用户名: 密码: 验证码:
不同营养环境下海洋微藻生化组成与分子生物学响应特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文利用实时荧光定量PCR技术,研究了不同营养条件下培养的海洋微藻中四种功能基因(硝酸盐转运蛋白基因、磷酸盐转运蛋白基因、增殖细胞核抗原基因、核酮糖-1,5-二磷酸羧化氧化酶大亚基基因)表达量的变化,分析了这些基因与微藻生长及营养盐状况之间的关系,揭示了浮游植物对外界营养条件响应的分子机制,以期为近海富营养化评价的分子生物学指标体系的建立提供理论基础。研究的主要结果如下:
     中肋骨条藻(Skeletonema costatum)硝酸盐转运蛋白基因(Nrt2)表达状况主要与培养液中硝酸盐浓度有关,高浓度硝酸盐抑制Nrt2基因的表达,而低浓度硝酸盐促进Nrt2基因的表达。一次性培养实验表明,当培养液中硝酸盐耗尽时,Nrt2基因表达量迅速升高,并在3天后达到最高值;通过对Nrt2基因表达量与培养液中硝酸盐浓度进行相关性分析发现,二者之间存在极显著负相关关系(P<0.01),并且当硝酸盐浓度低于40μM时,Nrt2基因表达量与硝酸盐浓度之间呈线性相关。在低磷条件下培养的微藻,Nrt2基因表达量显著降低。因此,Nrt2基因表达量是很好的指示微藻氮营养状况的指标。
     磷酸盐转运蛋白基因(Pho)表达与伪矮海链藻(Thalassiosira pseudonana)磷营养状况相关。磷缺乏能极大促进Pho基因的表达,而磷添加能抑制Pho基因的表达,且无机磷添加组的表达量最低。相关性分析表明,Pho基因表达量与伪矮海链藻胞内总磷含量有极显著的负相关关系(P<0.01)。因此,Pho基因表达量有可能是指示微藻磷营养状况的良好指标。
     不同氮磷浓度下培养的中肋骨条藻光合速率差异显著,光合作用速率随着培养液中的氮磷浓度升高而增大。同时对核酮糖-1,5-二磷酸羧化氧化酶大亚基基因(rbcL)表达量研究发现,rbcL仅与培养液中的硝酸盐浓度显著相关,而与培养液中磷酸盐浓度相关性不显著。这说明N、P营养盐对微藻光合作用的调控机制不同:N从转录水平上即对微藻光合作用产生影响,而P的影响主要体现在转录后水平上。rbcL基因表达量与光合作用速率存在极显著的正相关关系(P <0.01),有潜力成为指示微藻光合能力的分子指标。
     中肋骨条藻增殖细胞核抗原基因(PCNA)表达量变化与生长状况相关,与生长率相关性极显著(P <0.01),这种关系为浮游植物现场生长率的测定提供了理论基础,将有可能对赤潮发展动态进行预测。
     另外,本文还以我国主要有害藻华原因种东海原甲藻为研究对象,研究了其在不同营养条件下的核酸与蛋白含量变化,结果表明,DNA含量与东海原甲藻所处的生长阶段有关,对营养盐含量的变化不敏感;RNA含量则与N、P浓度均呈极显著相关性(P<0.01),且在不同的生长阶段其含量也会发生变化;RNA/DNA比值与N、P浓度均显著相关(P<0.05),且与生长率呈线性相关关系。培养液中N浓度显著影响到东海原甲藻单位细胞总蛋白含量,P缺乏也会使总蛋白含量显著降低。因此,可将RNA及RNA/DNA作为微藻营养状况的指标。
In this article, transcriptional changes of four functional genes—high affinitynitrate transporter gene (Nrt2), high affinity phosphate transporter gene (Pho),proliferating cell nuclear antigen gene (PCNA) and ribulose-1,5-bisphosphatecarboxylase/oxygenase large subunit gene (rbcL)—were studied in marine eukaryoticphytoplanktons when culture in different nutrient conditions by means of real-timefluorescence quantitative PCR. Relationships between the transcript levels and algaegrowth or nutrient conditions were analyzed. We aimed to elucidate the molecularmechanisms of phytoplankton response to environmental nutrient conditions. Themain results were as follows:
     Nrt2transcript levels mainly correlated with the nitrate concentrations in themedium. Higher nitrate concentrations repress the transcript levels of Nrt2and lowernitrate concentrations promote the transcript levels. Results of batch cultures showedthat the Nrt2transcript levels increased rapidly when the nitrate was exhausted andreached the highest values3days after that. Correlation analysis showed that Nrt2transcript levels correlated negatively with the nitrate in the medium. Further more,there was a linear relationship between them when the nitrate was below40μM.Lower phosphate conditions would reduce the Nrt2transcript levels. All these resultsindicated that Nrt2was a good indicator of phytoplankton N conditions.
     The Pho gene transcript levels correlated with the phosphorus status of algae. Pdeficiency would promote the Pho transcript levels remarkably, but P addition wouldrepress the transcript levels. The inorganic phosphate added group had the lowesttranscript levels. There was a significant negative relationship between Pho gene transcript levels and cellular phosphorus content of microalgae (P <0.01). Therefore,the Pho gene had the potential to be a good indicator of algal phosphorus status.
     Significant differences existed among photosynthetic rates when the algae werecultured in different nutrient conditions. The photosynthetic rate increased with theincrement of nitrate and phosphate concentrations. Simultaneously detected rbcL genetranscript levels showed that, it correlated significantly with nitrate concentrations,but not with phosphate. This indicated the different regulation mechanism between Nand P on the algal photosynthesis: N may influence the photosynthesis from thetranscriptional level, however, the effect of P may from the post transcriptional level.Extreme significant correlations were found between rbcL gene transcript levels andphotosynthetic rates (P <0.01). rbcL gene maybe a good molecular indicator ofphytoplankton primary productions.
     PCNA gene transcript levels changed in accordance with the growth of algae,and correlated significantly with the specific growth rates (P <0.01). The relationshipprovided theoretic basis of detecting in situ phytoplankton growth rate and maybeused in the forecast of harmful algae bloom developments.
     In addition, responses of nucleic acid and protein content in batch cultures of themarine dinoflagellate Prorocentrum donghaiense were studied in relation to differentnitrate and phosphate concentrations. Results showed that DNA content varied indifferent growth stages, and it was insensitive to nutrient status. RNA content wasstrongly associated with both N and P concentrations (P<0.01). Different growthstages could also change cellular RNA content. The RNA content decreased alongwith the extension of experimental time. RNA/DNA had significant correlation withthe N and P concentrations. There appeared to be a linear relationship between growthrate and RNA/DNA. Cellular total protein content was significantly affected by Nconcentrations in the culture. P deficiency could also reduce cellular protein content.In conclusion, RNA and RNA/DNA could be used as algae nutrient status indicators.
引文
1. Andrews T J. Catalysis of cyanobacterial ribulose-bisphosphate carboxylase largesubunits in the complete absence of small subunits. J Biol Chem,1988(263):12213-12219.
    2. Annis E R, Cook C B. Alkaline phosphatase activity in symbiotic dinoflagellates(zooxanthellae) as a biological indicator of environmental phosphate exposure.Marine Ecology Progress Series,2002,245:11-20.
    3. Anwaruzzaman, Sawada S., Usuda H., et al. Regulation of ribulose1,5-bisphosphate carboxylase/oxygenase activation by inorganic phosphate throughstimulating the binding of the activator CO2to the activation sites. Plant and CellPhysiology,1995,36(3):425-433.
    4. Armbrust E V, Berges J A, Bowler C, et al. The genome of the diatomThalassiosira pseudonana: Ecology, evolution, and metabolism. Science,2004,306:79–86.
    5. Beardall J., Roberts S., Raven J. A. Regulation of inorganic carbon acquisition byphosphorus limitation in the green alga Chlorella emersonii. Canadian journal ofbotany,2005,83(7):859-864.
    6. Beardall J., Roberts S., Millhouse J. Effects of nitrogen limitation on uptake ofinorganic carbon and specific activity of ribulose-1,5-bisphosphatecarboxylase/oxygenase in green microalgae. Canadian journal of botany,1991,69(5):1146-1150.
    7. Beardall J., Young E., Roberts S.. Approaches for determining phytoplanktonnutrient limitation. Aquatic Sciences-Research Across Boundaries.2001,63(1):44-69.
    8. Behrens P. W., Hoeksema S. D., Arnett K. L., et al. Eicosapentaenoic acid frommicroalgae. Kemain A. L., Somkuti G. A., Hunter-Cevera J. C., et al. NovelMicrobial Products for Medicine and Agriculture. Amsterdam: Elsevier SciencePublishers,1989,253-259.
    9. Bentzen E., Taylor W. D., Millard E. S. The importance of dissolved organicphosphorus to phosphorus uptake by limnetic plankton. Limnology&Oceanography,1992,37(2):217-231.
    10. Berdalet E, Latasa M, Estrada M. Effects of nitrogen and phosphorus starvation onnucleic acid and protein content of Heterocapsa sp. Journal of Plankton Research,1994,16:303-316.
    11. Berdalet E., Dortch Q. New double-staining technique for RNA and DNAmeasurement in marine phytoplankon. Marine ecology progress series,1991,73:295-305.
    12. Berdalet E., Latasa M., Estrada M. Variations in biochemical parameters ofHeterocapsa sp. and Olisthodiscus luteus grown in12:12light:dark cycles I. Cellcycle and nucleic acid composition. Hydrobiologia,1992,238(1):139-147.
    13. Berdalet E., Roldán C., Olivar M.P. Lysnes K. Quantifying RNA and DNA inplanktonic organisms with SYBR Green II and nucleases. Part A. Optimisation ofthe assay. Scientia Marina,2005,69(1):1-16.
    14. Berges J. A., Charlebois D. O., Mauzerall D. C., et al. Differential effects ofnitrogen limitation on photosynthetic efficiency of photosystems I and II inmicroalgae. Plant Physiology,1996,110(2):689-696.
    15. Berges J. A., Harrison P. J. Nitrate reductase activity quantitatively predicts therate of nitrate incorporation under steady state light limitation: a revised assay andcharacterization of the enzyme in three species of marine phytoplankton.Limnology&Oceanography,1995,40(1):82-93.
    16. Bhagwat A. Activation of spinach ribulose1,5-bisphosphate carboxylase byinorganic phosphate. Plant Science Letters,1981,23(2):197-206.
    17. Birch P. B., Gordon D. M., McComb A. J. Nitrogen and phosphorus nutrition ofCladophora in the Peel-Harvey estuarine system, Western Australia. BotanicaMarina1981,24(7):381-387.
    18. Bob B. Buchanan, Wilhelm Gruissem, Russell L.Jones. Biochemistry&Molecular Biology of Plants(瞿礼嘉等译).北京:科学出版社,2004,662-670.
    19. Boelen P., van de Poll W. H., van der Strate H. J., et al. Neither elevated norreduced CO2affects the photophysiological performance of the marine Antarcticdiatom Chaetoceros brevis. Journal of Experimental Marine Biology and Ecology,2011,406(1-2):38-45.
    20. Boni L., CarpenéE., Wynne D., et al. Alkaline phosphatase activity inProtogonyaulax tamarensis. Journal of Plankton Research,1989,11(5):879-895.
    21. Bradford M M. A rapid and sensitive method for the quantitation of microgramquantities of protein utilizing the principle of protein-dye binding. AnalyticalBiochemistry,1976,72(1-2):248-254
    22. Bravo R., Frank R., Blundell P. A., et al. Cyclin/PCNA is the auxiliary protein ofDNA polymerase. Nature,1987,326:515-517.
    23. Brian G F.2000. Nitrate transporters in plants: structure, function and regulation.Biochimica et Biophysica Acta (BBA)-Biomembranes,1465:219-235.
    24. Brown, C. M., Lawrence, J. E., Campbell, D. A.. Are phytoplankton populationdensity maxima predictable through analysis of host and viral genomic DNAcontent? Journal of the Marine Biological Association of the United Kingdom.2006,86(3):491-498.
    25. Bruhn A, La Roche J, Richardson K.2010. Emiliania huxleyi (Prymnesiophyceae):Nitrogen-metabolism genes and their expression in response to external nitrogensources. Journal of Phycology,46:266-277.
    26. Bun-ya M., M. Nishimura, S. Harashima, et al. The PHO84gene ofSaccharomyces cerevisiae encodes an inorganic phosphate transporter. Mol. Cell.Biol.1991,11:3229-3238.
    27. Burgers P. M. J. Saccharomyces cerevisiae replication factor C. II. Formation andactivity of complexes with proliferating cell nuclear antigen and with DNApolymerase. Journal of Biological Chemistry,1991,266:22698-22706.
    28. Carpenter E. J., Lin S., Chang J. Phytoplankton growth studies by cell Cycleanalysis. In: K. E. Cooksey, Some Molecular Approaches to the Study of theOcean. Chapman and Hall,1998,227-245.
    29. Chai C, Yu Z M, Song X X et al. The status and characteristics of eutrophicationin the Yangtze River (Changjiang) estuary and the adjacent East China Sea, China.Hydrobiologia,2006,563:313-328.
    30. Cheng L. C., Huang S., Chang J. Gene sequence and expression of an analog ofproliferating cell nuclear antigen (PCNA) in the alga Tetraselmis chui anddetection of the encoded protein with anti-rat PCNA monoclonal antibody.Applied and Environmental Microbiology,1997,63:4010-4014.
    31. Chicharo M. A., Chicharo L.. RNA: DNA ratio and other nucleic acid derivedindices in marine ecology. International Journal of Molecular Sciences.2008,9(8):1453-1471.
    32. Chung C.C., Hwang, S.P.L., Chang J. Identification of a high-affinity phosphatetransporter gene in a prasinophyte alga, Tetraselmis chui, and its expression undernutrient limitation. Applied and Environmental Microbiology,2003,69:754-759.
    33. Coleman L. W., Rosen B. H., Schwartzbach S. D. Preferential loss of chloroplastproteins in nitrogen deficient Euglena. Plant and Cell Physiology,1988,29(6):1007-1014.
    34. Collos Y, Descolasgros C, Fontugne M, et al. Chemical, isotopic and enzymaticmonitoring of free and enclosed seawater: implications for primary producationestimates in incubation bottles. Marine Ecology Progress Series,1993,93:49-54.
    35. Collos Y. Transient situations in nitrate assimilation by marine diatoms. III.Short-term uncoupling of nitrate uptake and reduction. Journal of ExperimentalMarine Biology and Ecology,1982,62:285-295.
    36. Corredor J. E., Wawrik B., Paul J. H., et al. Geochemical Rate-RNA integrationstudy: Ribulose-1,5-bisphosphate carboxylase/oxygenase gene transcription andphotosynthetic capacity of planktonic photoautotrophs. Applied andEnvironmental Microbiology,2004,70(9):5559-5568.
    37. Crawford N, Glass ADM. Molecular and physiological aspects of nitrate uptake inplants. Trends Plant Sci,1998,3:389-395.
    38. Currie D.J., Bentzen E., Kalff J. Does algal-bacterial phosphorus partitioning varyamong lakes? A comparative study of orthophosphate uptake and alkalinephosphatase activity in freshwater. Can. J. Fish. Aquat. Sci.,1986,43:311-318.
    39. Czygan C F. Untersuchungen über die Nitratreduktion der GrünalgeAnkistrodesmus braunii in vivo und in vitro. Planta (Berl.)1963,60:225-242.
    40. Dahlhoff, E. P.. Biochemical Indicators of Stress and Metabolism: Applications forMarine Ecological Studies. Annual Review of Physiology.2004,66(1):183-207.
    41. Dignum M., Hoogveld H., Matthijs H. C. P., et al. Detecting the phosphate statusof phytoplankton by enzyme-labelled fluorescence and flow cytometry. FEMSMicrobiol. Ecol.,2004,48:29-38.
    42. Dortch Q., Ahmed S. I., Packard T. T. Nitrate reductase and glutamatedehydrogenase activities in Skeletonema costatum as measures of nitrogenassimilation rates. Journal of Plankton Research,1979,1:169-186.
    43. Dortch Q., Roberts T., Clayton Jr J. et al. RNA/DNA ratios and DNAconcentrations as indicators of growth rate and biomass in planktonic marineorganisms. Marine ecology progress series.1983,13(1):61-71.
    44. Dugdale R C, Wilkerson F P. The use of15N to measure nitrogen uptake ineutrophic oceans; experimental considerations. Limnology and Oceanography,1986,31:673–689.
    45. Dyhrman S T, Webb E A, Anderson D M, et al. Cell-specific detection ofphosphorus stress in Trichodesmium from the western north Atlantic. Limnologyand Oceanography,2002,47:1832–1836.
    46. Dyhrman S.D., Palenik B. Phosphate stress in Cultures and filed populations ofdinoflagellate Prorocentrum minimum detected by a single-cell alkalinephosphatase assay. Applied and Environmental Microbiology,1999,65(7):3205-3212.
    47. Dyhrman S.T., Palenik B. A single-cell immunoassay for phosphate stress in thedinoflagellate Prorocentrum minimum (dinophyceae). Journal of Phycology,2001,37:400-410.
    48. Dyhrman S.T., Webb E.A., Anderson D.M., et al. Cell-specific detection ofphosphorus stress in Trichodesmium from the Western North Atlantic. Limnology&Oceanography,2002,47(6):1832-1836.
    49. Elser J J., Acharya K., Kyle M., et al. Growth rate-stoichiometry couplings indiverse biota. Ecology Letters,2003,6(10):936-943.
    50. Eppley R. W., Coatsworth J. L., Soloozano I. Studies of nitrate reductase inmarine phytoplankton. Limnology and Oceanography,1969,14:194-205.
    51. Everest S. A., Hipkin C. R., Syrett P. J. Enzyme activities in some marinephytoplanktens and the effect of nitrogen limitation on nitrogen and carbonmetabolism in Chlorella stigmatophora. Marine Biology,1986,90:165-172.
    52. Falkowski P G. Nitrate uptake in marine phytoplankton—Comparison ofhalf-saturation constants from7species. Limnology and Oceanography,1975,20(3):412-417.
    53. Falkowski P G., Sukenik A., Herzig R. Nitrogen limitation in Isochrysis galbana(Haptophyceae). II. Realtive abundance of chloroplast proteins. Journal ofPhycology,1989,25(3):471-478.
    54. Falkowski P. G., Raven J. A. Aquatic photosynthesis. Princeton University Press.2007.
    55. Falkowski, P. G., R. M. Greene, R. J. Geider. Physiological limitations onphytoplankton productivity in the oceans. Oceanography,1992,5:84–91.
    56. Feder M E., Hofmann G E.. Heat-shock proteins, molecular chaperones, and thestress response: Evolutionary and ecological physiology. Annual Review ofPhysiology.1999,61:243-282.
    57. Ferrario-Méry S.,Murchie E.,Hirel B., et a1. Manipulation of the pathways ofsucrose biosynthesis and nitrogen assimilation in transformed plants to improvedphotosynthesis and productivity.Foyer C. H.,Quick W. P.A Molecular Approachto Primary Metabolism in Higher Plants.London:Taylor and Francis,1997,125-153.
    58. Field C. B., Behrenfeld M. J., Randerson J. T. et al. Primary production of thebiosphere: Integrating terrestrial and oceanic components. Science,1998,281(5374):237-240.
    59. Filleur S, Daniel-Vedele F. Expression analysis of a high-affinity nitratetransporter isolated from Arabidopsis thaliana by differential display. Planta,1999,207:461-469.
    60. Fisher T., Shurtz-Swirski R., Gepstein S. et al. Changes in the levels of ribulose-l,5-bisphosphate carboxylase/oxygenase (Rubisco) in Tetraedron minimum(Chlorophyta) during light and shade adaptation. Plant and Cell Physiology,1989,30(2):221.
    61. Fogg G. E. Nitrogen nutrition and metabolic patterns in algae. Symposia of theSociety for Experimental Biology,1959,13:106-125.
    62. Fogg G. E., Calvariomartinez O. Effects of bottle size in determinations ofprimary productivity by phytoplankton. Hydrobiologia,1989,173:89-94.
    63. Forde B. G. Nitrate transporters in plants: structure, function and regulation.Biochimica et Biophysica Acta (BBA)-Biomembranes,2000,1465:219-235.
    64. Fraga F. Phytoplanktonic biomass synthesis: application to deviations fromRedfield stoichiometry. Scientia Marina,2001,65:153-169.
    65. Fukazawa N., Ishimaru T., Takahashi M., et al. A mechanism of―red tide‖formation. II. Growth rate estimate by DCMU-induced fluorescence increase.Marine Ecology Progress Series,1980,3:217-222.
    66. Furnas M J. Community structure, biomass and productivity of size-fractionatedsummer phytoplankton populations in lower Narragansett Bay, Rhode Island.Journal of Plankton Research,1983,5:637-655.
    67. Furnas M. J. In situ growth rates of marine phytoplankton: approaches tomeasurement, community and species of growth rates. Journal of PlanktonResearch,1990,12:1117-1151.
    68. Galvan A, Fernandez E. Eukaryotic nitrate and nitrite transporters. Cellular andMolecular Life Sciences,2001,58:225-233.
    69. Galvan A., Rexach J., Mariscal V. et al. Nitrite transport to the chloroplast inChlamydomonas reinhardtii: molecular evidence for a regulated process. Journalof experimental botany,2002,53:845-853.
    70. Gambin F., BogéG., Jamet D. Alkaline phosphatase in a littoral Mediterraneanmarine ecosystem: Role of the main plankton size classes. Marine EnvironmentalResearch,1999,47:441-456.
    71. Garde K.,Gustavson K. The impact of UV-B radiation on alkaline phosphataseactivity in phosphorus-depleted marine ecosystems. Journal of ExperimentalMarine Biolology and Ecology,1999,238:93-105.
    72. Gauthier D., Turpin D. Interactions between inorganic phosphate (Pi) assimilation,photosynthesis and respiration in the Pi-limited green alga Selenastrum minutum.Plant, Cell&Environment1997,20(1):12-24.
    73. Geider R J, La Roche J, Greene R M, et al. Response of the photosuntheticapparatus of Phaeodactylum tricornutum (Bacillariophyceae) to nitrate, phosphate,or iron starvation. Journal Of Phycology,1993,29:755-766.
    74. Geider R J, La Roche J. Redfield revisited: Variability of C:N:P in marinemicroalgae and its biochemical basis. European Journal of Phycology,2002,37:1-17.
    75. Geider R. J., Macintyre H. L., Graziano L. M. et al. Responses of thephotosynthetic apparatus of Dunaliella tertiolecta (Chlorophyceae) to nitrogenand phosphorus limitation. European Journal of Phycology,1998,33(4):315-332.
    76. Glass A, Brito D, Kaiser B, et al. Nitrogen transport in plants, with an emphasis onthe regulation of fluxes to match plant demand. Journal of Plant Nutrition and SoilScience,2001,164:199-207.
    77. Glibert P. M., Kana T. M., Anderson D. M. Photosynthetic response of Gonyaulastamarensis during growth in a natural bloom and in batch culture. Marine EcologyProgress Series,1988,42(3):303-309.
    78. Glibert P. M., Kana T. M., Olson R. J., et al. Clonal comparisons of growth andphotosynthetic responses to nitrogen availability in marine Synechococcus spp.Journal of Experimental Marine Biology and Ecology,1986,101(1-2):199-208.
    79. Goldman J C, Glibert P M. Kinetics of inorganic nitrogen uptake byphytoplankton. In Nitrogen in Marine Environments (Carpenter, E. J.&Capone,D. G., eds). New York: Academic Press,1983,233-274.
    80. Gómez Pinchetti J., del Campo Fernández E., Moreno Díez P., et al. Nitrogenavailability influences the biochemical composition and photosynthesis oftank-cultivated Ulva rigida (Chlorophyta). Journal of Applied Phycology,1998,10(4):383-389.
    81. González-Gil S., Keafer B.A., Jovine R.V.M., et al. Detection and quantificationof alkaline phosphatase in single cells of phosphorus-starved marinephytoplankton. Marine Ecology Progress Series,1998,164:21-35.
    82. Granum E., Kirkvold S., Myklestad S M. Cellular and extracellular production ofcarbohydrates and amino acids by the marine diatom Skeletonema costatum: dielvariations and effects of N depletion. Marine Ecology Progress Series,2002,242:83-94.
    83. Granum E., Roberts K., Raven J. A., et al. Primary carbon and nitrogen metabolicgene expression in the diaton Thalassiosira pseudonana (Bacillariophyceae): Dielperiodicity and effects of inorganic carbon and nitrogen. Journal of Phycology,2009,45(5):1083-1092.
    84. Grasshoff K., Ehrhardt M., Kremling K., et al. Methods of Seawater Analysis (3rdEdition). Wiley-Vch: Weinheim,1999:253–364.
    85. Grima E. M., Sanchez Perez J. A., Farcia Sanchez J. L., et al. EPA from Isochrysisgalbana. Growth conditions and productivity. Process Biochem.1992,27:299-305.
    86. Guillard R R L. Culture of phytoplankton for feeding marine invertebrates. In:Smith W L, Chanley M H. Culture of marine invertebrate animals. New York:Plenum Press,1975:26-60
    87. Gurr M.I. Lipid biochemistry. Chapman&Hall, New York.1991
    88. Harrison P., Thompson P., Calderwood G. Effects of nutrient and light limitationon the biochemical composition of phytoplankton. Journal of Applied Phycology,1990,2(1):45-56.
    89. He Q H, Qiao D R, Zhang Q L, et al. Cloning and expression study of a putativehigh-affinity nitrate transporter gene from Dunaliella salina. Journal of AppliedPhycology,2004,16:395-400.
    90. Healey F.P., Hendzel L.L. Fluorometric measurement of alkaline phosphataseactivity in algae. Freshwater Biology,1979,9:429-439.
    91. Hecky R E, Kilham P. Nutrient limitation of phytoplankton in freshwater andmarine environments: A review of recent evidence on the effects of enrichment.Limnology and Oceanography,1988,33:796-822.
    92. Hernández I., Christmas M., Yelloly J.M., et al. Factors affecting surface alkalinephosphatase activity in the brown alga Fucus spiralis at a north sea intertidal site(Tyne sands, Scotland). Journal of Phycology,1997,33:569-575.
    93. Herzig R., Falkowski P. G. Nitrogen limitation in Isochrysis galbana(Haptophyceae). I. Photosynthetic energy conversion and growth efficiencies.Journal of Phycology,1989,25(3):462–471.
    94. Hildebrand M., Dahlin K. Nitrate transporter genes from the diatom Cylindrothecafusiformis (Bacillariophyceae): mRNA levels controlled by nitrogen source and bythe cell cycle. Journal of Phycology.2000,36:702-713.
    95. Hill H.D.,Summer G.K.,Waters M.D. An automated fluorometric assay foralkaline phosphatase using3-0-methylfluorescein phosphate. Analyt. Biochem.,1968,24:9-17.
    96. Hipkin C. R., Thomas R. J., Syrett P. J. Effects of nitrogen deficiency on nitratereductase, nitrate assimilation and photosynthesis in unicellular marine algae.Marine Biology.1983,77(2):103-105.
    97. Holmhans O, Sutcliff Wh, Sharp J. Measurement of deoxyribonucleic acid and itsecological significance. Limnology and Oceanography,1968,13(3):507-514.
    98. Hong H. S., Wang H. L., Huang B. Q. The availability of dissolved organicphosphorus to marine phytoplankton. Chinese Journal of Oceanology andLimnology,1995,13(2):169-176
    99. Hoppe H.G. Phosphatase activity in the sea. Hydrobiologia,2003,493:187-200
    100.Hou J J, Huang B Q, Cao Z R, et al. Effects of Nutrient limitation on pigments inThalassiosira weissflogii and Prorocentrum donghaiense. Journal of IntegrativePlant Biology,2007,49(5):686-697.
    101.Howarth R W, Marino R. Nitrogen as the limiting nutrient for eutrophication incoastal marine ecosystems: evolving views over three decades. Limnology andOceanography,2006,51:364-376.
    102.Huang NC, Chiang CS, Crawford NM, et al. CHL1encodes a component of thelow-affinity nitrate uptake system in Arabidopsis and shows cell type-specificexpression in roots. Plant Cell,1996,8:2183-2191.
    103.Huang X.Q., Morris J.T. Distribution of phosphatase activity in marsh sedimentsalong an estuarine salinity gradient. Marine Ecology Progress Series,2005,292:75-83.
    104.James B., Cotner J. Uptake of dissolved inorganic and organic phosphorus byphytoplankton and bacterioplankton. Limnology and Oceanography,1992,37(2):232-243.
    105.Jansson M. Phosphatases in lake water: characterization of enzymes fromphytoplankton and zooplankton by Gel filtration. Science,1976,194:320-321.
    106.Jeffrey S W, Mantoura R F C, Wright S W. Phytoplankton pigments inoceanography: guidelines to modern methods. Paris: UNESCO Publishing.2005a,667pp.
    107.Jiménez del Rio M., Ramazanov Z., Garcia Reina G. Effect of nitrogen supply onphotosynthesis and carbonic anhydrase activity in the green seaweed Ulva rigida(Chlorophyta). Marine Biology,1995,123(4):687-691.
    108.John D. E., Patterson S. S., Paul J. H. Phytoplankton-group specific quantitativepolymerase chain reaction assays for RuBisCO mRNA transcripts in seawater.Marine Biotechnology,2007,9(6):747-759.
    109.Jonathan R P. Chlorophyll distributions in the Delaware estuary: Regulation bylight-limitation. Estuarine, Coastal and Shelf Science,1985,21:711-725.
    110.Joseph L., Villareal T. A. Nitrate reductase activity as a measure of nitrogenincorporation in Rhizosolenia formosa (H.Peragallo): Interna1nitrate and dieleffects. Journal of Experimental Marine Biology and Ecology,1998,229:159-176.
    111.Joseph L., Villareal T.A., Lipschultz F.L. A high sensitivity nitrate reductase assayand its application to vertically migrating Rhizosolenia mats. Aquatic MicrobialEcology,1997,12:95-104.
    112.Kaffes A., Thoms S., Trimborn S., et al. Carbon and nitrogen fluxes in the marinecoccolithophore Emiliania huxleyi grown under different nitrate concentrations.Journal of Experimental Marine Biology and Ecology,2010,393(1-2):1-8.
    113.Kang L K, Hwang S P L, Gong G C, et al. Influences of nitrogen deficiency onthe transcript levels of ammonium transporter, nitrate transporter and glutaminesynthetase genes in Isochrysis galbana (Isochrysidales, Haptophyta). Phycologia,2007,46:521-533.
    114.Kang L K, Hwang S P L, Lin H J, et al. Establishment of minimal and maximaltranscript levels for nitrate transporter genes for detecting nitrogen deficiency inthe marine phytoplankton Isochrysis galbana (Prymnesiophyceae) andThalassiosira pseudonana (Bacillariophyceae). Journal of Phycology,2009,45:864-872.
    115.Karl D. M. Simultaneous rates of ribonucleic-acid and deoxyribonucleic-acidsynthesis for estimating growth and cell-dividion of aquatic microbialcommunities. Applied and Environmental Microbiology.1981,42(5):802-810.
    116.Kiddon J. A., Paul J. F., Buffum H. W., et al. Ecological condition of USMid-Atlantic estuaries,1997-1998. Marine Pollution Bulletin,2003,46(10):1224-1244.
    117.Kiersztyn B., Siuda W., Chrost R. J. Microbial ectoenzyme activity: Usefulparameters for characterizing the trophic conditions of lakes. Polish Journal ofEnvironmental Studies2002,11(4):367-373.
    118.Kilham S, Kreeger D A, Gouldern C E, et al. Effects of nutrient limitation onbiochemical constituents of Ankistrodesmus falcatus. Freshwater Biology,1997,38(3):591-596.
    119.Kirk, J. T. O. Light and Photosynthesis in Aquatic Ecosystems. CambridgeUniversity Press.2010.
    120.Kitano K., Maeda N., Fukui T, et al. Crystal structure of a novel-type archaealRubisCO with pentagonal symmetry. Structure,2001,9:473-481.
    121.Kochert G. Quantitation of the macromolecular components of microalgae. In:Hellebust, J.A., Craige, J.S.(Eds.), Handbook of physiological and biochemicalmethods. Cambridge University Press, London,1978:189-195.
    122.Kodama H., Ito M., Ohinishi N., et al. Molecular cloning of the gene for plantproliferating cell nuclear antigen and expression of this gene during the cell cyclein synchronized culture of Catharanthus roseus cells. European Journal ofBiochemistry,1991,197:495-503.
    123.Koltermann M., Moroni A., Gazzarini S., et al. Cloning, functional expressionand expression studies of the nitrate transporter gene from Chlorella sorokiniana(strain211-8k). Plant molecular Biology,2003,52:855-864.
    124.Krom M. D., Kress N., Brenner S. et al. Phosphorus limitation of primaryproductivity in the eastern Mediterranean Sea. Limnology and Oceanography,1991,36(3):424-432.
    125.La Roche J, McKay R M L, Boyd P. Immunological and molecular probes todetect phytoplankton responses to environmental stress in nature. Hydrobiologia,1999,401:177-198.
    126.Lai J X, Yu Z M, Song X X, et al. Responses of growth and biochemicalcomposition of Prorocentrum donghaiense to different nitrogen and phosphorusconcentrations. Journal of Experimental Marine Biology and Ecology,2011,405:6-17.
    127.Landry M. R., Hassett R. P. Estimating the grazing impact of marinemicro-zooplankton. Marine Biology,1982,67:283-288.
    128.Latasa M, Berdalet E. Effect of nitrogen or phosphorus starvation on pigmentcomposition of cultured Heterocapsa sp. Journal of Plankton Research,1994,16(1):83-94.
    129.Lauer M. J., Pallardy S. G., Blevins D. G., et al. Whole leaf carbon exchangecharacteristics of phosphate deficient soybeans (Glycine max L.). Plant Physiology,1989,91(3):848.
    130.Leanne Joseph,Tracy A,Villareal, et al. A high sensitivity nitrate reductase assayand its application to vertically migrating Rhizasolenia mats. Aquatic MicrobialEcology,1997,12:95-104
    131.Leonardos N., Geider, R. J.. Elemental and biochemical composition ofRhinomonas reticulata (Cryptophyta) in relation to light and nitrate to phosphatesupply ratios. Journal of Phycology.2005,41(3):567-576.
    132.Leveson A. C., Wong J. T. PCNA-like proteins in dinoflagellates. Journal ofPhycology,1999,35:798-805
    133.Li H., Veldhuis M.J.W., Post A.F. Alkaline phosphatase activities amongplanktonic communities in the northern Red Sea. Marine Ecology Progress Series,1998,173:107-115.
    134.Li M., Gong R., Rao X., et al. Effects of nitrate concentration on growth and fattyacid composition of the marine microalgae Pavlova viridis (Prymnesiophyceae).Annals of Microbiology,2005,55:51-55.
    135.Lin S. J., Chang J., Carpenter E. J. Detection of proliferating cell nuclear antigenanalog in four species of marine phytoplankton. The Journal of Physiology,1994,30:449-456.
    136.Lin S. J., Feinstein T. N., Zhang H., et al. Development of animmunofluorescence technique for detecting Pfiesteria piscicida. Harmful Algae,2003,2(3):223-231.
    137.Lin S., Carpenter E. J. Detection and preliminary characterization of the PCNAgene in marine phytoplankton. Molecular marine biology and biotechnology,1998,7:62-71.
    138.Lin S., Carpenter E. J. Growth characteristics of phytoplankton determined bycell cycle proteins: The cell cycle of Ethmodiscus rex in the southwestern NorthAtlantic Ocean and Caribbean Sea. The Journal of Physiology,1995,31:778-785.
    139.Lin S., Chang J, Carpenter E. J. Growth characteristics of phytoplanktondetermined by cell cycle proteins. I. PCNA immunostaining on Dunaliellatertiolecta (Chlorophyceae). The Journal of Physiology,1995,31:388-395.
    140.Lin S., Corstjens P. L. A. M. Coloning and differential expression of Proliferatingcell nuclear antigen in the Coccolithophorid phytoplanktion Pleurochrysiscarterae. Journal of Phycology,2001,37:31.
    141.Lin S., Corstjens P. L. A. M. Molecular cloning and expression of theproliferating cell nuclear antigen gene from the coccolithphorid Pleurochrysiscarterae (Haptophyceae). The Journal of Physiology,2002,38:164-173.
    142.Lindell D, Post A F. Ecological Aspects of ntcA gene expression and its use as anindicator of the nitrogen status of marine Synechococcus spp. Applied andEnvironmental Microbiology,2001,67:3340-3349.
    143.Livak K J, Schmittgen T D. Analysis of relative gene expression data usingreal-time quantitative PCR and the2CTmethod. Methods,2001,25:402-408.
    144.Lomas M W, Glibert P M. Comparisons of nitrate uptake, storage, and reductionin marine diatoms and flagellates. Journal of Phycology,2000,36:903-913.
    145.Lomas M.W., Swain A., Shelton R., et al. Taxonomic variability of phosphorusstress in Sargasso Sea phytoplankton. Limnology&Oceanography,2004,49(6):2303-2310.
    146.Lombardi A.T., Wangersky P. J. Influence of phosphorus and silicon on lipid classproduction by the marine diatom Chaetoceros gracilis grown in turbidostat cagecultures. Marien Ecology Progress Series,1991,77:39-47.
    147.Lynn S G, Kilham S S, Kreeger D A, et al. Effect of nutrient availbility on thebiochemical and elemental stoichiometry in the freshwater diatom Stephanodiscusminutulus (Bacillariophyceae). Journal of Phycology,2000,36(3):510-522.
    148.Machler F., Nosberger J. Influence of inorganic phosphate on photosynthesis ofwheat chloroplasts. II. Ribulose bisphosphate carboxylase activity. Journal ofExperimental Botany,1984,35(153):488-494.
    149.Mann N. H. How do cells express nutrient limitation at the molecular level? InJoint I.(ed.), Molecular Ecology of Aquatic Microbes. Springer-Verlag, Berlin.1995.
    150.Marchetti R., Provini A., Ctosa G. Nutrient load carried by the River Po into theAdriatic Sea,1968-1987. Marine Pollution Bulletin,1989,20:168-172.
    151.Martinez P., Persson B. L. Identifcation, cloning and characterization of aderepressible Na+-coupled phosphate transporter in Saccharomyces cerevisiae.Molecular and General Genetics,1998,258:628-638.
    152.Matthews M. B., Bernstein R. N., Franza B. R., et al. Identity of the proliferatingcell nuclear antigen and cyclin. Nature,1984,309:374-376.
    153.Mazel D., Marliere P. Adaptive eradication of methionine and cysteine fromcyanobacterial light-harvesting proteins. Nature,1989,341:245-248.
    154.Morris I. Photosynthesis products, physiological state, and phytoplankton growth.Canadian Bulletin of Fisheries Aquatic Sciences,1981,210:83-102.
    155.Myklestad S. Production of carbohydrates by marine planktonic diatoms. II.Influence of the N/P ratio in the growth medium on the assimilation ratio, growthrate, and production of cellular and extracellular carbohydrates by Chaetocerosaffinis var. willei (Gran) Hustedt and Skeletonema costatum (Grev.) Cleve. Journalof Experimental Marine Biology and Ecology,1977,29(2):161-179.
    156.Myklestad S., Sakshaug E. Alkaline phosphatase activity of Skeletonemacostatum populations in the Trondheimsfjord. Journal of Palnkton Research,1983,5(4):557-564.
    157.Nausch M. Alkaline phosphatase activities and the relationship to inorganicphosphate in the Pomeranian Bight(southern Baltic Sea). Aquatic MicrobialEcology,1998,16:87-94.
    158.Nelson D M, Brzezinski M A. Kinetics of silicic acid uptake by natural diatomassemblages in two Gulf Stream warm-core rings. Marine Ecology-ProgressSeries,1990,62(3):283-292
    159.Nelson D M, Brzezinski M A. Kinetics of silicic acid uptake by natural diatomassemblages in two Gulf Stream warm-core rings. Marine Ecology Progress Series,1990,62:283-292.
    160.Nicklisch A., Steinberg C. E. W.. RNA/protein and RNA/DNA ratios determinedby flow cytometry and their relationship to growth limitation of selectedplanktonic algae in culture. European Journal of Phycology.2009,44(3):297-308.
    161.Nicot N, Hausman J F, Hoffmann L, et al. Housekeeping gene selection forreal-time RT-PCR normalization in potato during biotic and abiotic stress. Journalof Experimental Botany,2005,56(421):2907-2914.
    162.Nixon S.W. Ambio Special issue: Marine eutrophication. Ambio,1990,19(3):101-176.
    163.Ogren WL, Bowes G. Ribulose diphosphate carboxylase regulation of soybeanrespiration. Nature new Biology,1971(230):159-160.
    164.Okamoto O. K., Hastings J. W. Novel dinoflagellate clock-related genesidentified through microarray analysis. Journal of Phycology,2003,39:519-526.
    165.Olson R J., Vaulot D., Chisholm S W. Effects of Environmental Stresses on theCell Cycle of Two Marine Phytoplankton Species. Plant Physiology,1986,80(4):918-925.
    166.Orellana M. V., Perry M. J. An immunoprobe to measure Rubisco concentrationsand maximal photosynthetic rates of individual phytoplankton cells. Limnologyand Oceanography,1992:478-490.
    167.Packard T.T., Blasco D., Macisaac J.J., et a1.Variations in nitrate reductaseactivity in marine phytoplankton.Investigaciones Pesqueras,1971,35:209-219.
    168.Paerl H.W. Coastal eutrophication and harmful algae blooms: Importance ofatmospheric deposition and groundwater as―new‖nitrogen and other nutrientsources. Limnology and Oceanography,1997,42(5):1154-1165.
    169.Pao S. S., Paulsen I. T., Saier M. H. Major facilitator superfamily. Microbiologyand Molecular Biology Reviews,1998,62:1-34.
    170.Parrish C.C., Wangersky P. J. Particulate and dissolved lipid classes in cultures ofPhaeodactylum tricornuturn grown in cage culture turbidostats with a range ofnitrogen supply rates. Marine Ecology Progress Series,1987,35:119-128.
    171.Paul J. H., Kang J. B., Tabita F. R. Diel patterns of regulation of rbcLtranscription in a cyanobacterium and a prymnesiophyte. Marine Biotechnology,2000,2(5):429-436.
    172.Perry M J, Eppley R W. Phosphate uptake by phytoplankton in the central NorthPacific Ocean. Deep Sea Research Part A. Oceanographic Research Papers,1981,28(1):39-49
    173.Perry M J. Alkaline phosphatase activity in subtropical central north Pacificwaters using a sensitive fluorometric method. Marine Biology,1972,15:113-119.
    174.Pettersson B K. Alkaline phosphatase activity and algal surplus phosphorus asphosphorus-deficiency indicators in Lake Erken. Arch. Hydrobiol.,1980,89(1-2):54-87.
    175.Pichard S. L., Campbell L., Carder K., et al. Analysis of ribulose bisphosphatecarboxylase gene expression in natural phytoplankton communities bygroup-specific gene probing. Marine Ecology Progress Series,1997,149(1-3):239-253.
    176.Pichard S. L., Frischer M. E., Paul J. H. Ribulose bisphosphate carboxylase geneexpression in subtropical marine phytoplankton populations. Marine EcologyProgress Series,1993,101(1-2):55-65.
    177.Pichard S., Campbell L., Kang J., et al. Regulation of ribulose bisphosphatecarboxylase gene expression in natural phytoplankton communities. I. Dielrhythms. Marine Ecology Progress Series,1996,139:257.
    178.Piorreck M., Klaus-Hinnerk Baasch, Pohl P. Biomass production, total protein,chlorophylls, lipids and fatty acids of freshwater green and blue-green algae underdifferent nitrogen regimes. Phychem,1984,23(2):207-216.
    179.Plumley F. G., Douglas S. E., Switzer A. B., Schmidt G. W. Nitrogen-dependentbiogenesis of chlorophyll-protein complexes. Plant biology,1989,8:311-329.
    180.Portillo M. C., Gonzalez J. M. Fluorescent measurements of DNA, RNA andproteins to perform comparative analyses of microbial communities from theenvironments. Journal of Rapid Methods&Automation in Microbiology,2009,17:398-410
    181.Quesada A., Galvan A., Fernandez E. Identification of nitrate transporter genes inChlamydomonas reinhardtii. The Plant Journal.1994,5:407-419.
    182.Rao I. M., Terry N.. Leaf phosphate status, photosynthesis, and carbonpartitioning in sugar beet: I. Changes in growth, gas exchange, and Calvin cycleenzymes. Plant Physiology,1989,90(3):814.
    183.Rexach J., Llamas A., Fernandez E. et al. The activity of the high-affinity nitratetransport system I (NRT2;1, NAR2) is responsible for the efficient signalling ofnitrate assimilation genes in Chlamydomonas reinhardtii. Planta,2002,215:606-611.
    184.Riegman R, Rowe A. Nutritional status and pigment composition ofphytoplankton during spring and summer Phaeocystis blooms in Dutch coastalwaters (Marsdiep area). Netherlands Journal of Sea Research,1994,32:13-21.
    185.Rivkin R B, Swift E. Diel and vertical patterns of alkaline phosphates activity inthe oceanic dinoflagellate Pyrocystis noctiluca. Limnology&Oceanography,1979,24(1):107-116.
    186.Rose C., Axler R.P. Uses of alkaline phosphatase activity in evaluatingphytoplankton community phosphorus deficiency. Hydrobiologia,1998,361:145-156.
    187.Roy S., Legendre L. Field studies of DCMU-enhanced fluorescence as an indexin situ phytoplankton. Marine Biology,1979,55:93-101.
    188.Sakshaug E., Holm-Hansen O. Chemical composition of Skeletonema costatum(Grev.) Cleve and Pavlova (monochrysis) Lutheri (droop) green as a function ofnitrate-, phosphate-, and iron-limited growth. Journal of Experimental MarineBiology and Ecology,1977,29(1):1-34.
    189.Samuelsson G., Oquist G. A method for studying photosynthetic capacities ofunicellular algae based on in vivo chlorophyll fluorescence. Physiol Plant,1977,40:315-319.
    190.Scanlan D J, Wilson W H. Application of molecular techniques to addressing therole of P as a key effector in marine ecosystems. Hydrobiologia,1999,401:149-175.
    191.Scanlan D. J., West N. J. Molecular ecology of the marine cyanobacterial generaProchlorococcus and Synechococcus. FEMS Microbiology Ecology,2002,40:1-12.
    192.Scanlan D.J., Silman N.J., Donald K.M., et al. An immunological approach todetect phosphate stress in populations and singel cells of photosyntheticphytoplankton. Applied and Environmental Microbiology.1997,63:2411-2420.
    193.Sebastián M., Arítegui J., Montero M.F., et al. Alkaline phosphatase activity andits relationship to inorganic phosphorus in the transition zone of the North-westernAfrican upwelling system. Progress Oceanography,2004a,62:131-150.
    194.Senft W. H. Dependence of light-saturated rates of algal photosynthesis onintracellular concentrations of phosphorus. Limnology and Oceanography1978,23(4):709-718.
    195.Simon N., Barlow R.G., Marie D., et al. Characterization of oceanicphotosynthetic picoeukaryotes by flow cytometry. Journal of Phycology,1994,30:9222-935.
    196.Smit A J., Robertson B L., Preez D R. Influence of ammonium-N pulseconcentrations and frequency, tank condition and nitrogen starvation on growthrate and biochemical composition of Gracilaria gracilis. Journal of AppliedPhycology,1996,8(6):473-481.
    197.Smith R E H, Geider R J. Kinetics of intracellular carbon allocation in a marinediatom. Journal of Experimental Marine Biology and Ecology,1985,93(3):191-210
    198.Smith R E H, Kalff J. The effect of phosphorus limitation on algal growth rates:evidence from alkaline phosphatase. Canadian Journal of Fisheries and AquaticScience,1981,38:1421-1427.
    199.Song B, Ward B B.2007. Molecular cloning and characterization of high-affinitynitrate transporters in marine phytoplankton. Journal of Phycology,43:542-552.
    200.Stolte W, Kraay G W, Noordeloos A A M, et al. Genetic and physiologicalvariation in pigment composition of Emiliania huxleyi (Prymnesiophyceae) andthe potential use of its pigment ratios as a quantitative physiological marker.Journal of Phycology,2000,36(3),529-539.
    201.Suen Y., Hubbard J. S., Holzer G., et al. Total lipid production of the green algaNannochloropsis sp. QII under different nit rogen regimes. Phycology,1987,23:289-296.
    202.Syrett P J. Nitrogen metabolism of microalgae, p.182-210. In Physiological basesof phytoplankton ecology. Canadian Journal of Fisheries and Aquatic Sciences,
    210.
    203.Touchette B.W. Burkholder J.M.Review of nitrogen and phosphorus metabolishin seagrass. Journal of Experimental Marine Biology and Ecology,2000,250:133-167
    204.Trueman L. J., Onyeocha I., Forde B. G. Recent advances in the molecularbiology of a family of eukaryotic high affinity nitrate transporters. PlantPhysiology and Biochemisty.1996,34:621-627.
    205.Tsay Y F, Schroeder J I, Feldmann K A, et al. The herbicide sensitivity geneCHL1of Arabidopsis encodes a nitrate-inducible nitrate transporter. Cell,1993,72:705-713.
    206.Turner R.E., Rabalais N. N. Changes in Mississippi River water quality thiscentury-implications for coastal food webs. Bioscience,1994,41:140-147.
    207.Turpin D H. Effects of inorganic N availability on algal photosynthesis andcarbon metabolism. Journal of Phycology,1991,27(1):14-20.
    208.Van Bennekom A., Wetsteijn F. J. The winter distribution of nutrients in theSouthern Bight of the North Sea (1961-1978) and in the estuaries of the Scheldtand the Rhine/Neuse. Netherlands Journal of Sea Research,1990,25:75-87.
    209.Vanucci S, Guerrini F, Milandri A, et al. Effects of different levels of N-andP-deficiency on cell yield, okadaic acid, DTX-1, protein and carbohydratedynamics in the benthic dinoflagellate Prorocentrum lima. Harmful Algae,2010,9:590-599.
    210.Versaw W. K., Metzenberg R. L. Repressible cation-phosphate symporters inNeurospora crassa. Proc. Natl. Acad. Sci. USA.1995,92:3884-3887.
    211.Vidal M., Duarte C.M., Agusti S., Gasol J.M., VaquéD. Alkaline phosphataseactivities in the central Atlantic Ocean indicate large areas with phosphorusdeficiency. Marine Ecology Progress Series,2003,262:43-53.
    212.Vitousek P M, Howarth R W. Nitrogen limitation on land and in the sea: How canit occur? Biogeochemistry,1991,13:87-115.
    213.Wang R. C., Crawford N. M. Genetic identification of a gene involved inconstitutive, high affinity nitrate transport in higher plants. PNAS,1996,93:9297-9301.
    214.Wawrik B., Paul J. H., Tabita F. R. Real-time PCR quantification of rbcL(ribulose-1,5-bisphosphate carboxylase/oxygenase) mRNA in diatoms andpelagophytes. Applied and Environmental Microbiology,2002,68(8):3771-3779.
    215.Williams LE, Miller AJ. Transporters responsible for the uptake and partitioningof nitrogenous solutes. Annual Review of Plant Physiology and Plant MolecularBiology,2001,52:659-688.
    216.Wyman M., Davies J. T., Crawford D. W, et al. Molecular and physiologicalresponses of two classes of marine chromophytic phytoplankton (diatoms andprymnesiophytes) during the development of nutrient-stimulated blooms. Appliedand Environmental Microbiology,2000,66(6):2349-2357.
    217.Wyman M., Davies J. T., Weston K., et al. Ribulose-1,5-bisphosphatecarboxylase/oxygenase (RubisCO) gene expression and photosynthetic activity innutrient-enriched mesocosm experiments. Estuarine, Coastal and Shelf Science,1998,46(2):23-33.
    218.Xu Z., Zou D., Gao K. Effects of elevated CO2and phosphorus supply on growth,photosynthesis and nutrient uptake in the marine macroalga Gracilarialemaneiformis (Rhodophyta). Botanica Marina,2010,53(2):123-129.
    219.Zevenboom W. Ecophysiology of nutrient uptake, photosynthesis and growth.Canadian Bulletin of Fisheries Aquatic Sciences,1986,214:391-422.
    220.Zhang H., Hou Y., Lin S. Isolation and characterization of PCNA from thedinoflagellate Pfiesteria piscicida. Journal of Eukaryotic Microbiology,2006,53:142-150.
    221.Zhang P., Sun Y., Hsu H., Zhang L., Zhang Y., Lee M. Y. W. T. The interdomainconnector loop of human polymerase. Journal of Biological Chemistry,1998,273:713-719.
    222.Zhao Y F, Yu Z M, Song X X, et al. Biochemical compositions of two dominantbloom-forming species isolated from the Yangtze River Estuary in response todifferent nutrient conditions. Journal of Experimental Marine Biology andEcology,2009,368(1):30-36.
    223.Zhou J. J., Fernandez E., Galvan A. et al. A high affinity nitrate transport systemfrom Chlamydomonas requires two gene products. FEBS Lett.2000,466:225-227.
    224.Zhou M J, Shen Z L, Yu R C. Responses of a coastal phytoplankton communityto increased nutrient input from the Changjiang (Yangtze) River. Continental ShelfResearch,2008,28(12):1483-1489.
    225.Zingone A., Oksfeldt E., Henrik. The diversity of harmful algal blooms: achallenge for science and management. Ocean and Cosastal Management,2000,43:725-748.
    226.Zurawski G, et al. The structure of the gene for the large subunit of ribulose1,5bisphosphate carboxylase from spinach chloroplast DNA. Nucleic Acids Res.1981(9):3251-3270.
    227.陈纪新,黄邦钦,李少菁.海洋微型浮游植物分子生态学研究进展.厦门大学学报(自然科学版),2006,45:32-39.
    228.郭玉洁,杨则禹.1992.浮游植物.见:刘瑞玉主编.胶州湾生态系统与生物资源.北京:科学出版社,136-169.
    229.何闪英,吴小刚.赤潮研究中圆海链藻实时荧光定量PCR检测方法的建立.水产学报,2007,31(2):193-198.
    230.何闪英.中肋骨条藻增殖细胞核抗原基因表达量与生长关系的研究.中国海洋大学博士学位论文,2007.
    231.金海燕.近百年来长江口浮游植物群落变化的沉积记录研究.华东师范大学博士学位论文.2009.
    232.李立人.植物生理与分子生物学(第二版).北京:科学出版社.1999.223-236
    233.梁英,麦康森,孙世春,于道德.硝酸钠浓度对三角褐指藻(Phaeodactylumtricornutum) MACC/B226生长及脂肪酸组成的影响.海洋科学,2002,6(5):48-51
    234.梁英,麦康森,孙世春.硝酸钠浓度对2株三角褐指藻生长及脂肪酸组成的影响.黄渤海海洋,2001,19(4):56-62.
    235.刘皓,高永利,殷克东,袁翔城,徐杰, Harrison Paul J.不同氮磷比对中肋骨条藻和威氏海链藻生长特性的影响.热带海洋学报,2010,29(6):92-97.
    236.陆斗定,齐雨藻, Goebel J,等.东海原甲藻修订及与相关原甲藻的分类学比较.应用生态学报,2003,14(7):1060-1064
    237.欧林坚.典型赤潮生物对磷的生理生态响应.厦门大学博士学位论文.2006.
    238.齐雨藻等.中国沿海赤潮.北京:科学出版社,2004.
    239.齐雨藻,王艳.我国东海赤潮原甲藻应属哪种?应用生态学报.2003,14(7):1188-1190.
    240.沈志良.渤海湾及其东部水域化学要素的分布.海洋科学集刊,1999,41:51-59.
    241.王海黎,洪华生,黄邦钦.海洋环境中溶解有机磷的生物活性初探.厦门大学学报(自然科学版),1995,34(3):416-420.
    242.王金花,唐洪杰,杨茹君,王修林.氮磷营养盐对中肋骨条藻生长及硝酸还原酶活性的影响.海洋科学,2008,12:64-68.
    243.王艳,唐海溶.不同形态的磷源对球形棕囊藻生长及碱性磷酸酶的影响.生态科学,2006,25(1):38-40.
    244.王云龙,袁骐,沈新强.长江口及邻近水域春季浮游植物的生态特征.中国水产科学,2005,12:300-306.
    245.武宝轩,蒋海鹰,等.几种海藻和赤潮的DCMU增益荧光比率及其与增值速率的关系.华南植物学报(试刊),1992,1:73-79.
    246.武宝轩,蒋海鹰,齐雨藻.两种赤潮藻对温度、氮、磷营养的反应及活体荧光特性的研究.暨南大学学报,1993,14(1):73-79.
    247.杨小龙,朱明远.浮游植物营养代谢研究新进展.黄渤海海峡,1990,8(3):65-74.
    248.俞志明,沈志良,等.长江口水域富营养化.北京:科学出版社,2011.
    249.张清春,于仁诚,周名江,等.不同类型含磷营养物质对微小亚历山大藻(Alexandrium minutum)生长和毒素产生的影响.海洋与湖沼,2005,36(5):465-474.
    250.赵丽媛.东海原甲藻增殖细胞核抗原基因表达量与生长关系的研究.中国海洋大学博士学位论文,2009.
    251.赵卫红,焦念志,赵增霞.海水中总氮和总磷的同时测定.海洋科学,1999(05):64-66.
    252.赵艳芳,俞志明,宋秀贤,等.不同形态磷源对长江口两种主要赤潮原因藻生长及磷酸酶活性的影响.环境科学,2009a,30(3):693-699.
    253.赵艳芳,俞志明,宋秀贤,等.营养盐对长江口2种主要赤潮原因藻光合色素和光合作用影响的比较研究.环境科学,2009b,30(3):700-706.
    254.周名江,于仁成.有害赤潮的形成机制、危害效应与防治对策.自然杂志.2007,29(02):72-77+125-126.
    255.周名江,朱明远.―我国近海有害赤潮发生的生态学、海洋学机制及预测防治‖研究进展.地球科学进展.2006,21(07):673-679+764-765.
    256.朱卓毅.长江口及邻近海域低氧现象的探讨.华东师范大学博士学位论文.2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700