用户名: 密码: 验证码:
S1P、Phyto-S1P和胞质pH在暗诱导气孔关闭中的作用及其与H_2O_2、NO的关系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以蚕豆和拟南芥为材料,借助气孔试验、激光共聚焦显微镜技术、高效液相色谱技术,研究了鞘氨醇-1-磷酸(S1P)、植物鞘氨醇-1-磷酸(Phyto-S1P)和胞质pH在暗诱导气孔关闭中的作用及其与H202和NO的关系。所得实验结果主要如下:
     1.暗明显诱导蚕豆保卫细胞胞质pH、H202和NO水平升高且引起气孔关闭,弱酸丁酸、H202调节剂(H202清除剂ASA、H202清除酶CAT、H202产生酶NADPH氧化酶抑制剂DPI)和NO调节剂(NO清除剂cPTIO、NO合酶抑制剂L-NAME)分别显著抑制上述暗效应,显示胞质碱化、H2O2和NO均参与暗诱导气孔关闭。暗处理10mmin胞质pH即显著升高,20mmin时H202和NO水平才迅速升高,光下甲胺显著提高H202和NO水平,暗中丁酸显著降低H202和NO水平,显示胞质碱化是H202和NO产生的诱导因素。ASA、CAT和DPI明显抑制甲胺触发的NO产生,cPTIO和L-NAME明显抑制甲胺诱导的H2O2产生,显示H2O2介导甲胺触发的NO产生,NO介导甲胺诱导的H2O2产生。胞外和胞内钙螯合剂BAPTA、BAPTA-AM显著阻止暗诱导胞质碱化、H2O2、NO产生和气孔关闭,显示钙通过诱导胞质碱化、H202和NO产生调节暗诱导气孔关闭。
     2.暗明显诱导蚕豆S1P和H2O2水平提高且促进气孔关闭,长链碱基激酶抑制剂DL-threo-二氢鞘氨醇(DL-threo-DHS)和N,N-二甲基鞘氨醇(DMS)显著抑制这些暗效应,外源S1P明显诱导气孔关闭和H2O2产生,ASA、CAT和DPI显著抑制S1P的这些效应,显示S1P合成通过触发保卫细胞H2O2产生介导暗诱导气孔关闭。DL-threo-DHS和DMS显著抑制暗诱导保卫细胞胞质碱化和气孔关闭,外源S1P明显诱导保卫细胞胞质碱化和气孔关闭,丁酸明显降低外源S1P的这些效应,显示S1P合成通过诱导胞质碱化介导暗诱导气孔关闭。此外,丁酸明显抑制暗诱导H2O2产生,结合前述S1P通过诱导胞质碱化和H2O2产生调节暗诱导气孔关闭的结果,能够得出S1P引起的胞质碱化是H202产生的先决条件的结论。外源S1P处理后保卫细胞胞质pH升高较H202增加滞后期短且更早达到峰值以及丁酸显著抑制S1P诱导H202产生也支持这一结论。
     3.暗明显诱导蚕豆S1P和NO水平提高且促进气孔关闭,DL-threo-DHS和DMS显著抑制这些暗效应,外源S1P明显诱导气孔关闭和NO产生,cPTIO和L-NAME显著抑制S1P的这些效应,显示S1P合成通过触发保卫细胞NO产生介导暗诱导气孔关闭。DL-reo-DHS和DMS显著抑制暗诱导保卫细胞胞质碱化和气孔关闭,外源S1P明显诱导保卫细胞胞质碱化和气孔关闭,丁酸明显降低外源S1P的这些效应,显示S1P合成通过诱导胞质碱化介导暗诱导气孔关闭。此外,丁酸明显抑制暗诱导NO产生,结合前述S1P通过诱导胞质碱化和NO产生调节暗诱导气孔关闭的结果,能够得出S1P引起的胞质碱化是NO产生的先决条件的结论。外源S1P处理后保卫细胞胞质pH升高较NO增加滞后期短且更早达到峰值以及丁酸显著抑制S1P诱导NO产生也支持这一结论。
     4. DL-threo-DHS、DMS和SPHK1突变显著抑制暗诱导拟南芥气孔关闭,这些效应可被Phyto-S1P逆转,显示Phyto-S1P参与暗诱导拟南芥气孔关闭。DPI和AtRbohF, AtRbohD/F突变显著抑制、AtRbohD突变不抑制暗诱导拟南芥气孔关闭和H202产生,显示AtrbohF催化产生的H202参与暗诱导拟南芥气孔关闭。L-NAME、硝酸还原酶(NR)抑制剂]Na2WO4和AtNOAl, Nia1、Nia1Nia2突变显著抑制、Nia2突变不抑制暗诱导拟南芥气孔关闭和NO产生,显示暗诱导拟南芥气孔关闭过程中的NO产生依赖于Nia1途径与AtNOA1途径。
     5.外源H202和SNP显著逆转DL-threo-DHS、DMS和SPHK1突变抑制暗诱导气孔关闭的效应,但Phyto-S1P不能逆转ASA、CAT和cPTIO抑制暗诱导气孔关闭的效应,而且DL-threo-DHS、DMS和SPHK1突变显著抑制暗诱导H202和NO产生。这些结果表明Phyto-SIP通过触发保卫细胞H202和NO产生介导暗诱导拟南芥气孔关闭。另外,ASA、CAT、DPI和AtRbohF、AtRbohD/F突变显著阻止、AtRbohD突变不阻止外源Phyto-S1P诱导气孔关闭及H202产生,cPTO、L-NAME、Na2WO4和AtNOA1、Nia1、NialNia2突变显著阻止、Nia2突变不阻止外源Phyto-S1P诱导气孔关闭及NO产生。这些结果进一步证明Phyto-S1P通过触发保卫细胞H202和NO产生介导暗诱导拟南芥气孔关闭,Phyto-S1P诱导的H2O2产生由AtrbohF催化,NO产生依赖于Nial途径和AtNOAl途径。
     综上所述,本文的结果表明暗提高了蚕豆叶片S1P含量和保卫细胞胞内钙水平,因而引起了胞质碱化,最终诱导H202、NO产生和气孔关闭。另外,Phyto-S1P介导的暗诱导拟南芥气孔关闭中H2O2的产生依赖于AtrbohF,NO的产生依赖于Nia1途径和AtNOAl途径。
In the present study, by means of stomatal bioassays, laser scanning confocal microscopy and high-performance liquid chromatography, whether sphingosine-1-phosphate (SIP), phytosphingosine-1-phosphate (Phyto-S1P) and cytosolic pH are involved in darkness-induced stomatal closure in Vicia faba or Arabidopsis thaliana were studied, and the interrelationships between S1P, Phyto-S1P, cytosolic pH and H2O2, NO during darkness-induced stomatal closure were revealed. The main results are as follows:
     1. Darkness obviously raised cytosolic pH, hydrogen peroxide (H2O2) and nitric oxide (NO) levels in guard cells while inducing Vicia faba stomatal closure. These darkness effects were prevented by weak acid butyric acid, H2O2modulators ASA, CAT, DPI and NO modulators c-PTIO, L-NAME, respectively. The data suggested that cytosolic alkalization, H2O2and NO all participate in darkness-induced stomatal closure. During darkness treatment, pH rise became noticeable at10min, while H2O2and NO production significantly increased at20min. The H2O2and NO levels were increased by methylamine in light and decreased by butyric acid in darkness. The results showed that cytosolic alkalization induces H2O2and NO production. ASA, CAT and DPI suppressed NO production by methylamine, c-PTIO and L-NAME prevented H2O2generation by methylamine, suggesting that H2O2mediates NO synthesis by alkalization, and vice versa. Extracellar and intracellar calcium chelators BAPTA and BAPTA-AM restricted darkness-induced cytosolic alkalization, H2O2and NO production and stomatal closure, indicating calcium may act upstream of cytosolic alkalization, H2O2and NO production during darkness-induced stomatal closure.
     2. Darkness substantially raised SIP and H2O2levels and closed stomata. These darkness effects were significantly suppressed by DL-threo-dihydrosphingosine (DL-threo-DHS) and N,N-dimethylsphingosine (DMS), two inhibitors of long-chain base kinases. Exogenous S1P led to stomatal closure and H2O2production, and the effects of S1P were largely suppressed by the H2O2modulators ASA, CAT and DPI. These results indicated that SIP mediates darkness-induced stomatal closure by triggering H2O2production. In addition, DL-threo-DHS and DMS significantly suppressed darkness-induced cytosolic alkalization in guard cells and stomatal closure. Exogenous S1P caused cytosolic alkalization and stomatal closure, which could be largely abolished by butyric acid. These results demonstrated that SIP synthesis is necessary for cytosolic alkalization during stomatal closure by darkness. Furthermore, together with the data described above, inhibition of darkness-induced H2O2production by butyric acid revealed that SIP synthesis-induced cytosolic alkalization is a prerequisite for H2O2production during stomatal closure by darkness, a conclusion supported by the facts that the pH increase caused by exogenous S1P had a shorter lag and peaked faster than H2O2levels and that butyric acid prevented exogenous SIP-induced H2O2production.
     3. Darkness obviously raised SIP and NO levels and closed stomata. These darkness effects were largely suppressed by DL-threo-DHS and DMS. Exogenous SIP led to stomatal closure and NO production, and the effects of SIP were significantly prevented by cPTIO and L-NAME. These results indicated that S1P mediates darkness-induced stomatal closure by causing NO production. Furthermore, together with the data described above, inhibition of darkness-induced NO production by butyric acid revealed that SIP synthesis-induced cytosolic alkalization is necessary for NO production during stomatal closure by darkness. This conclusion were supported by the facts that the pH increase caused by exogenous SIP had a shorter lag and peaked faster than NO levels and that butyric acid prevented exogenous SI P-induced NO production.
     4. DL-threo-DHS, DMS and SPHK1mutation significantly inhibited darkness-induced stomatal closure in Arabidopsis thaliana, these effects were substantially reversed by exgenous Phyto-SIP, showing that Phyto-SIP is involved in darkness-induced stomatal closure. DPI and AtRbohF, AtRbohD/F mutation significantly suppressed darkness-induced stomatal closure and H2O2production, but AtRbohD did not, indicating that H2O2generated by AtrbohF is implicated in darkness-induced stomatal closure. In addition, L-NAME, tungstate and AtNOAl, Nial, NialNia2mutation evidently prevented darkness-induced stomatal closure and NO production, but Nia2mutation did not. The results showed that NO production is dependent on Nial and AtNOAl pathways during darkness-induced stomatal closure.
     5. Exogenous H2O2and SNP significantly reversed the inhibitory effects of DL-threo-DHS, DMS and SPHK1mutation on darkness-induced stomatal closure. However, the effects of ASA, CAT and cPTIO on this process couldn't be reversed by exogenous Phyto-SIP. In addition, DL-threo-DHS, DMS and SPHK1mutation largely depressed darkness-induced H2O2and NO production. These results indicated that Phyto-S1P mediates darkness-induced stomatal closure by triggering H2O2and NO production in Arabidopsis thaliana. The further results showed that ASA, CAT, DPI and AtRbohF, AtRbohD/F mutation significantly inhibited Phyto-SIP-induced stomatal closure and H2O2production, but AtRbohD mutation did not. cPTIO, L-NAME, Na2WO4and AtNOAl, Nial, NialNia2mutation could inhibit exogenous Phyto-S IP-induced stomatal closure and NO production, but Nia2mutation could not. The results showed that Phyto-S1P mediates darkness-induced stomatal closure via triggering AtrbohF-dependent H2O2production and AtNOAl-and Nial-dependent NO synthesis in Arabidopsis thaliana.
     In conclusion, our results suggested that darkness raises S1P content and intracellular calcium level, hence causes cytosolic alkalization, and finally induces H2O2, NO production and stomatal closure in Vicia faba. Additionally, H2O2production is dependent on AtrbohF and NO synthesis is associated with AtNOA1-and Nial-dependent pathways during Phyto-SIP-mediated darkness-induced stomatal closure in Arabidopsis thaliana.
引文
Abbas HK, Tanaka T, Duke SO, et al. Fumonisin-and AAL-toxin-induced disruption of sphingolipid metabolism with accumulation of free sphingoid bases [J]. Plant Physiol, 1994,106:1085-1093.
    Allan AC, Fluhr R. Two distinct sources of elicited reactive oxygen species in tobacco epidermal cells [J]. Plant Cell,1997,9:1559-1572.
    Allen GJ, Kuchitsu K, Chu SP, et al. Arabidopsis abil-1 and abi2-1 phosphatase mutations reduce abscisic acid-induced cytoplasmic calcium rises in guard cells [J]. Plant Cell,1999,11:1785-1798.
    Allen NS, Bennett MN, Cox DN, et al. Effects of nod factors on alfalfa root hair Ca++ and H+ currents and on cytoskeletal behavior [M]. In:Daniels M, ed, Advances in Molecular Genetics, Kluwer Academics, Dordrecht, The Netherlands,1994,3:107-113.
    Alvarea ME, Pennell RI, Meijer PJ, et al. Reactive oxygen intermediates mediate a systemic signal network in the establishment of plant immunity [J]. Cell,1998,92:773-784.
    An S, Bleu T, Huang W, Hallmark OG, et al. Identification of cDNAs encoding two G protein-coupled receptors for lysosphingolipids [J]. FEBS Lett,1997,417:279-282.
    An S, Zheng Y, Bleu T. Sphingosine 1-phosphate-induced cell proliferation, survival, and related signaling events mediated by G protein-coupled receptors Edg3 and Edg5 [J]. J Biol Chem,2000,275:288-296.
    An ZF, Jing W, Liu YL, et al. Hydrogen peroxide generated by copper amine oxidase is involved in abscisic acid-induced stomatal closure in Vicia faba [J]. J Exp Bot,2008,59: 815-825.
    Anderson L, Mansfield TA. The effects of nitric oxide pollution on the growth of tomato [J]. Environ Pollut,1979,20:113-121.
    Apel K, Hirt H. Reactive oxygen species:metabolism, oxidative stress, and signal transduction [J]. Annu Rev Plant Biol,2004,55:373-399
    Apostol I, Heinstein PF, Low PS. Rapid stimulation of an oxidative burst during elicitation of cultured plant cells:Role in defense and signal transduction [J]. Plant Physiol,1989:109-116.
    Arasimowicz M, Floryszak-Wieczorek J. Nitric oxide as a bioactive signalling molecule in plant stress responses [J]. Plant Sci,2007,172:876-887.
    Assmann SM. Signal transduction in stomatal guard cells [J]. Annu Rev Cell Biol,1993, 345-375.
    Barkla BJ, Vera-Estrella R, Maldonado-Gama M, et al. Abscisic acid induction of vacuolar H+-ATPase activity in Mesembryanthemum crystallinum is developmentally regulated [J]. Plant Physiol,1999,120:811-820.
    Bartha B, Kolbert Z, Erdei L. Nitric oxide production induced by heavy metals in Brassica juncea L. Czern. and Pisum sativum L [J]. Acta Biol Szegediensis,2005,49:9-12.
    Beffagna N, Romai G, Meraviglia G, et al. Effects of abscisic acid and cytoplasmic pH on potassium and chloride efflux in Arabidopsis thaliana seedlings [J]. Plant Cell Physiol,1997,38:503-510.
    Beligni MV, Fath A, Bethke PC, et al. Nitric oxide acts as an antioxidant and delays programmed cell death in barley aleurone layers [J]. Plant Physiol,2002,129:1642-1650.
    Beligni MV, Lamattina L. Is nitric oxide toxic or protective [J]? Trends Plant Sci,1999, 4:299-300.
    Beligni MV, Lamattina L. Nitric oxide stimulates seed germination and de-etiolation, and inhibits hypocotyl elongation, three light-inducible responses in plants [J]. Planta, 2000,210:215-221.
    Bertazzon A, Tsong TY. Study of effects of pH on the stability of domains in myosin rod by high-resolution differential scanning calorimetry [J]. Biochem,1990,29:6453-6459.
    Bethke PC, Badger MR, Jones RL. Apoplastic synthesis of nitric oxide by plant tissues [J]. Plant Cell,2004,16:332-341.
    Bethke PC, Libourel IG, Aoyama N, et al. The Arabidopsis aleurone layer responds to nitric oxide, gibberellin, and abscisic acid and is sufficient and necessary for seed dormancy [J]. Plant Physiol,2007,143:1173-1188.
    Bethke PC, Libourel IG, Jones RL. Nitric oxide reduces seed dormancy in Arabidopsis [J]. J Exp Bot,2006,57:517-526.
    Bibikova TN, Jakobs T, Dahse I, et al. Localized changes ion apoplastic and cytoplasmic pH are associated swith root hair development in Arabidopsis thaliana [J]. Development,1998,125:2925-2934.
    Binet MN, Humbert C, Lecourieux D, et al. Disruption of microtubular cytoskeleton induced by cryptogein, aan elicitor of hypersensitive response in tobacco cells [J]. Plant Physiol,2001,125:564-572.
    Blatt M R, Armstrong F. K+ channels of stomatal guard cells:abscisic acid-evoked control of the outward rectifier mediated by cytoplasmic pH [J]. Planta,1993,191:330-341.
    Blatt M R, Grabov A. Signal redundancy, gates and the integration in the control of ion channels for stomatal movement [J]. J Exp Bot,1997a,48:529-537.
    Blatt MR, Grabov A. Signalling gates in abscisic acid-mediated control of guard cells ion channels[J]. Physiol Plant,1997b,100:481-490.
    Blatt MR. Ca2+ signaling and control of guard cell volume in stomatal movements [J]. Curr Opin Plant Biol,2000:196-204.
    Blatt MR. K+ channels of stomatal guard cells. Characteristics of the inward rectifier and its control by pH [J]. J Gen Physiol,1992,99:615-644.
    Boonsirichai K, Sedbrook JC, Chen R, et al. ALTERED RESPONSE TO GRAVITY is a peripheral membrane protein that modulates gravity-induced cytoplasmic alkalinization and lateral auxin transport in plant statocytes [J]. Plant Cell,2003,15: 2612-2625.
    Botella JR, Arteca JM, Somodevilla M, et al. Calcium-dependent protein kinase gene expression in response to physical and chemical stimuli in mungbean (Vigna radiata)[J]. Plant Mol Biol,1996,30:1129-1137.
    Bothwell JHF, Ng CKY. The evolution of Ca2+ signaling in photosynthetic eukaryotes [J]. New Phytol,2005,166:21-38.
    Bouche N, Yellin A, Snedden WA, et al. Plant-specific calmodulin-binding proteins [J]. Annu Rev Plant Biol,2005,56:435-466.
    Boveris AD, Galatro A, Puntarulo S. Effect of nitric oxide and plant antioxidants on microsomal content of lipid radicals [J]. Biol Res,2000,33:159-165.
    Bradley DJ, Kjellborm P, Lamb C. Elicitor-and wound-induced oxidative cross-link of a praline-rich plant cell wall protein:a novel, rapid defense response [J]. Cell,1992:21-30.
    Bright J, Desikan R, Hancock JT, et al. ABA-induced NO generation and stomatal closure in Arabidopsis are dependent on H2O2 synthesis [J]. Plant J,2006,45:113-122. Brownlee C. Plant Signalling:Calcium First an Second [J]. Curr Biol,2003,13:923-924.
    Buehrer BM, Bell RM. Inhibition of sphingosine kinase in vitro and in platelets. Implications for signal transduction pathways [J]. J Biol Chem,1992,267:3154-3159.
    Buntemeyer K, Luthen H, Bottger M. Auxin-induced changes in cell wall extensibility of maize roots [J]. Planta,1998,204:515-519.
    Busa WB. Mechanisms and consequences of pH-mediated cell regulation [J]. Annu Rev Physiol,1986,48:389-402.
    Bush DR. Proton-coupled sugar and amino-acid transporters in plants [J]. Ann Rev Plant Physiol Plant Mol Biol,1993,44:513-542.
    Bush DS. Calcium regulation in plant cells and its role in signaling [J]. Annu Rev Plant Physiol Plant Mol Biol,1995,46:95-122.
    Candelore MR, Wright MJ, Tota LM, et al. Phytosphingosine 1-phosphate:a high affinity ligand for the S1P4/Edg-6 receptor [J]. Biochem Biophys Res Commun,2002, 297:600-606.
    Caro A, Puntarulo S. Nitric oxide decreases superoxide anion generation by microsomes from soybean embryonic axes [J]. Physiol Plant,1998,104:357-364.
    Chandok MR, Ytterberg AJ, Van Wijk KJ, et al. The pathogen-inducible nitric oxide synthase (iNOS) in plants is a variant of the P protein of the glycine decarboxylase complex [J]. Cell,2003,113:469-482.
    Chen M, Han G, Dietrich CR, et al.The essential nature of sphingolipids in plants as revealed by the functional identification and characterization of the Arabidopsis LCB1 subunit of serine palmitoyltransferase [J]. Plant Cell,2006,18:3576-3593.
    Chen M, Markham JE, Dietrich CR, et al. Sphingolipid long-chain base hydroxylation is important for growth and regulation of sphingolipid content and composition in Arabidopsis [J]. Plant cell,2008,20:1862-1878.
    Chen YL, Huang RF, Xiao YM, et al. Extracellular calmodulin-induced stomatal closure is mediated by heterotrimeric G protein and H2O2 [J]. Plant Physiol,2004,136: 4096-4103.
    Cheng SH, Willmann MR, Chen HC, et al. Calcium signaling through protein kinases. The Arabidopsis calcium-dependent protein kinase gene family [J]. Plant Physiol,2002, 129:469-485.
    Cheong YH, Sung SJ, Kim BG, et al. Constitutive overexpression of the calcium sensor CBL5 confers osmotic or drought stresstolerance in Arabidopsis [J]. Mol Cells,2010, 29:159-165.
    Clarke A, Desikan R, Hurst RD, et al. NO way back:Nitric oxide and programmed cell death in Arabidopsis thaliana suspension cultures [J]. Plant J,2000,24:667-677.
    Cleland RE. Kinetics of hormone-induced H+ excretion [J]. Plant Physiol,1976,58: 210-213.
    Collings DA, White RG, Overall RL. Ionic current changes associated with the gravity-induced bending response in roots of lea mays L [J]. Plant Physiol,1992,100:1417-1426.
    Cooney RV, Harwood PJ, Custer LJ, et al. Light-mediated conversion of nitrogen dioxide to nitric oxide by carotenoids [J]. Enviro Health Perspect,1994,102:460-462.
    Corpas FJ, Barroso JB, del Rio LA, et al. Peroxisomes as a source of reactive oxygen species and nitric oxide signal molecules in plant cells [J]. Trends Plant Sci,2001,6: 145-150.
    Correa-Aragunde N, Graziano M, et al. Nitric oxide plays a central role in determining lateral root development in tomato [J]. Planta,2004,218:900-905.
    Coursol S, Fan LM, Le Stunff H, et al. Sphingolipid signalling in Arabidopsis guard cells involves heterotrimeric G proteins [J]. Nature,2003,423:651-654.
    Coursol S, Le Stunff H, Lynch DV, et al. Arabidopsis sphingosine kinase and the effects of phytosphingosine-1-phosphate on stomatal aperture [J]. Plant Physiol,2005, 137:724-737.
    Crawford NM, Galli M, Tischner R, et al. Response to Zemojtel et al.:Plant nitric oxide synthase:back to square one [J]. Trends Plant Sci,2006,11:526-527.
    Crawford NM, Guo FQ. New insights into nitric oxide metabolism and regulatory functions [J]. Trends Plant Sci,2005,10:195-200.
    Crawford NM. Mechanisms for nitric oxide synthesis in plants [J]. J Exp Bot,2006,57: 471-478.
    Cross AR, Jones OTG. The effect of the inhibitor diphenylene iodonium on the superoxide-generating system of neutrophils. Specific labelling of a component polypeptide of the oxidase [J]. Biochem J,1986,237:111-116.
    Crowther GJ, Lynch DV. Characterization of sphinganine kinase activity in corn shoot microsomes [J]. Arch Biochem And Biophys,1997,337:284-290.
    D'Onofrio C, Lindberg S. Sodium induces simultaneous changes in cytosolic calcium and pH in salt-tolerant quince protoplasts [J]. J Plant Physiol,2009,166:1755-1763.
    Davies WJ, Zhang J. Root signals and the regulation of growth and development of roots in drying soil [J]. Annu Rev Plant Physiol Plant Mol Biol,1991,42:55-76. Davis DD. The fine control of cytosolic pH [J]. Physiol Plant,1986,67:702-706.
    Dean J, Harper J. Nitric-oxide and nitrous-oxide production by soybean and winged bean during the in vivo nitrate reductase assay [J]. Plant Physiol,1986,82:718-723.
    Delledonne M, Polverari A, Murgia I. The functions of nitric oxide-mediated signaling and changes in gene expression during the hypersensitive response [J]. Antioxid Redox Signal,2003,5:33-41.
    Delledonne M, Xia Y, Dixon RA, et al. Nitric oxide functions as a signal in plant disease resistance [J]. Nature,1998,394:585-588.
    Delledonne M, Zeier J, Marocco A, et al. Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response [J]. Proc Natl Acad Sci USA,2001,98:13454-13459.
    Desikan R, Burnet E, Hancock JT, et al. Harpin and hydrogen peroxide induce the expression of a homologue of gp91-phox in Arabidopsis thaliana suspension cultures [J]. J Exp Bot,1998,49:1767-1771.
    Desikan R, Cheung MK, Bright J, et al. ABA, hydrogen peroxide and nitric oxide signalling in stomatal guard cells [J]. J Exp Bot,2004a,55:205-212.
    Desikan R, Cheung MK, Clarkea A, et al. Hydrogen peroxide is a common signal for darkness-and ABA-induced stomatal closure in Pisum sativum [J]. Funct Plant Biol, 2004b,31:913-920.
    Desikan R, Griffiths R, Hancock J, et al. A new role for an old enzyme:nitrate reductase-mediated nitric oxide generation is required for abscisic acid-induced stomatal closure in Arabidopsis thaliana [J]. Proc Natl Acad Sci USA,2002,99:16314-16318.
    Desikan R, Last K, Harrett-Williams R, et al. Ethylene-induced stomatal closure in Arabidopsis occurs via AtrbohF-mediated hydrogen peroxide synthesis [J]. Plant J, 2006,47:907-916.
    Dickson RC. Sphingolipid functions in Saccharomyces cerevisiae:comparison to mammals [J]. Annu Rev Biochem,1998,67:27-48.
    Dietrich CR, Han G, ChenM, et al. Loss-of-function mutations and inducible RNAi suppression of Arabidopsis LCB2 genes reveal the critical role of sphingolipids in gametophytic and sporophytic cell viability [J]. Plant J,2008,54:284-298.
    Dietrich CR, Perera MA, Yandeau-Nelson M, et al. Characterization of two GL8 paralogs reveals that the 3-ketoacyl reductase component of fatty acid elongase is essential for maize (Zea mays L.) development [J]. Plant J,2005,42:844-861.
    Do JH, Park TK, Choi DK. A computational approach to the inference of sphingolipid pathways from the genome of Aspergillus fumigatus [J]. Curr Genet,2005,48:134-141.
    Doke N. Involvement of superoxide anion generation in the hypersensitive response of potato tuber tissues to infection with an incompatible race of Phytophthora infestans and to the hyphal wall components [J]. Physiol Plant Pathol,1983,23:345-357.
    Dolmetsch RE, Lewis RS, Goodnow CC, et al. Differential activation of transcription factors induced by Ca2+ response amplitude and duration [J]. Nature,1997,386:355-358.
    Dong FC, Wang PT, Zhang L, et al. The role of hydrogen peroxide in salicylic acid-induced stomatal closure in Vicia faba guard cells [J]. Acta Phytophysiol Sin,2001,27: 296-302.
    Dunn TM, Lynch DV, Michaelson LV, et al. A post-genomic approach to understanding sphingolipid metabolism in Arabidopsis thaliana [J]. Ann Bot,2004,93: 483-497.
    Durner J, Klessig DF. Nitric oxide as a signal in plants [J]. Curr Opin Plant Biol,1999, 2:369-374.
    Durner J, Wendehenne D, Klessig DE. Defense gene induction in tobacco by nitric oxide, cyclic GMP, and cyclic ADP-ribose [J]. Proc Natl Acad Sci USA,1998,95: 10328-10333.
    Echeverria E, Burns J, Felle HH. Compartmentation and cellular conditions controlling sucrose breakdown in mature acid lime [J]. Phytochem,1992,31:409-4095.
    Ederli L, Morettini R, Borgogni A, et al. Interaction between nitric oxide and ethylene in the induction of alternative oxidase in ozone-treated tobacco plants [J]. Plant Physiol, 2006,142:595-608.
    Edwards KL, Scott TK. Rapid growth responses of corn root segments:Effect of pH on elongation [J]. Planta,1974,119:27-37.
    Evans ML, Mulkey TJ, Vesper MJ. Auxin action on proton influx in corn roots and its correlation with growth [J]. Planta,1980,148:510-512.
    Fasano JM, Swanson SJ, Blancaflor EB, et al. Changes in root cap pH are required for the gravity response of the Arabidopsis root [J]. Plant Cell,2001,13:907-921.
    Feechan A, Kwon E, Yun BW, et al. A central role for S-nitrosothiols in plant disease resistance [J]. Proc Natl Acad Sci USA,2005,102:8054-8059.
    Feijo JA, Sainhas J, Hackett GR, et al. Growing pollen tubes possess a constitutive alkaline band in the clear zone and a growth-dependent acidic tip [J]. J Cell Biol,1999, 144:483-496.
    Felle H, Bentrup FW. Hexose transport and membrane depolarization in Riccia fluitans [J]. Planta,1980,147:471-476.
    Felle H, Bertl A. Light-induced cytoplasmic pH-changes and their interrelation to the activity of the electrogenic proton pump in Riccia fluitans [J]. Biochim Biophys Acta, 1986,848:176-182.
    Felle H. Stereospecificity and electrogenicity of amino acid transport in Riccia fluitans [J]. Planta,1981,152:505-512.
    Felle HH, Hanstein S. The apoplastic pH of the substomatal cavity of Vicia faba leaves and its regulation responding to different stress factors [J]. J Exp Bot,2002,53:1-10.
    Felle HH, Kondorosi E, Kondorosi A, et al. Rapid alkalinization in alfalfa root hairs in response to rhizobial lipochitooligosaccharide signals [J]. Plant J,1996,10:295-301.
    Felle HH, Kondorosi E, Kondorosi A, et al. The role of ion fluxes in Nod factor signalling in Medicago sativa [J]. Plant J,1998,13:455-463.
    Felle HH. Auxin causes oscillations of cytosolic free calcium and pH in Zea mays coleoptiles [J]. Planta,1988b,174:495-499.
    Felle HH. pH as second messenger in plants [M]. In:WF Boss and DJ Morre, eds. Second Messengers in Plant Growth and Development. New York:Alan R Liss,1989,6: 145-166.
    Felle HH. pH regulation in anoxic plants [J]. Ann Bot,2005,96:519-532.
    Felle HH. pH:Signal and messenger in plant cells [J]. Plant Biol,2001,3:577-591.
    Felle HH. Short-term pH regulation in plants [J]. Physiol Plant,1988a,74:583-591.
    Felle HH. The apoplastic pH of the Zea mays root cortex as measured with pH-sensitive microelectrodes:aspects of regulation [J]. J Exp Bot,1998,49:987-995.
    Felle HH. The H+/Cl- symporter in root-hair cells of Sinapis alba. An electrophy-siological study using ion-selective microelectrodes [J]. Plant Physiol,1994,106:1131-1136.
    Felle HH., Hanstein S, Steinmeyer R, et al. Dynamics of ionic activites in the apoplast of the substomatal cavity of intact Vicia faba leaves during stomatal closure by ABA and darkness [J]. Plant J,2000,24,297-304.
    Finkel T. Redox-dependent signal transduction [J]. FEBS Lett,2000,476:52-54.
    Floryszak-Wieczorek J, Arasimowicz M, Milczarek G, et al. Only an early nitric oxide burst and the following wave of secondary nitric oxide generation enhanced effective defence responses of pelargonium to a necrotrophic pathogen [J]. New Phytol,2007, 175:718-730.
    Freeman G, Ridgway EB. The role of intracellular calcium and egg activation in the hydrozoan Phialidium [J]. Dev Biol,1993,156:176-190.
    Fukuda Y, Kihara A, Igarashi Y. Distribution of sphingosine kinase activity in mouse tissues:contribution of SPHK1 [J]. Biochem Biophys Res Commun,2003,309:155-160.
    Funato K, Lombardi R, Vallee B, et al. Lcb4p is a key regulator of ceramide synthesis from exogenous long chain sphingoid base in Saccharomyces cerevisiae [J]. J Biol Chem,2003,278:7325-7334.
    Gao D, Knight MR, Trewavas AJ, et al. Self-reporting Arabidopsis expressing pH and [Ca2+] indicators unveil ion dynamics in the cytoplasm and in the apoplast under abiotic stress [J]. Plant Physiol,2004,134:898-908.
    Garces H, Durzan D, Pedroso MC. Mechanical stress elicits nitric oxide formation and DNA fragmentation in Arabidopsis thaliana [J]. Ann Bot,2001,87:567-574.
    Garcia-Mata C, Lamattina L. Nitric oxide and abscisic acid cross talk in guard cells [J]. Plant Physiol,2002,128:790-792.
    Garcia-Mata C, Lamattina L. Nitric oxide induces stomatal closure and enhances the adaptive plant responses against drought stress [J]. Plant Physiol,2001,126:1196-1204.
    Gehring CA, Irving HR, McConchie R, et al. Jasmonates induce intracellular alkaliniza-tion and closure of Paphiopedilum guard cells [J]. Ann Bot,1997,80:485-489.
    Gehring CA, Irving HR, Parish RW. Effects of auxin and abscisic acid on cytosolic calcium and pH in plant cells [J]. Proc Natl Acad Sci USA,1990,87:9645-9649.
    Gethyn JA, Kuchitsu K, Sarah PC, et al. Arabidopsis abil-1 and abi2-1 phosphatase mutations reduce abscisic acid-induced cytoplasmic calcium rises in guard cells [J]. Plant Cell,1999,11:1785-1798.
    Giba Z, Grubisic D, Todorovic S, et al. Effect of nitric oxide-releasing compounds on phytochrome-controlled germination of Empress tree seeds [J]. Plant Growth Res,1998, 26:175-181.
    Gibbon BC, Kropf FL. Cytosolic pH gradients associated with tip growth [J]. Science, 1994,263:1419-1421.
    Gilroy S, Read ND, Trewavas AJ. Elevation of cytoplasmic calcium by caged calcium or caged inositol trisphosphate initiates stomatal closure [J]. Nature,1990,346:769-771.
    Gilroy S, Trewavas A. A decade of plant signals [J]. BioEssays,1994,16:677-682. Godber BLJ, Doel JJ, Durgan J, et al. A new route to peroxynitrite:a role for xanthine oxidoreductase [J]. FEBS Lett,2000,475:93-96.
    Gonugunta VK, Srivastava N, Puli MR, et al. Nitric oxide production occurs after cytosolic alkalinization during stomatal closure induced by abscisic acid [J]. Plant Cell Environ,2008,31:1717-1724.
    Gonugunta VK, Srivastava N, Raghavendra AS. Cytosolic alkalinization is a common and early messenger preceding the production of ROS and NO during stomatal closure by variable signals, including abscisic acid, methyl jasmonate and chitosan [J]. Plant Signal Behav,2009,4:561-564.
    Gouvea CMCP, Souza JF, Magalh es CAN, et al. NO-releasing substances that induce growth elongation in maize root segments [J]. Plant Growth Reg,1997,21:183-187.
    Gow AJ, Ischiropoulos H. Nitric oxide chemistry and cellular signaling [J]. J Cell Physiol,2001,187:277-282.
    Grabov A, Blatt MR. Parallel control of the inward-rectifier K+channel by cytosolic free Ca2+ and pH in Vicia guard cells [J]. Planta,1997,201:84-95.
    Graziano M, Beligni MV, Lamattina L. Nitric oxide improves internal iron availability in plants [J]. Plant Physiol,2002,130:1852-1859.
    Grill E, Christmann A. A plant receptor with a big family [J]. Science,2007,315:1676-1677.
    Groom QJ, Torres MA, Fordham-Skelton AP, et al. RbohA, a rice homologue of the mammalian gp91phox respiratory burst oxidase gene [J]. Plant J,1996,10:515-522.
    Grubisic D, Giba Z, Konjevic R. The effect of organic nitrates in phytochrome-controlled germination of Paulownia tomentosa seeds [J]. Photochem Photobiol,1992, 56:629-632.
    Grubisic D, Konjevic R. Light and nitrate interaction in phytochrome-controlled germination of Paulownia tomentosa seeds [J]. Planta,1990,181:239-243.
    Guern J, Felle HH, Methieu Y, et al. Regulation of intracellular pH in plant cells [J]. Int Rev Cytol,1991,127:111-173.
    Guern J, Mathieu Y, Thomine S, et al. Plant cells counteract cytoplasmic pH changes but likely use these pH changes as secondary messages in signal perception [J]. Curr Top Plant Biochem Physiol,1992,11:249-269.
    Guo FQ, Okamoto M, Crawford NM. Identification of a plant nitric oxide synthase gene involved in hormonal signaling [J]. Science,2003,302:100-103.
    Guo L, Mishra G, Taylor K, et al. Connections between sphingosine kinase and phospholipase D in the abscisic acid signaling pathway in Arabidopsis [J]. J Biol Chem, 2012,287:8286-8296.
    Guo L, Mishra G, Taylor K, et al. Phosphatidic Acid binds and stimulates Arabidopsis sphingosine kinases [J]. J Biol Chem,2011,286:13336-13345.
    Gupta AS, Heinen JL, Holaday AS, et al. Increased resistance to oxidative stress in transgenic plants that overexpress chloroplastic Cu/Zn superoxide dismutase [J]. Proc Natl Acad Sci USA,1993,90:1629-1633.
    Hager A, Menzel H, Krauss A. Versuche und Hypothese zur Primarwirkung des Auxins beim Streckenwachstum [J]. Planta,1971,100:47-75.
    Hait NC, Fujita K, Lester RL, et al. Lcb4p sphingoid base kinase localizes to the Golgi and late endosomes [J]. FEBS Lett,2002,532:97-102.
    Han S, Tang R, Anderson LK, et al. A cell surface receptor mediates extracellular Ca2+ sensing in guard cells [J]. Nature,2003,425:196-200.
    Hansen UP, Moldaenke C, Tabrizi H, et al. The effect of transthylakoid proton uptake on cytosolic pH and the imbalance of ATP and NADH/H+production as measured by CO2-induced and light-induced deplarization of the plasmalemma [J]. Plant Cell Physiol, 1993,34:681-695.
    Hao F, Zhao S, Dong H, et al. Nial and Nia2 are involved in exogenous salicylic acid-induced nitric oxide generation and stomatal closure in Arabidopsis [J]. JIPB,2010,52: 298-307.
    Harper JF, Breton G, Harmon A. Decoding Ca2+signals through plant protein kinase [J]. Annu Rev Plant Biol,2004,55:263-288.
    Harrison R. Structure and function of xanthine oxidoreductase:Where are we now [J]? Free Radic Biol Med,2002,33:774-797.
    He DY, Yazaki Y, Nishizawa Y, et al. Gene activation by cytoplasmic acidification in suspension-cultured rice cells in response to the potent elicitor, N-acetylchitoheptaose [J]. Mol Plant-Microbe Interact,1998,11:1167-1174.
    He JM, Xu H, She XP, et al. The role and the interrelationship of hydrogen peroxide and nitric oxide in the UV-B-induced stomatal closure in broad bean [J]. Funct Plant Biol, 2005,32:237-247.
    He XX, Huang CL, Schuchman EH. Quantitative analysis of sphingosine-1-phosphate by HPLC after napthalene-2,3-dicarboxaldehyde (NDA) derivatization [J]. J Chromatography B,2009,877:983-990.
    He Y, Tang RH, Hao Y, et al. Nitric oxide represses the Arabidopsis floral transition [J]. Science,2004,305:1968-1971.
    Henriksson E, Henriksson KN. Salt-stress signalling and the role of calcium in the regulation of the Arabidopsis ATHB7 gene [J]. Plant Cell Environ,2005,28:202-210.
    Henry YA, Ducastel B, Guissani A. Basic chemistry of nitric oxide and related nitrogen oxides [A]. In:Henry YA, Guissani A, Ducastel (Eds.) B, Nitric oxide Research from Chemistry to Biology, Landes Co. Biomed. Publ, Austin, TX,1997:15-46.
    Herr DR, Fyrst H, Creason MB, et al. Characterization of the Drosophila sphingosine kinases and requirement for Sk2 in normal reproductive function [J]. J Biol Chem,2004, 279:12685-12694.
    Hetherington AM, Brownlee C. The generation of Ca2+ signals in plants [J]. Annu Rev Plant Biol,2004,55:401-427.
    Hrabak EM, Chan CW, Gribskov M, et al. The Arabidopsis CDPK-SnRK superfamily of protein kinases [J]. Plant Physiol,2003,132:666-680.
    Igarashi N, Okada T, Hayashi S, et al. Sphingosine kinase 2 is a nuclear protein and inhibits DNA synthesis [J]. J Biol Chem,2003,278:46832-46839.
    Imai H, Morimoto Y, Tamura K. Sphingoid base composition of monoglucosylceramide in Brassicaceae [J]. J Plant Physiol,2000,157:453-456.
    Imai H, Nishiura H. Phosphorylation of sphingoid long-chain bases in Arabidopsis: Functional characterization and expression of the first sphingoid long-chain base kinase gene in plants [J]. Plant Cell Physiol,2005,46:375-380.
    Inagaki Y, Li PY, Wada A, et al. Identification of functional nuclear export sequences in human sphingosine kinase 1 [J]. Biochem Biophys Res Commun,2003,311:168-173.
    Irving HR, Gehring CA, Parish RW. Changes in cytosolic pH and calcium of guard cells precede stomatal movements [J]. Proc Natl Acad Sci USA,1992,89:1790-1794.
    Islam MM, Hossain MA, Jannat R, et al. Cytosolic alkalization and cytosolic calcium oscillation in Arabidopsis guard cells response to ABA and MeJA [J]. Plant Cell Physiol,2010,51:1721-1730.
    Jamieson GA, Frazier WA, Schlesinger PH. Transient increase in intracellular pH during Dictyostelium differentiation [J]. J Cell Biol,1984,99:1883-1887.
    Jenkins GM, Hannun YA. Role for de novo sphingoid base biosynthesis in the heat-induced transient cell cycle arrest of Saccharomyces cerevisiae [J]. J Biol Chem,2001, 276:8574-8581.
    Jiang M, Zhang J. Involvement of plasma membrane NADPH oxidase in abscisic acid-and water stress-induced antioxidant defense in leaves of maize seedlings [J]. Planta, 2002,215:1022-1030.
    Johannes E, Collings DA, Rink JC, et al. Cytoplasmic pH dynamics in maize pulvinal cells induced by gravity vector changes [J]. Plant Physiol,2001,127:119-130.
    Joo J H, Wang S, Chen J G, et al. Different signalling and cell death roles of heterotrimeric G protein a and b subunits in the Arabidopsis oxidative stress response to ozone [J]. Plant Cell,2005,17:957-970.
    Kader MA, Lindberg S, Seidel T, et al. Sodium sensing induces different changes in free cytosolic calcium concentration and pH in salt-tolerant and salt-sensitive rice (Oryza sativa L.) cultivars [J]. Physiol Plant,2007,130:99-111.
    Kalbina 1, Strid A. The role of NADPH oxidase and MAP kinase phosphatase in UV-B-dependent gene expression in Arabidopsis [J]. Plant Cell Environ,2006,29:1783-1793.
    Keller T, Damude HG, Wemer D, et al. A plant homolog of the neutronphil NADPH oxidase gp91-phox subunit gene encodes a plasma membrane protein with Ca2+ binding motifs [J]. Plant Cell,1998,10:255-266.
    Kim MK, Park KS, Lee H, et al. Phytosphingosine-1-phosphate stimulates chemotactic migration of L2071 mouse fibroblasts via pertussis toxin-sensitive G-proteins [J]. Exp MolMed,2007,39:185-194.
    Klepper L. Evolution of nitrogen oxide gases from herbicide treated plant tissues [J]. WSSA Abstracts,1975,184.
    Klepper L. Nitric oxide (NO) and nitrogen dioxide (NO2) emissions from herbicide-treated soybean plants [J]. Atmos Environ,1979,13:537-542.
    Klepper L. Nitric-oxide emissions from soybean leaves during in vivo nitrate reductase assays [J]. Plant Physiol,1987,85:96-99.
    Klepper L. NOx evolution by soybean leaves treated with salicylic acid and selected derivatives [J]. Pestic Biochem Phys,1991,39:43-48.
    Klessig DF, Durner J, Noad R, et al. Nitric oxide and salicylic acid signaling in plant defense [J]. Proc Natl Acad Sci USA,2000,97:8849-8855.
    Kluk MJ, Hla T. Signaling of sphingosine-1-phosphate via the SIP/EDG-family of G-protein-coupled receptors [J]. Biochim Biophys Acta,2002,1582(1-3):72-80.
    Knight H, Trewavas AJ, Knight MR. Calcium signalling in Arabidopsis thaliana responding to drought and salinity [J]. Plant J,1997:1067-1078.
    Kohama T, Olivera A, Edsall L, et al. Molecular cloning and functional characterization of murine sphingosine kinase [J]. J Biol Chem,1998,273:23722-23728.
    Kohler B, Hills A, Blatt M R. Control of guard cell ion channels by hydrogen peroxide and abscisic acid indicates their action through signaling pathways [J]. Plant Physiol, 2003,131:385-388.
    Kojima H, Nakatsubo N, Kikuchi K, et al. Detection and imaging of nitric oxide with novel fluorescent indicators:diaminofluoresceins [J]. Anal Chem,1998,70:2446-2453.
    Kolbert Z, Bartha B, Erdei L. Exogenous auxin-induced NO synthesis is nitrate reductase-associated in Arabidopsis thaliana root primordia [J]. J Plant Physiol,2008, 165:967-975.
    Kolla VA, Vavasseur A, Raghavendra AS. Hydrogen peroxide production is an early event during bicarbonate induced stomatal closure in abaxial epidermis of Arabidopsis [J]. Planta,2007,225:1421-1429.
    Kolukisaoglu U, Weinl S, Blazevic D, et al. Calcium sensors and their interacting protein kinases, genomics of the Arabidopsis and rice CBL-CIPK signaling networks [J]. Plant Physiol,2004,134:43-58.
    Kovtun Y, Chin W L, Tena G, et al. Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade [J]. Proc Natl Acad Sci USA,2000,97:2940-2945.
    Kropf DL, Henry CA, Gibbon BC. Measurement and manipulation of cytosolic pH in polarizing zygotes [J]. Eur J Cell Biol,1995,68:297-305.
    Kurosaki F, Nagase H, Nishi A. The elicitation of phytoalexins by Ca2+ and cyclic AMP in carrot cells [J]. Phytochem,1987,26:1919-1923.
    Kwak J M, Mori I C, Pei Z M, et al. NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis [J]. EMBO J,2003,22: 2623-2633.
    Lamattina L, Garcia-Mata C, Graziano M, et al. Nitric oxide:The versatility of an extensive signal molecule [J]. Annu Rev Plant Biol,2003,54:109-136.
    Lamb JA, Allen PG, Tuan BY, et al. Modulations of gelsolin function [J]. J Biol Chem, 1993,268:8999-9004.
    Lamotte O, Courtois C, Barnavon L, et al. Nitric oxide in plants:The biosynthesis and cell signalling properties of a fascinating molecule [J]. Planta,2005,221:1-4.
    Lamotte O, Courtois C, Dobrowolska G, et al. Mechanisms of nitric-oxide-induced increase of free cytosolic Ca concentration in Nicotiana plumbaginifolia cells [J]. Free Radic Biol Med,2006,40:1369-1376.
    Lamotte O, Gould K, Lecourieux D, et al. Analysis of nitric oxide signalling functions in tobacco cells challenged by the elicitor cryptogein [J]. Plant Physiol,2004,135:516-529.
    Lanteri ML, Pagnussat GC, Lamattina L. Calcium and calcium-dependent protein kinases are involved in nitric oxide-and auxin-induced adventitious root formation in cucumber [J]. J Exp Bot,2006,57:1341-1351.
    Le Stunff H, Milstien S, Spiegel S. Generation and metabolism of bioactive sphingosine-1-phosphate [J]. J Cell Biochem,2004,92:882-899.
    Lee J, Rudd JJ. Calcium-dependent protein kinases, versatile plant signaling components necessary for pathogen defence [J]. Trends Plant Sci,2002,7:97-98.
    Lee S, Choi H, Suh S, et al. Oligogalacturonic acid and chitosan reduce stomatal aperture by inducing the evolution of reactive oxygen species from guard cells of tomato and Commelina communis [J]. Plant Physiol,1999,121:147-152.
    Lee Y, Jung JW, Kim SK, et al. Ethylene-induced opposite redistributions of calcium and auxin are essential components in the development of tomato petiolar epinastic curvature [J]. Plant Physiol Biochem,2008,46:685-693.
    Legendre L, Yueh YG, Crain R, et al. Phospholipase C activation during elicitation of the oxidative burst in cultured plant cells [J]. J Biol Chem,1993,268:24559-24563.
    Leshem YY, Haramaty E. The characterization and contrasting effects of the nitric oxide free radical in vegetative stress and senescence of Pisum sativum Linn, foliage [J]. J Plant Physiol,1996,148:258-263.
    Leshem YY, Wills RBH, Ku VVV. Evidence for the function of the free radical gas-nitric oxide-as an endogenous maturation and senescence regulating factor in higher plants [J]. Plant Physiol Biochem,1998,36:825-833.
    Leshem YY. Nitric oxide in biological systems [J]. Plant Growth Regul,1996,18:155-159.
    Levine A, Pennell ri, Alvarez ME, et al. Calcium-mediated apoptosis in a plant hypersensitive disease resisance response [J]. Curr Biol,1996,6:427-437.
    Levine A, Tenhaken R, Dixon R A. H2O2 from the oxidative burst orchestrates the plant hypersensitive response [J]. Cell,1994:583-593.
    Liang H, Yao N, Song JT, et al. Ceramides modulate programmed cell death in plants [J]. Genes Dev,2003,17:2636-2641.
    Lillo C, Meyer C, Lea US, et al. Mechanism and importance of post-translational regulation of nitrate reductase [J]. J Exp Bot,2004,55:1275-1282.
    Liu H, Sugiura M, Nava VE, et al. Molecular cloning and functional characterization of a novel mammalian sphingosine kinase type 2 isoform [J]. J Biol Chem,2000b,275: 19513-19520.
    Liu H, Toman RE, Goparaju S, et al. Sphingosine kinase type 2 is a putative BH3-only protein that induces apoptosis [J]. J Biol Chem,2003b,278:40330-40336.
    Liu J, Liu GH, Hou LX, Liu X. Ethylene-induced nitric oxide production and stomatal closure in Arabidopsis thaliana depending on changes in cytosolic pH [J]. Chinese Sci Bull,2010,55:2403-2409.
    Liu T, van Staden J, Cress WA. Salinity induced nuclear and DNA degradation in meristematic cells of soybean roots [J]. Plant Growth Regul,2000a,30:49-54.
    Liu X, Shi WL, Zhang SQ, et al. Nitric oxide involved in signal transduction of Jasmonic acid-induced stomatal closure of Vicia faba L [J]. Chinese Sci Bull,2005,50: 520-525.
    Liu X, Zhang SQ, Lou CH. Involvement of nitric oxide in the signal transduction of salicylic acid regulating stomatal movement [J]. Chinese Sci Bull,2003a,48:449-452.
    Lu D, Zhang X, Jiang J, An GY, et al. NO may function in the downstream of H2O2 in ABA-induced stomatal closure in Vicia faba L [J]. Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao,2005,31:62-70.
    Luan S, Kudla J, Rodriguez-Concepcion M, et al. Calmodulins and calcineurin B-like proteins, calcium sensors for specific signal response coupling in plants [J]. Plant Cell, 2002,14:389-400.
    Lucas WJ. Photosynthetic assimilation of exogeneous HCO3- by aquatic plants [J]. Annu Rev Plant Physiol,1983,34:71-104.
    Luttge U, Smith JAC, Marigo G. Membrane transport, osmoregulation, and the control of CAM. In Crassulacean acid metabolism (Ting, I. P., Gibbs, M., eds.), Rockville:Am. Soc. Plant Physiologists,1982,69-91.
    Lynch DV, Chen M, Cahoon EB. Lipid signaling in Arabidopsis:no sphingosine? no problem [J]! Trends Plant Sci,2009,14:463-466.
    Lynch DV, Dunn TM. An introduction to plant sphingolipids and a review of recent advances in understanding their metabolism and function [J]. New Phytol,2004,161: 677-702.
    Lynch J, Polito VS, Lauchli A. Salinity stress increases cytoplasmic Ca activity in maize root protoplasts [J]. Plant Physiol,1989,90:1271-1274.
    Mackerness SAH, John CF, Jordan B, et al. Early signaling components in ultraviolet-B responses:Distinct roles for different reactive oxygen species and nitric oxide [J]. FEBS Lett,2001,489:237-242.
    Mader M, Fussl R. Role of peroxidase in lignification of tobacco cells. Ⅱ. Regulation by phenolic compounds [J]. Plant Physiol,1982,70:1132-1134.
    Magalhaes JR, Monte DC, Durzan D. Nitric oxide and ethylene emission in Arabidopsis thaliana [J]. Physiol Mol Biol Plants,2000,6:117-127.
    Mansfield TA, Hetherington AM, Atkinson CJ. Some current aspects of stomatal physiology [J]. Annu Rev Plant Physiol Plant Mol Biol,1990,41:55-70.
    Markham JE, Li J, Cahoon EB, et al. Separation and identification of major plant sphingolipid classes from leaves [J]. J Biol Chem,2006,281:22684-22694.
    Mata CG, Lamattina L. Nitric oxide induces stomatal closure and enhances the adaptive plant responses against drought stress [J]. Plant Physiol,2001,126:1196-1204.
    Mattie M, Brooker G, Spiegel S. Sphingosine-1-phosphate, a putative second messenger, mobilizes calcium from internal stores via an inositol trisphosphate-independent pathway [J]. J Biol Chem,1994,269:3181-3188.
    Mayer B, Hemmens. Biosynthesis and action of nitric oxide in mammalian cell [J]. Trends Biochem Sci,1997,22:477-481.
    McAinsh MR, Brownlee C, Hetherington AM. Abscisic acid-induced elevation of guard cell cytosolic Ca2+ precedes stomatal closure [J]. Nature,1990,343:186-188.
    McAinsh MR, Brownlee C, Hetherington AM. Calcium ions as second messengers in guard signaling [J]. Physiol Plant,1997,100:16-29.
    McAinsh MR, Clayton H, Mansfield TA, et al. Changes in stomatal behaviour and guard cell cytosolic free calcium in response to oxidative stress [J]. Plant Physiol,1996, 111:1031-1042.
    Medvedev SS. Calcium signaling system in plants [J]. Russian J Plant Physiol,2005,52: 249-270.
    Melotto M, Underwood W, Koczan J, et al. Plant stomata function in innate immunity against bacterial invasion [J]. Cell,2006,126:969-980.
    Michaelson LV, Zauner S, Markham JE, et al. Functional characterization of a higher plant sphingolipid A4-desaturase:Defining the role of sphingosine and sphingosine-1-phosphate in Arabidopsis [J]. Plant Physiol,2009,149,487-498.
    Millar TM, Stevens CR, Blake DR. Xanthine oxidase can generate nitric oxide from nitrate in ischaemia [J]. Biochemical Society Transactions,1997,25:528S.
    Mishina TE, Lamb C, Zeier J. Expression of a nitric oxide degrading enzyme induces a senescence programme in Arabidopsis [J]. Plant Cell Environ,2007,30:39-52.
    Modolo LV, Augusto O, Almeida IMG, et al. Decreased arginine and nitrite levels in nitrate reductase-deficient Arabidopsis thaliana plants impair nitric oxide synthesis and the hypersensitive response to Pseudomonas syringae [J]. Plant Sci,2006,171:34-40.
    Modolo LV, Cunha FQ, Braga MR, et al. Nitric oxide synthase-mediated phytoalexin accumulation in soybean cotyledons in response to the Diaporthe phaseolorum f.sp. Meridionalis elicitor. Plant Physiol,2002,130:1288-1297.
    Monshausen GB, Zieschang HE, et al. Differential proton secretion in the apical elongation zone caused by gravistimulation is induced by a signal from the root cap [J]. Plant Cell Environ,1996,19:1408-1414.
    Moreau M, Lee GI, Wang Y, et al. AtNOS/Al is a functional Arabidopsis thaliana cGTPase and not a nitric oxide synthase [J]. J Biol Chem,2008,283:32957-32967.
    Muhling KH, Plieth C, Hansen UP, et al. Apoplastic pH of intact leaves of Vicia faba as influenced by light [J]. J Exp Bot,1995,46:377-382.
    Murata Y, Pei Z M, Mori I C, et al. Abscisic acid activation of plasma membrane Ca2+ channels in guard cells requires cytosolic NAD(P)H and is differentially disrupted upstream and downstream of reactive oxygen species production in abil-1 and abi2-l protein phosphatase 2C mutants [J]. Plant Cell,2001,13:2513-2523.
    Nagiec MM, Skrzypek M, Nagiec EE, et al. The LCB4 (YOR171c) and LCB5 (YLR260w) genes of Saccharomyces encode sphingoid long chain base kinases [J]. J Biol Chem, 1998,273:19437-19442.
    Nathan C, Xie QW. Nitric oxide synthase:roles tolls, and controls [J]. Cell,1994,78: 915-918.
    Nava VE, Lacana E, Poulton S, et al. Functional characterization of human sphingosine kinase-1 [J]. FEBS Lett,2000,473:81-84.
    Neill S, Barros R, Bright J, et al. Nitric oxide stomatal closure, and abiotic stress [J]. J Exp Bot.2008a,59:165-176.
    Neill S, Desikan R, Hancock J. Hydrogen peroxide signalling [J]. Curr Opin Plant Biol, 2002a,5:388-395.
    Neill SJ, Barros R, Bright J, et al. Nitric oxide evolution and perception [J]. J Exp Bot, 2008b,59(1):25-35.
    Neill SJ, Desikan R, Clarke A. Hydrogen peroxide and nitric oxide as signalling molecules in plants [J]. J Exp Bot,2002b,53:1237-1242.
    Neill SJ, Desikan R, Clarke A. Nitric oxide is a novel component of abscisic acid signalling in stomatal guard cells [J]. Plant Physiol,2002c,128:13-16.
    Newman IA, Kochian LV, Grusak MA, et al. Fluxes of H+ and K+ in corn roots. Characterization and stoichiometries using ion-selective microelectrodes [J]. Plant Physiol,1987,84:1177-1184.
    Newman I A. Ion transport in roots:measurement of fluxes using ion-selective microelectrodes to characterize transporter function [J]. Plant Cell Environ,2001,24:1-14.
    Ng CK, Carr K, McAinsh MR, et al. Drought-induced guard cell signal transduction involves sphingosine-1-phosphate [J]. Nature,2001,410:596-599.
    Ninnemann H, Maier J. Indication for the occurrence of nitric oxide synthase in fungi and plants and the involvement in photo-conidiation of Neurospora crassa [J]. Photochem Photobiol,1996,64:393-398.
    Nishimura I, Hayamizu T, Yanagisawa Y. Reduction of NO2 to NO by Rush and other plants [J]. Environ Sci Technol,1986,20:413-416.
    Nishiura H, Tamura K, Morimoto Y, et al. Characterization of sphingolipid long-chain base kinase in Arabidopsis thaliana [J]. Biochem Soc Trans,2000,28:747-748.
    Noctor G, Foyer CH. ASCORBATE AND GLUTATHIONE:keeping active oxygen under control [J]. Annu Rev Plant Physiol Plant Mol Biol,1998,49:249-279.
    Noritake T, Kawakita K, Doke N. Nitric oxide induces phytoalexin accumulation in potato tuber tissues [J]. Plant Cell Physiol,1996,37:113-116.
    Notodimedjo S, Tamba M. Flowering promotion of two pineapple varities (Ananas comosus Merr) by using Ethrel, calcium carbide and NAA [J]. Agrivita,1994,17:32-35.
    O'Neill RA, Scott TK. Proton flux and elongation in primary roots of barley (Hordeum vulgare L.) [J]. Plant Physiol,1983,73:199-201.
    Oda S, Morisawa M. Rises of intracellular Ca2+ and pH mediate the initiation of sperm motility by hyperosmolality in marine teleosts [J]. Cell Motil Cytoskeleton,1993,25: 171-178.
    Okamoto H, Takuwa N, Gonda K, et al. EDG1 is a functional sphingosine-1-phosphate receptor that is linked via a Gi/o to multiple signaling pathways, including phospholipase C activation, Ca2+ mobilization, Ras-mitogen-activated protein kinase activation, and adenylate cyclase inhibition [J]. J Biol Chem,1998,273:27104-27110.
    Otte O, Barz W. The elicitor-induced oxidative burst in cultured chickpea cells drives the rapid insolubilization of two cell wall structural proteins [J]. Planta,1996,200:238-246.
    Pagnussat GC, Lanteri ML, Lombardo MC, et al. Nitric oxide mediates the indole acetic acid induction activation of a mitogen-activated protein kinase cascade involved in adventitious root development [J]. Plant Physiol,2004,135:279-286.
    Pagnussat GC, Simontacchi M, Puntarulo S, et al. Nitric oxide is required for root organogenesis [J]. Plant Physiol,2002,129:954-956.
    Pandey S, Assmann SM. The Arabidopsis putative G protein-coupled receptor GCR1 interacts with the G protein a-subunit GPA1 and regulates abscisic acid signaling [J]. Plant Cell,2004,16:1616-1632.
    Parani M, Rudrabhatla S, Myers R, et al. Microarray analysis of nitric oxide responsive transcripts in Arabidopsis [J]. Plant Biotechnol J,2004,2:359-366.
    Pardo JM, Reddy MP, Yang S, et al. Stress signaling through Ca2+ /calmodulin-dependent protein phosphatase calcineurin mediates salt adaptation in plants [J]. Proc Natl Acad Sci USA,1998,95:9681-9686.
    Payne SG, Milstien S, Spiegel S. Sphingosine-1-phosphate:dual messenger functions [J]. FEBS Lett,2002,531:54-57.
    Pedroso MC, Durzan DJ. Effect of different gravity environments on DNA fragmentation and cell death in Kalanchoe leaves [J]. Ann Bot,2000,86:983-994.
    Pedroso MC, Magalhaes JR, Durzan D. A nitric oxide burst precedes apoptosis in angiosperm and gymnosperm callus cells and foliar tissues [J]. J Exp Bot,2000,51: 1027-1036.
    Pei ZM, Murata Y, Benning G, et al. Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells [J]. Nature,2000,406:731-734.
    Peng SA, Iwabori S. Location of calcium in the cells of apical meristem during flower differentiation of Japanese pear, Pyrus pyrifolia Nakai [J]. Japan Soc Hort Sci,1995,63: 725-738.
    Peters WS, Felle HH. The correlation of surface pH and elongation growth in maize roots [J]. Plant Physiol,1999,121:905-912.
    Philosoph-Hadas S, Meir S, Rosenberger I, et al. Regulation of the gravitropic response and ethylene biosynthesis in gravistimulated snapdragon spikes by calcium chelators and ethylene inhibitors [J]. Plant Physiol,1996,110:301-310.
    Pilet PE, Versel JM, Mayor G. Growth distribution and surface pH patterns along maize roots [J]. Planta,1983,158:398-402.
    Planchet E, Gupta KJ, Sonoda M, et al. Nitric oxide emission from tobacco leaves and cell suspensions:rate limiting factors and evidence for the involvement of mitochondrial electron transport [J]. Plant J,2005,41(5):732-743.
    Plieth C, Sattelmacher B, Hansen UP. Cytoplasmic Ca2+-H+-exchange buffers in green algae [J]. Protoplasma,1997,198:107-124.
    Polverari A, Molesini B, Pezzotti M, et al. Nitric oxide-mediated transcriptional changes in Arabidopsis thaliana [J]. Mol Plant Microbe Interact,2003,16:1094-1105.
    Potikha TS, Collins CC, Johnson DI, et al. The involvement of hydrogen peroxide in the differentiation of secondary walls in cotton fibers [J]. Plant Physiol,1999,119:849-858.
    Prins HBA, Snel JFH, Zanstra PE, et al. The mechanism of bicarbonate assimilation by the polar leaves of Potamogeton and Elodea. CO2 concentrations at the leaf surface [J]. Plant Cell Environ,1982,5:207-214.
    Pyne S, Pyne NJ. Sphingosine 1-phosphate signalling in mammalian cells [J]. Biochem J,2000,349:385-402.
    Pyne S, Pyne NJ. Sphingosine-1-phosphate signalling and termination at lipid phosphate receptors [J]. Biochim Biophys Acta,2002,1582:121-131.
    Qiao W, Fan LM. Nitric oxide signaling in plant responses to abiotic stresses [J]. JIPB, 2008,50:1238-1246.
    Rao MV, Davis KR. The physiology of ozone induced cell death [J]. Planta,2001,213: 682-690.
    Ratcliffe RG. Intracellular pH regulation in plants under anoxia[M]. In Regulation of Acid-Base Status in Animals and Plants (Egginton, S., Taylor, E. W., and Raven, J. A., eds.), Cambridge University Press:Soc. Exp. Bot. Seminar Ser.,1999,68:193-214.
    Regula CS, Pfeiffer JR, Berlin RD. Microtubule assembly and disassembly at alkaline pH [J]. J Cell Biol,1981,89:45-53.
    Roberts JKM, Callis J, Wemmer D, et al. Mechanism of cytoplasmic pH regulation in hypoxic maize root tips and its role in survival under hypoxia [J]. Proc Natl Acad Sci, 1984,81:3379-3383.
    Robson GD, Prebble E, Rickers A, et al. Polarized growth of fungal hyphae is defined by an alkaline pH gradient [J]. Fungal Gen Biol,1996,20:289-298.
    Roos W, Evers S, Hieke M, et al. Shifts of intracellular pH distribution as a part of signal mechanism leading to the elicitation of benzophenanthridine alkaloids [J]. Plant Physiol,1998,118:349-364.
    Roos W, Viehweger K, Dordschbal B, et al. Intracellular pH signals in the induction of secondary pathways-The case of Eschscholzia californica [J]. J Plant Physiol,2006,163: 369-381.
    Roos W. Confocal pH topography in plant cells-shifts of proton distribution are involved in plant signalling [M]. In:Rengel Z, ed. Handbook of plant growth-pH as a major variable in plant growth. New York:M. Dekker 2001,55-86.
    Roos W. Ion mapping in plant cells:methods and applications in signal transduction research [J]. Planta,2000,210:347-370.
    Ryan P R, Liu Q, Sperling P, et al. A higher plant D8 sphingolipid desaturase with a preference for (Z)-isomer formation confers aluminum tolerance to yeast and plants [J]. Plant Physiol,2007,144:1968-1977.
    Sakano K. Metabolic regulation of pH in plant cells:role of cytoplasmic pH in defense reaction and secondary metabolism [J]. Int Rev Cytol,2001,206:1-44.
    Sakano K. Revision of biochemical pH-stat. Involvement of alternative pathway metabolisms [J]. Plant Cell Physiol,1998,39:467-473.
    Sakihama Y, Murakami S, Yamasaki H. Involvement of nitric oxide in the mechanism for stomatal opening in Vicia faba leaves[J]. Biologia Plantarum,2003,46:117-119.
    Sampath P, Pollard TD. Effects of cytochalasin, phalloidin, and pH on the elongation of actin filaments [J]. Biochem,1991,30:1973-1980.
    Sanders D, Slayman CL. Control of intracellular pH. Predominant role of oxidative metabolism, not proton transport, in the eucaryotic micro-organism Neurospora [J]. J Gen Physiol,1982,80:377-402.
    Sathyanarayanan PV, Poovaiah BW. Decoding Ca2+ signals in plants [J]. CRC Crit Rev Plant Sci,2004,23:1-11.
    Schroeder JI, Hagiwara S. Cytosolic calcium regulates ion channels in the plasma membrane of Vicia faba guard cells [J]. Nature,1989,338:427-430.
    Schwartz A. Role of Ca2+ and EGTA on stomatal movements in Commelina communis L.[J]. Plant Physiol,1985,79:1003-1005.
    Scott AC, Allen NS. Changes in cytosolic pH within Arabidopsis root columella cells play a key role in the early signaling pathway for root gravitropism [J]. Plant Physiol, 1999,121:1291-1298.
    She X P, Song XG. Pharmacological evidence indicates that MAPKK/CDPK modulate NO levels in darkness-induced stomatal closure of broad bean [J]. Aust J Bot,2008b,56, 347-357.
    She XP, Song XG, He J M. Role and relationship of nitric oxide and hydrogen peroxide in light/dark-regulated stomatal movement in Vicia faba [J]. Acta Bot Sin,2004,46: 1292-1300.
    She XP, Song XG Carbon monoxide-induced stomatal closure involves generation of hydrogen peroxide in Vicia faba guard cells [J]. JIPB,2008a,50:1539-1548.
    She XP, Song XG. Cytokinin- and auxin-induced stomatal opening is related to the change of nitric oxide levels in guard cells in broad bean [J]. Physiol Plant,2006,128: 569-579.
    Shi LH, Bielawski J, Mu JY, et al. Involvement of sphingoid bases in mediating reactive oxygen intermediate production and programmed cell death in Arabidopsis [J]. Cell Res,2007,17:1030-1040.
    Skalamera D, Heath MC. Changes in the cytoskeleton accompanying infection-induced nuclear movements and the hypersensitive response in plant cells invaded by rust fungi [J]. Plant J,1998,16:191-200.
    Sokolovski S, Blatt MR. Nitric oxide block of outward-rectifying K+channels indicates direct control by protein nitrosylation in guard cells [J]. Plant Physiol,2004,136:4275-4284.
    Sokolovski S, Hills A, Gay R, et al. Protein phosphorylation is a prerequisite for intracellular Ca2+ release and ion channel control by nitric oxide and abscisic acid in guard cells [J]. Plant J,2005,43:520-529.
    Song XG, She XP, Guo LY, et al. MAPK kinase and CDP kinase modulate hydrogen peroxide levels during dark-induced stomatal closure in guard cells of Vicia faba [J]. Bot Stu,2008,49:323-334.
    Song XG, She XP, He JM, et al. Cytokinin- and auxin-indued stomatal opening involves a decrease in levels of hydrogen peroxide in guard cells of Vicia faba [J]. Funct plant boil,2006:573-583.
    Song XG, She XP, Zhang B. Carbon monoxide-induced stomatal closure in Vicia faba is dependent on nitric oxide synthesis [J]. Physiol Plant,2008,132:514-525.
    Soumen B. Involvement of calcium and calmodulin in oxidative and temperature stress of Amaranthus lividus L. during early germination [J]. J Environ Biol,2009,30:557-562.
    Spartz AK, Gray WM. Plant hormone receptors:new perceptions [J]. Genes Dev,2008, 22:2139-2148.
    Sperling P, Franke S, Luthje S, Heinz E. Are glucocerebrosides the predominant sphingolipids in plant plasma membranes [J]? Plant Physiol Biochem,2005,43:1031-1038.
    Sperling P, Wara ecke D, Heinz E. Plant sphingolipids [M]. In M Hohmann, ed, Topics in Current Genetics, Vol 6. Lipid Metabolism and Membrane Biogenesis. Springer Verlag, Berlin,2004:337-380.
    Sperling P, Wamecke D, Heinz E. Plant sphingolipids [M]. In:Daum G, ed. Lipid Metabolism and Membrane Biogenesis. Berlin:Springer-Verlag.,2003:21-45.
    Spiegel S, Milstien S. Sphingosine 1-phosphate, a key cell signaling molecule [J]. J Biol Chem,2002,277:25851-25854.
    Spiegel S, Milstien S. Sphingosine-1-phosphate:an enigmatic signalling lipid [J]. Nat Rev Mol Cell Biol,2003,4:397-407.
    Stab MR, Ebel J. Effects of Ca2+ on phytoalexin induction by fungal elicitor in soybean cells [J]. Arch Biochem Biophys,1987,257:416-423.
    Stamler JS, Singel DJ, Loscalzo J. Biochemistry of nitric oxide and its redox-activated forms [J]. Science,1992,258:1898-1902.
    Stewart E, Gow NAR, Bowen DV. Cytoplasmic alkalinization during germ tube formation in Candida albicans [J]. J Gen Microbiol,1988,134:1079-1087.
    Stoffel W, Heimann G, Hellenbroich B. Sphingosine kinase in blood platelets[J]. Hoppe Seyler's Z Physiol Chem,1973,354:562-566.
    Stohr C, Stremlau S. Formation and possible roles of nitric oxide in plant roots [J]. J Exp Bot,2006,57:463-470.
    Stohr C, Strube F, Marx G, et al. A plasma membrane-bound enzyme of tobacco roots catalyses the formation of nitric oxide from nitrite [J]. Planta,2001,212(5-6):835-841.
    Stohr C, Ullrich WR. Generation and possible roles of NO in plant roots and their apoplastic space [J]. J Exp Bot,2002,53:2293-2303.
    Subbaiah CC, Bush DS, Sachs MM. Elevation of cytosolic calcium precedes anoxic gene expression in maize suspension-cultured cells [J]. Plant Cell,1994b:1747-1762.
    Subbaiah CC, Bush DS, Sachs MM. Involvement of intracellular calcium in anaerobic gene expression and survival of maize seedling [J]. Plant Physiol,1994a,105:369-376.
    Suhita D, Raghavendra AS, Kwak JM, et al. Cytoplasmic alkalization precedes reactive oxygen species production during methyl jasmonate and abscisic acid-induced stomatal closure [J]. Plant Physiol,2004,134:1536-1545.
    Suprenant KA. Unidirectional microtubule assembly in cell-free extracts of Spisula solidissima oocytes is regulated by subtle changes in pH [J]. Cell Motil Cytoskeleton, 1991,19:207-220.
    Swanson SJ, Jones RL. Gibberellic acid induces vacuolar acidification in barley aleurone [J]. Plant Cell,1996,8:2211-2221.
    Taiz L, Zeiger E. Plant Physiology [M]. Fourth ed. Sinauer Associates, Inc., Publishers, Sunderland, Massachusetts 2006,694.
    Tang RH, Han SC, Zheng HL, et al. Coupling Diurnal Cytosolic Ca2+Oscillations to the CAS-IP3 pathway in Arabidopsis [J]. Science,2007,315:1423-1426.
    Taylor DP, Slattery J, Leoppold AC. Apoplastic pH in corn root gravitropism:A laser scanning confocal microscopy measurement [J]. Physiol Plant,1996,97:35-38.
    Teng C, Dong H, Shi L, et al. Serine palmitoyltransferase, a key enzyme for de novo synthesis of sphingolipids, is essential for male gametophyte development in Arabidopsis [J]. Plant Physiol,2008,146:1322-1332.
    Ternes P, Franke S, Zahringer U, et al. Identification and characterization of a sphingolipid A4-desaturase family [J]. J Biol Chem,2002,277:25512-22518.
    Toyoda K, Shiraishi T, Yoshioka H, et al. Regulation of polyphosphoinositide metabolism in pea plasma membranes by elicitor and suppressor from a pea pathogen, Mycospaerella pinodes [J]. Plant Cell Physiol,1992,33:445-452.
    Tuteja N, Chandra N, Tuteja R, et al. Nitric oxide as a unique bioactive signaling messenger in physiology and pathophysiology [J]. J Biomed Biotechnol,2004,4:227-237.
    Ullrich-Eberius C, Novacki A J, Bel A. Phosphate uptake in Lemna gibba G1: Energetics and kinetics [J]. Planta,1984,161:46-52.
    Urao T, Katagiri T, Mizoguchi T, et al. Two genes that encode Ca2+-dependent protein kinases are induced by drought and high-salt stresses in Arabidopsis thaliana [J]. Mol Gen Genet,1994,244:331-340.
    Valerberghe GC, Mcinetosh L. Singal regulating the expression of the nuclear gene alternative oxidase of plant mitochondria [J]. Plant Physiol,1996,111:589-595.
    Vandelle E, Poinssot B, Wendehenne D, et al. Integrated signalling network involving calcium, nitric oxide, active oxygen species but not mitogen-activated protein kinases in BcPG1-elicited grapevine defenses [J]. Mol Plant Microbe Interact,2006,19:429-440. Versel J M, Mayor G. Gradients in maize roots:local elongation and pH [J]. Planta, 1985,164:96-100.
    Vranova E, Inze D, Van Breusegem F. Signal transduction during oxidative stress[J]. J Exp Bot,2002,53:1227-1236.
    Wang F, Sampogna RV, Ware B. pH dependence of actin self-assembly [J]. Biophys J, 1989,55:293-298.
    Ward JM, Pei ZM, Schroeder JI. Roles of ion channels in initiation of signal transduction in higher plants [J]. Plant Cell,1995,7:833-844.
    Warnecke D, Heinz E. Recently discovered functions of glucosylceramides in plants and fungi [J]. Cell Mol Life Sci,2003,60:919-941.
    Webb A A R, McAinsh M R, Mansfield T A, et al. Carbon dioxide induces increases in guard cell cytosolic free calcium [J]. Plant J,1996,9:297-304.
    Wendehenne D, Courtois C, Besson A, et al. NO-based signaling in Plants. In L Lamattina, JC Polacco, eds, Nitric Oxide in Plant Growth, Development and Stress Physiology. Springer-Verlag, Berlin,2006,6:35-51.
    Wendehenne D, Durner J, Klessig DF. Nitric oxide:A new player in plant signalling and defence responses [J]. Curr Opin Plant Biol,2004,7:449-455.
    Wendehenne D, Pugin A, Klessig DF, et al. Nitric oxide:Comparative synthesis and signaling in animal and plant cells [J]. Trends Plant Sci,2001,6:177-183.
    Wilkinson JQ, Crawford NM. Identification of the Arabidopsis CHL3 gene as the nitrate reductase structural gene NIA2 [J]. Plant Cell,1991,3:461-471.
    Wilkinson S. pH as a stress signal [J]. Plant Growth Regul,1999,29:87-99. Wojtaszek P. Nitric oxide in plants-To NO or not to NO [J]. Phytochem,2000,54:1-4.
    Wood NT, Allan AC, Haley A, et al. The characterization of differential calcium signalling in tobacco guard cells [J]. Plant J,2000,24:335-344.
    Worrall D, Liang YK, Alvarez S, et al. Involvement of sphingosine kinase in plant cell signaling [J]. Plant J,2008,56:64-72.
    Wright BS, Snow JW, O'Brien TC, et al. Synthesis of 4-hydroxysphinganine and characterization of sphinganine hydroxylase activity in corn [J]. Arch Biochem Biophys, 2003,415:184-192.
    Xu HX, Health MC. Role of Calcium in signal transduction during the hypersensitive response caused by basidiospore-derived infection of the cowpea rust fumgus [J]. Plant Cell,1998,10:585-597.
    Xu M, Dong J. Involvement of nitric oxide signaling in mammalian Bax-induced terpenoid indole alkaloid production of Catharanthus roseus cells [J]. Sci China Life Sci, 2007,50:799-807.
    Yamamoto-Katou A, Katou S, Yoshioka H, et al. Nitrate reductase is responsible for elicitin-induced nitric oxide production in Nicotiana benthamiana [J]. Plant Cell Physiol, 2006,47:726-735.
    Yamazaki Y, Kon J, Sato K, et al. Edg-6 as a putative sphingosine 1-phosphate receptor coupling to Ca(2+) signaling pathway [J]. Biochem Biophys Res Commun,2000,268: 583-589.
    Yang T, Poovaiah BW. Molecular and biochemical evidence for the involvement of calcium/calmodulin in auxin action [J]. J of Biol Chem,2000,275:3137-3143.
    Yang TB, Poovaiah BW. Calcium/calmodulin-mediated signal network in plants [J]. Trends Plant Sci,2003,8:505-512.
    Yoshioka H, Numata N, Nakajimaa K, et al. Nicotiana benthamiana gp91phox homologs NbrbohA and NbrbohB participate in H2O2 accumulation and resistance to phytophthora infestans [J]. Plant Cell,2003,15:706-718.
    Zeiger E. The biology of stomatal guard cells [J]. Annu Rev Plant Physiol,1983,441-475.
    Zhang X, Dong FC, Gao JF, et al. Hydrogen peroxide-induced changes in intracellular pH of guard cells precede stomatal closure [J]. Cell Res,2001a,11:37-43.
    Zhang X, Miao YC, An GY, et al. K+ channels inhibited by hydrogen peroxide mediate abscisic acid signalling in Vicia guard cells [J]. Cell Res,2001b,11:195-202.
    Zhang X, Zhang L, Dong F, et al. Hydrogen peroxide is involved in abscisic acid-induced stomatal closure in Vicia faba [J]. Plant Physiol,2001c,126:1438-1448.
    Zhang Y, Zhu H, Zhang Q, et al. Phospholipase Dal and phosphatidic acid regulate NADPH oxidase activity and production of reactive oxygen species in ABA-mediated stomatal closure in Arabidopsis [J]. Plant Cell,2009,21:2357-2377.
    Zhao MG, Tian QY, Zhang WH. Nitric oxide synthase-dependent nitric oxide produc-tion is associated with salt tolerance in Arabidopsis [J]. Plant Physiol,2007,144:206-217.
    Zhao Z, Chen G, Zhang C. Interaction between reactive oxygen species and nitric oxide in drought induced abscisic acid synthesis in root tips of wheat seedlings [J]. Aust J Plant Physiol,2001,28:1055-1061.
    Zheng H, Rowland O, Kunst L. Disruptions of the Arabidopsis enoyl-CoA reductase gene reveal an essential role for very-long-chain fatty acid synthesis in cell expansion during plant morphogenesis [J]. Plant Cell,2005,17:1467-1481.
    薄惠,王棚涛,董发才,等.拟南芥保卫细胞中茉莉酸甲酯诱导的H202产生与MAPK信号转导体系的可能关系[J].植物生理学通讯,2005,4(41):439-443.蔡以滢,陈珈.植物防御反应中活性氧的产生和作用[J].植物学通报,1999,16(2):107-112.
    陈硕,陈珈.植物中钙依赖蛋白激酶(CDPKs)的结构与功能[J].植物学通报,2001,18(2):143-148.
    董发才,崔香环,安国勇,等.Ca2+在茉莉酸甲酯诱导拟南芥气孔关闭中的信号转导作用[J].植物生理与分子生物学学报,2002,28(6):457-462.
    范六民,杨弘远,周嫦.外源钙调素和钙调素拮抗剂对烟草离体花粉管生长和生殖核分裂的调节[J].植物生理学报,1998,24(3):240-246.
    关春蕾,侯春燕,王冬梅.影响Ca2+代谢和钙通道的药物对小麦受叶锈菌侵染后诱发的HR的作用[J].河北农业大学学报,2006,29:4-8.
    郭泽建,李德葆.活性氧与植物抗病性[J].植物学报,2000,42(9):881-891.
    何金环,李存法,王朋涛,等NADPH氧化酶参与水杨酸诱导的蚕豆气孔关闭过程[J].植物生理学通讯,2007,43(6):1040-1044.
    黄韵,余应年,杨军.鞘脂类研究进展[J].浙江大学学报,2005,34(4):375-378.
    孔海燕,贾桂霞,温跃戈.钙在植物花发育过程中的作用[J].植物学通报,2003,20(2):168-177.
    李建华,吕品,刘银谦,等.一氧化氮可能参与细胞外钙调素诱导蚕豆气孔关闭的过程[J].自然科学进展,2007,17(4):428-434.
    李杰,邱丽艳,赵方贵,等.一氧化氮在乙烯诱导蚕豆气孔关闭中的作用[J].植物生理与分子生物学学报,2007,33(4):349-353.
    李兴军.杨梅花芽孕育及发端调控的研究[D].杭州:浙江大学,2001.
    梁述平,汪杏芬,Feldman LJ,等.钙调素依赖型蛋白激酶在植物开花调控中的作用[J].中国科学(C辑),2001,31(4):306-311.
    刘刚,王冬梅.小麦叶肉细胞原生质体中微管骨架的排列格局与[Ca2+]的关系[J].实验生物学报,2005,38:331-339.
    刘国华,侯丽霞,刘菁,等.H202介导的NO合成参与乙烯诱导的拟南芥叶片气孔关闭[J].自然科学进展,2009,8(19):841-851.
    刘新,孟繁霞,张蜀秋,等.Ca2+参与水杨酸诱导蚕豆气孔关闭时的信号转导[J].植物生理与分子生物学学报,2003,29(1):59-64.
    刘新,石武良,张蜀秋,等.Ca2+参与茉莉酸诱导蚕豆气孔关闭的信号转导[J].实验生物学报,2005,38(4):298-302.
    刘银谦.NO参与细胞外CaM调控拟南芥气孔运动机理的研究[D].河北师范大学,2006.
    吕品.G蛋白和H202在保卫细胞信号转导中的关系[D].河北师范大学,2005.
    尚忠林,毛国红,孙大业.植物细胞内钙信号的特异性[J].植物生理学通讯,2003,39:92-100.
    石武良,贾文锁,刘新,等.酪氨酸蛋白激酶参与保卫细胞中ABA诱导产生H202的信号传递[J].科学通报,2004,16(49):1617-1622.
    宋纯鹏,梅慧生,储钟稀,等.Ca2+对叶绿体中超氧物自由基产生以及由ACC形成乙烯的影响[J].植物生理学报,1992,18(1):55-62.
    宋秀芬,洪剑明.植物细胞中钙信号的时空多样性与信号转导[J].植物学通报,2001,18(4):436-444.
    孙大业.细胞信号转导[M].北京:科学出版社,2001.
    汤福强,吴有梅,刘愚,等.麝香石竹花衰老过程中钙调蛋白含量变化与乙烯生物合成的关系[J].植物学报,1994,36:709-713.
    王文雅,吕静,朱本忠,等.钙与钙调素对番茄果实乙烯生物合成和信号转导基因表达的调控[J].华北农学报,2005,20(21):1-5.
    肖玉梅,陈玉玲,黄荣峰,等.拟南芥保卫细胞微丝骨架的解聚可能参与了细胞外钙调素诱导的气孔关闭[J].中国科学,2004,34(2):129-135.
    谢志霞,张一,田晓莉,等.钙和生长素对棉花幼苗侧根发生的协同调控效应[J].棉花学报,2006,18(2):99-103.
    徐茂军,董菊芳,张新波.NO和H202在介导热激诱发金丝桃细胞合成金丝桃素中的信号互作[J].中国科学(C辑):生命科学,2008,38(7):643-653.
    许树成,丁海东,桑建荣.植物细胞活性氧种类、代谢及其信号转导[J].云南植物研究,2007,29(3):355-365.
    许涛,李天来,齐明芳.钙处理对乙烯诱导的番茄离体花柄脱落的抑制作用[J].园艺学报,2007,34(2):366-370.
    张合臣,尹伟伦,夏新莉.非生物逆境胁迫下植物钙信号转导的分子机制[J].植物学通报,2007,24(1):114-122.
    张霖,赵翔,王亚静,等.NO与Ca2+对蚕豆保卫细胞气孔运动的互作调控[J].作物学,2009,35(8):1491-1499.
    张文利,沈文飚,叶茂炳,等.小麦叶片顺乌头酸酶对NO和H202的敏感性[J].植物生理与分子生物学学报,2002,28(2):99-104.
    张宪政,陈凤玉.植物生理学[M].长春:吉林科学出版社,1996.
    张媛华.G蛋白、PTKs和PLC/PLD通过调节保卫细胞H202和NO水平介导光/暗调控的气孔运动[D].陕西师范大学,2010.
    张正光,王源超,蔡炳江,等.H202、NO和Ca2+参与疫病菌激发子PB90诱导烟草气孔的关闭[J].植物病理学报,2007,37(1):62-68.
    章文华,陈亚华,刘友良.钙在植物细胞盐胁迫信号转导中的作用[J].植物生理学通讯,2000,36(2):146-153.
    赵世领,孙立荣,张换,等.胞质碱化介导了外源一氧化氮诱导的蚕豆气孔关闭[J].作物学报,2010,36(3):533-538.
    赵翔,汪延良,王亚静,等.盐胁迫条件下外源Ca2+对蚕豆气孔运动及质膜K+通道的调控[J].作物学报,2008,34(11):1970-1976.
    赵听,裴真明,何奕昆.胞外Ca2+信号——动植物中的第一信使[J].遗传,2007,29(3):269-275.
    周卫,汪洪.植物钙吸收、转运及代谢的生理和分子机制[J].植物学通报,2007,24(6):762-778.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700