等.柴达木盆地断裂特征研究[J].西安石油大学学报(自然科学版).2005,(03):11-14
    [144]袁炳存,钱奕中.计算沉积层古厚度的逐层恢复法[J].石油实验地质.1986,(03):253-262.
    [145]曾溅辉,金之钧,王伟华.油气二次运移和聚集实验模拟研究现状与发展[J].石油大学学报(自然科学版).1997,(05):94-97.
    [146]曾溅辉,张善文,邱楠生,等.济阳坳陷砂岩透镜体油气藏充满度大小及其主控因素[J].地球科学.2002,(06):729-732.
    [147]曾联波,高春宇,漆家福,等.鄂尔多斯盆地陇东地区特低渗透砂岩储层裂缝分布规律及其渗流作用[J].中国科学(D辑:地球科学).2008,(S1):41-47.
    [148]曾联波,康永尚,肖淑容.吐哈盆地北部凹陷低渗透砂岩储层裂缝发育特征及成因[J].西安石油大学学报(自然科学版).2008,No.108(01):22-25.
    [149]曾联波,李忠兴,史成恩,等.鄂尔多斯盆地上三叠统延长组特低渗透砂岩储层裂缝特征及成因[J].地质学报.2007,(02):174-180.
    [150]曾联波,漆家福,王成刚,等.构造应力对裂缝形成与流体流动的影响[J].地学前缘.2008,No.69(03):292-298.
    [151]曾联波,漆家福,王永秀.低渗透储层构造裂缝的成因类型及其形成地质条件[J].石油学报.2007,(04):52-56.
    [152]曾联波,王正国,肖淑容,等.中国西部盆地挤压逆冲构造带低角度裂缝的成因及意义[J].石油学报.2009,v.30(01):56-60.
    [153]曾联波,赵继勇,朱圣举,等.岩层非均质性对裂缝发育的影响研究[J].自然科学进展.2008,(02):216-220.
    [154]翟光明,徐凤银.重新认识柴达木盆地力争油气勘探获得新突破[J].石油学报.1997,(02):4-10.
    [155]张俊,庞雄奇,陈冬霞,等.牛庄洼陷砂岩透镜体成藏特征及主控因素剖析[J].石油与天然气地质.2003,(03):233-237.
    [156]张金功.异常超压带内油气初次运移的方式,《石油科技进展》[M].北京:石油大学出版社,1995.
    [157]张金功.控制超压泥质岩裂隙开启的主要因素[J].地质论评,第42卷,增刊,1996.
    [158]张金功.深盆气成藏机制及潜力评价方法.西北大学地质系,1999(内部资料)
    [159]张金功等.油气藏上方地温异常原理与地表非常规油气勘探,《石油勘探新进展国际研讨会论文集》[M].北京:地质出版社1995.
    [160]张金功等.异常超压带内开启泥质岩裂隙的分布与油气初次运移[J].石油与天然气地质,1996,17(1):27-31.
    [161]张金功等.油气藏上方烃类异常与地温的关系[J].地质论评,第42卷,增刊,1996.
    [162]张金功等.泥质岩类油气藏勘探.西北大学地质系,1996(内部资料)
    [163]张金功等.油气初次运移模拟技术研究.西北大学地质系,1996(内部资料)
    [164]张金功等.岩石弹性岩石弹性与油气成藏地质及模拟实验研究.西北大学地质系,2005(内部资料).
    [165]张金功等.济阳、临清煤成气成藏机理、成藏模式研究及大中型勘探目标评价.西北大学地质系,2005(内部资料).
    [166]张建锋.东营、沾化凹陷第三系油气输导体系研究[D]:西北大学地质系,2008.
    [167]张明利,金之钧,万天丰,等.柴达木盆地应力场特征与油气运聚关系[J].石油与天然气地质.2005,(05):674-679.
    [168]张鹏勇.通渝深埋特长隧道高地应力与围岩稳定性研究[D]:重庆交通学院;2004.
    [169]张守仁,万天丰.柴西北地区断裂活动及构造演化[J].石油勘探与开发.2004,(02):46-49.
    [170]张伟林.柴达木盆地新生代高精度磁性地层与青藏高原隆升[D].兰州:兰州大学;2006.
    [1711张小莉,冯乔,尹成明,等.柴达木盆地红沟子构造裂缝控制因素与定量模拟[J].西北大学学报(自然科学版).2009,180(03):497-500.
    [172]张业成,胡景江,刘春凤.柴达木盆地地温特征及新生界生油岩热演化史[J].长安大学学报(地球科学版).1990,(03):18-311
    [173]张业成,胡景江,刘春凤.中国主要油气盆地的地温特征及其与油气资源关系的初步探讨[J].中国地质科学院院报.1987,(01):97-120.
    [174]张业成.柴达木盆地地温基本特征及其与油气关系[M].北京:中国建筑工业出版社;1990.
    [175]赵加凡,陈小宏,杜业波.柴达木第三纪湖盆沉积演化史[J].石油勘探与开发.2004,(03):41-44.
    [176]赵文智,邹才能,谷志东,等.砂岩透镜体油气成藏机理初探[J].石油勘探与开发.2007,(03):273-284.
    [177]郑孟林,李明杰,曹春潮,等.柴达木盆地新生代不同层次构造特征[J].地质学报.2004,(01):26-35.
    [178]钟俊义,邱荣华,漆家福,等.砂岩透镜体油气藏成藏动力学理论新进展[J].石油地质与工程.2008,(03):1-4.
    [179]卓勤功,蒋有录,隋风贵.渤海湾盆地东营凹陷砂岩透镜体油藏成藏动力学模式[J].石油与天然气地质.2006,(05):620-629.
    [180]卓勤功,隋风贵.东营凹陷砂岩透镜体油藏油源新认识及其石油地质意义[J].油气地质与采收率.2007,(05):8-11.
    [181]卓勤功,向立宏,银燕,等.断陷盆地洼陷带岩性油气藏成藏动力学模式——以济阳坳陷为例[J].油气地质与采收率.2007,(01):7-10.
    [182]邹华耀,胡文义.生长逆断层与油气生成、运移和聚集—以柴达木盆地尕斯断陷为例[J].石油与天然气地质.1993,(03).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700