用户名: 密码: 验证码:
鸡痘病毒282E4株基因组和蛋白质组解析、载体构建与HIV重组疫苗研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鸡痘病毒(Fowlpox virus, FPV)是脊椎动物痘病毒科、禽痘病毒属的代表成员,该病毒仅感染禽类,可引起禽类动物的疾病。因禽痘病毒通常不感染人与其他哺乳动物,且能有效表达大量的外源DNA,并可在感染细胞的胞浆中复制等特点而成为活病毒载体研究的热点。然而,目前对FPV的基因组、结构、毒力、致病机制、宿主范围及其免疫逃逸等方面尚无系统深入的研究。为设计出更加安全、有效的FPV表达载体系统,本研究以FPV282E4株为研究对象,开展其基因组背景分析、蛋白质组成、新型表达载体构建及重组鸡痘病毒载体疫苗筛选和实验免疫研究。
     本研究首先采用高通量Illumina测序技术对中国弱毒疫苗株FPV282E4株进行全基因组测序,通过对测序数据组装后利用基因预测软件进行基因de novo预测及功能注释。结果测定FPV282E4全基因组为308829bp,GC含量约为28%,预测出313个编码序列(Coding sequence, CDS),并与FPVUS株、CNPV ATCC株进行核酸平等共线性分析,通过功能注释表明FPV282E4的基因具有核营酸代谢、运输、转录、复制、重组、修复及翻译后修饰、伴侣蛋白和信号转导功能。在此基础上,采用LC-ESI-MS/MS对鸡痘病毒282E4株进行蛋白质全谱分析,鉴定出76个蛋白,对其进行功能注释,结果与基因组序列相互印证,从而为重组鸡痘病毒载体构建及感染与致病机制研究奠定理论基础。
     基于FPV282E4全基因组序列测定数据,针对本实验室前期在鸡痘病毒载体构建中遇到的重组效率较低、筛选周期长等问题,本研究优化FPV282E4株5个非必需CDS区作为候选同源重组臂,通过插入含有PE/L早/晚期启动子和终止信号的三基因表达盒,进行重组鸡痘病毒载体的构建,分别以红、绿、蓝三种荧光蛋白基因作为报告基因,进行病毒重组及外源基因表达活性的验证。荧光蛋白表达检测结果表明,三个表达盒均可独立表达外源基因;通过对rFPV进行形态学、生物特性检测,结果成功构建出3个rFPV,且基因缺失未影响重组鸡痘病毒的形态及其复制,3株重组鸡痘病毒无差异。
     在成功获得表达载体的基础上,以本实验室前期构建的包含HIV-1复合多表位(MEGNp24)、CpG基序和CTB基因(CCMp24)的免疫原为基础,构建表达HIV-1复合多表位的rFPV-CCMP24,通过荧光噬斑筛选纯化rFPV-CCMP24。采用PCR、RT-PCR、Western Blot方法进行重组病毒及外源基因表达的鉴定。成功获得rFPV-CCMp24,重组病毒复制效率及病毒滴度与野生株FPV一致,重组病毒能够在体外表达外源基因且具有反应原性。然后开展了rFPV-CCMp24的小鼠免疫试验,分析其免疫原性,同时结合前期构建的重组痘苗病毒rddVTT-CCMp24进行联合免疫研究,通过检测特异性HIV-1抗体、淋巴细胞刺激指数、淋巴细胞分泌IFNy以及流式细胞术检测CD3+CD4+、CD3+CD8+等指标,综合分析免疫效果,探寻有效的病毒载体为基础的免疫策略。结果显示,rFPV-CCMp24单独免疫及与rddVTT-CCMp24联合免疫,均能诱导细胞免疫及体液免疫。本研究为研制有效鸡痘病毒活载体疫苗及多载体疫苗联合免疫的临床前实验研究奠定了基础。
Fowlpox virus (FPV) is a representative type of the avipoxvirus genus of the Poxviridae. It could only infect poultry and lead to disease. Fowlpox virus can not infect humans and other mammals, but it can express exogenous DNA effectively, and it replicates in the cytoplasm of infected cell, the study about fowlpox as vector become the current hot spot. In order to design a safer and more effective FPV expression vector system, an in-depth understanding of FPV virulence, pathogenic mechanism, host range and immune escape is needed. In this study, the FPV282E4was constructed as vector to express HIV-1multi-epitope to do background analyze of genome and protein composition, construction of neotype expression vector, vaccine screening of recombinant fowlpox virus and experimental immune research.
     In this study, Illumina high-throughput sequencing technologies were used to sequence the whole genome of FPV282E4strains. The sequences data were assembled, predicted and annotated using the software for de novo prediction and functional annotation after assembly the sequencing data. The results showed that the whole genome of FPV282E4was308826bp, the GC%content was around28%, and313Coding sequence (CDS) were predicted and carry out the equality synteny analysis of the nucleic acid of FPV282E4, FWPV and CNPV. Analysis of functional annotation indicates that FPV has the function of nucleotide metabolism, transport, transcription, replication, recombination and repair, and modification after translation, partner and signal transduction which lay a theoretical foundation for the further study of the fowlpox virus. Based on the results, we did full spectrum proteomic analysis of FPV282E4by LC/ESI-MS/MS, and we have identified76proteins and proceeded functional annotation which showed a results that were similar to the whole genome sequencing. The results provided basis research for FPV infection and pathogenic mechanism.
     Based on the FPV282E4whole-genome sequencing data and the problems such as low recombinant efficiency and long screen cycle that occurred during construction of fowlpox virus, we have chosen5CDSs zone of recombinant non-essential genes as homologous recombination arm to construct the fowlpox virus vector through inserting three gene-expression-box which contains PE/L early/late promoter and termination signal; and then made red, green and blue fluorescent protein to be the report gene to validate to expression activity of recombinant virus and exogenous gene. The result of fluorescent protein expression showed that three express boxes can express exogenous genes independently; and through the detection of morphology and biological characteristics, we have constructed three rFPV successfully of which the gene deletion has no impact on the morphous and replication of recombinant fowlpox virus and there was no difference among of three rFPV.
     Base on the well abtain of expression vector, and the construction of immunogen of HIV-1multi-epitope(MEGNp24), CpG motif and CTB genes (CCMp24), we got an rFPV-CCMp24through plaques screening and purification, and then, the recombinant virus was identified by PCR, RT-PCR and WB methods. Results showed that the rFPV-CCMp24was successful constructed, and replication efficiency of recombinant virus was concordance with wild stain FPV, it could express exogenous genes in vitro and possess reactionogenicity. Then we proceeded combined immunization in mice with the rFPV-CCMp24and the recombinant Fowlpox virus rddVTT-CCMp24to analyze the immunogenicity, then comprehensively analyze the immune effect through detecting the specific HIV-1antibodies, lymphocyte stimulation indices, lymphoid cells secrete IFN gamma and CD3+/CD8+, CD4+/CD8+to retrieval effective immunization strategy based on virus vector. The results showed that immunization in mice with rFPV-CCMp24only and with combination of rFPV-CCMp24and rddVTT-CCMp24would show the advantage in induction of cellular and humoral immunity. This study lays the foundation for the further study of rFPV live vector vaccine development and the pre-clinical experiment.
引文
[1]Sanger, Air, Barrell,et al. Nucleotide sequence of bacteriophage phi X174 DNA[J]. Nature,1977,265 (5596):687-695.
    [2]Venter, Adams, Myers,et al. The sequence of the human genome[J]. Science, 2001,291 (5507):1304-1351.
    [3]丁秀芹.微生物基因组研究进展[J].科技资讯,2009(05).
    [4]Bras, Guerreiro, Hardy. Use of next-generation sequencing and other whole-genome strategies to dissect neurological disease[J]. Nat Rev Neurosci, 2012,13 (7):453-464.
    [5]Raffan, Semple. Next generation sequencing--implications for clinical practice[J]. Br Med Bull,2011,99:53-71.
    [6]Zhang, Chiodini, Badr,et al. The impact of next-generation sequencing on genomics[J]. J Genet Genomics,2011,38 (3):95-109.
    [7]Kurose, Koizumi, Nishikawa,et al. Quality requirements for genomic DNA preparations and storage conditions for a high-density oligonucleotide microarray[J]. Biol Pharm Bull,2012,35 (10):1846-1848.
    [8]Chen, Xu. High-throughput analysis of tumor necrosis factor signaling pathways in eight cell types during rat hepatic regeneration[J]. Inflammation,2012,35 (4): 1538-1548.
    [9]Fan, Huang, Cao,et al. Genome of the Chinese tree shrew[J]. Nat Commun,4: 1426.
    [10]Berg, Baltimore, Brenner,et al. Asilomar conference on recombinant DNA molecules[J]. Science,1975,188 (4192):991-994.
    [11]Yamamoto, Aiba, Baba,et al. Construction of a contiguous 874-kbp sequence of the Escherichia coli-K12 genome corresponding to 50.0-68.8 min on the linkage map and analysis of its sequence features[J]. DNA Res,1997,4 (2):91-113.
    [12]Blattner, Plunkett, Bloch,et al. The complete genome sequence of Escherichia coli K-12[J]. Science,1997,277 (5331):1453-1462.
    [13]Kroger, Wahl. Compilation of DNA sequences of Escherichia coli K12: description of the interactive databases ECD and ECDC[J]. Nucleic Acids Res, 1998,26 (1):46-49.
    [14]Rocha. DNA repeats lead to the accelerated loss of gene order in bacteria[J]. Trends Genet,2003,19 (11):600-603.
    [15]Klenk, Clayton, Tomb,et al. The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus[J]. Nature,1997,390 (6658):364-370.
    [16]Tomb, White, Kerlavage,et al. The complete genome sequence of the gastric pathogen Helicobacter pylori[J]. Nature,1997,388 (6642):539-547.
    [17]Goffeau, Barrell, Bussey,et al. Life with 6000 genes[J]. Science,1996,274 (5287):546,563-547.
    [18]Lin, Kaul, Rounsley,et al. Sequence and analysis of chromosome 2 of the plant Arabidopsis thaliana[J]. Nature,1999,402 (6763):761-768.
    [19]Mayer, Schuller, Wambutt,et al. Sequence and analysis of chromosome 4 of the plant Arabidopsis thaliana[J]. Nature,1999,402 (6763):769-777.
    [20]Sato, Nakamura, Kaneko,et al. Complete structure of the chloroplast genome of Arabidopsis thaliana[J]. DNA Res,1999,6 (5):283-290.
    [21]Waterston, Sulston. The genome of Caenorhabditis elegans[J]. Proc Natl Acad Sci USA,1995,92 (24):10836-10840.
    [22]Rubin, Yandell, Wortman,et al. Comparative genomics of the eukaryotes[J]. Science,2000,287 (5461):2204-2215.
    [23]Veraksa, Del Campo, McGinnis. Developmental patterning genes and their conserved functions:from model organisms to humans[J]. Mol Genet Metab, 2000,69 (2):85-100.
    [24]Adams, Celniker, Holt,et al. The genome sequence of Drosophila melanogaster[J]. Science,2000,287 (5461):2185-2195.
    [25]Mouse Genome Sequencing, Waterston, Lindblad-Toh,et al. Initial sequencing and comparative analysis of the mouse genome[J]. Nature,2002,420 (6915): 520-562.
    [26]Gibbs, Weinstock, Metzker,et al. Genome sequence of the Brown Norway rat yields insights into mammalian evolution[J]. Nature,2004,428 (6982):493-521.
    [27]Rhesus Macaque Genome, Analysis, Gibbs,et al. Evolutionary and biomedical insights from the rhesus macaque genome[J]. Science,2007,316 (5822): 222-234.
    [28]Shaffer. Next-generation sequencing outpaces expectations[J]. Nat Biotechnol, 2007,25 (2):149.
    [29]Shendure, Ji. Next-generation DNA sequencing[J]. Nat Biotechnol,2008,26 (10): 1135-1145.
    [30]Schuster. Next-generation sequencing transforms today's biology[J]. Nat Methods,2008,5 (1):16-18.
    [31]Wheeler, Srinivasan, Egholm,et al. The complete genome of an individual by massively parallel DNA sequencing[J]. Nature,2008,452 (7189):872-876.
    [32]Sultan, Schulz, Richard,et al. A global view of gene activity and alternative splicing by deep sequencing of the human transcriptome[J]. Science,2008,321 (5891):956-960.
    [33]Cronn, Liston, Parks,et al. Multiplex sequencing of plant chloroplast genomes using Solexa sequencing-by-synthesis technology[J]. Nucleic Acids Res,2008, 36(19):e122.
    [34]Lizardi. Next-generation sequencing-by-hybridization[J]. Nat Biotechnol,2008, 26 (6):649-650.
    [35]张阳德.生物信息学.科学出版社:北京2004.
    [36]孙柏欣,刘长远,陈彦,等.基因表达系统研究进展[J].现代农业科技,2008(02).
    [37]Begovich, Carlton, Honigberg,et al. A missense single-nucleotide polymorphism in a gene encoding a protein tyrosine phosphatase (PTPN22) is associated with rheumatoid arthritis[J]. Am J Hum Genet,2004,75 (2):330-337.
    [38]Couch, Wang, McGuffog,et al. Genome-Wide Association Study in BRCA1 Mutation Carriers Identifies Novel Loci Associated with Breast and Ovarian Cancer Risk[J]. PLoS Genet,2013,9 (3):e1003212.
    [39]Samani, Erdmann, Hall,et al. Genomewide association analysis of coronary artery disease[J]. N Engl J Med,2007,357 (5):443-453.
    [40]Diabetes Genetics Initiative of Broad Institute of, Mit, Novartis Institutes of BioMedical,et al. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels[J]. Science,2007,316 (5829):1331-1336.
    [41]Herbert, Gerry, McQueen,et al. A common genetic variant is associated with adult and childhood obesity[J]. Science,2006,312 (5771):279-283.
    [42]Rosskopf, Bornhorst, Rimmbach,et al. Comment on "A common genetic variant is associated with adult and childhood obesity" [J]. Science,2007,315 (5809): 187; author reply 187.
    [43]Frayling, Timpson, Weedon,et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity[J]. Science,2007,316 (5826):889-894.
    [44]Ng, Buckingham, Lee,et al. Exome sequencing identifies the cause of a mendelian disorder[J]. Nat Genet,2010,42 (1):30-35.
    [45]Ng, Turner, Robertson,et al. Targeted capture and massively parallel sequencing of 12 human exomes[J]. Nature,2009,461 (7261):272-276.
    [46]Choi, Scholl, Ji,et al. Genetic diagnosis by whole exome capture and massively parallel DNA sequencing[J]. Proc Natl Acad Sci U S A,2009,106 (45): 19096-19101.
    [47]林正伟,赵晓航.外显子组测序技术在人类疾病研究中的应用[J].生命科学,2012,24(01):95-99.
    [48]Mardis. A decade's perspective on DNA sequencing technology[J]. Nature,2011, 470(7333):198-203.
    [49]Wei, Zang, Zhang,et al. Exome Sequencing Identifies SLC24A5 as a Candidate Gene for Nonsyndromic Oculocutaneous Albinism[J]. J Invest Dermatol.
    [50]李光雷,喻树迅,范术丽,等.表观遗传学研究进展[J].生物技术通报,2011(01):40-49.
    [51]Schmitz, Schultz, Urich,et al. Patterns of population epigenomic diversity[J]. Nature,495 (7440):193-198.
    [52]王川.系统生物学——后基因组时代的生物学[J].生物学通报,2006,41(01):19-21.
    [53]Dehal, Satou, Campbell,et al. The draft genome of Ciona intestinalis:insights into chordate and vertebrate origins[J]. Science,2002,298 (5601):2157-2167.
    [54]Tellam, Lemay, Van Tassell,et al. Unlocking the bovine genome[J]. BMC Genomics,2009,10:193.
    [55]Lindblad-Toh, Wade, Mikkelsen,et al. Genome sequence, comparative analysis and haplotype structure of the domestic dog[J]. Nature,2005,438 (7069): 803-819.
    [56]陈竺,王升跃,韩泽广.日本血吸虫全基因组测序完成[J].中国基础科学,2010(03).
    [57]Baroudy, Moss. Sequence homologies of diverse length tandem repetitions near ends of vaccinia virus genome suggest unequal crossing over[J]. Nucleic Acids Res,1982,10 (18):5673-5679.
    [58]2,000 influenza virus genomes completed and publicly accessible[J]. FDA Consum,2007,41 (2):10.
    [59]King, Taylor, Zhang,et al. Finding cis-regulatory elements using comparative genomics:some lessons from ENCODE data[J]. Genome Res,2007,17 (6): 775-786.
    [60]Miller, Makova, Nekrutenko,et al. Comparative genomics[J]. Annu Rev Genomics Hum Genet,2004,5:15-56.
    [61]Nobrega, Pennacchio. Comparative genomic analysis as a tool for biological-discovery[J]. J Physiol,2004,554 (Pt 1):31-39.
    [62]Hinds, Stuve, Nilsen,et al. Whole-genome patterns of common DNA variation in three human populations[J]. Science,2005,307 (5712):1072-1079.
    [63]Wu, Cheng, Wang,et al. Comparative genomic analysis of duck enteritis virus strains[J]. J Virol,2012,86 (24):13841-13842.
    [64]叶琳,张原,梅旖,等.应用比较基因组分析检测乙型肝炎病毒中可能的重组事件[J].中国科学,2010,55(14):1322-1328.
    [65]Edwards, Rohwer. Viral metagenomics[J]. Nature Reviews Microbiology,2005, 3 (6):504-510.
    [66]Thurber, Haynes, Breitbart,et al. Laboratory procedures to generate viral metagenomes[J]. Nature protocols,2009,4 (4):470-483.
    [67]Tang, Chiu. Metagenomics for the discovery of novel human viruses[J]. Future microbiology,2006,5 (2):177-189.
    [68]Wang, Urisman, Liu,et al. Viral discovery and sequence recovery using DNA microarrays[J]. PLoS biology,2003,1 (2):e2.
    [69]Streit, Schmitz. Metagenomics-the key to the uncultured microbes[J]. Current opinion in microbiology,2004,7 (5):492-498.
    [70]Djikeng, Kuzmickas, Anderson,et al. Metagenomic analysis of RNA viruses in a fresh water lake[J]. PLoS One,2009,4 (9):e7264.
    [71]Schoenfeld, Patterson, Richardson,et al. Assembly of viral metagenomes from Yellowstone hot springs[J]. Applied and environmental microbiology,2008,74 (13):4164-4174.
    [72]Steward, Preston. Analysis of a viral metagenomic library from 200 m depth in Monterey Bay, California constructed by direct shotgun cloning[J]. Virol J,2011, 8:287.
    [73]骆建新.人类基因组计划与后基因组时代[J].中国生物工程杂志,2003,23(11):87-94.
    [74]于雁灵.辛伐他汀对家兔动脉粥样硬化血管组织作用的蛋白质组研究[J].药学学报,2003(07).
    [75]孙金福,涂长春.病毒感染蛋白质组学研究进展[J].微生物学通报,2008(12).
    [76]Gorg, Weiss, Dunn. Current two-dimensional electrophoresis technology for proteomics[J]. Proteomics,2004,4 (12):3665-3685.
    [77]Berggren, Chernokalskaya, Steinberg,et al. Background-free, high sensitivity staining of proteins in one- and two-dimensional sodium dodecyl sulfate-polyacrylamide gels using a luminescent ruthenium complex[J]. Electrophoresis,2000,21 (12):2509-2521.
    [78]Kramer, Moerland, Jeeninga,et al. Proteomic analysis of HIV-T cell interaction: an update[J]. Front Microbiol,2012,3:240.
    [79]Kapoor, Pal, Lochab,et al. Proteomics approaches for myeloid leukemia drug discovery[J]. Expert Opin Drug Discov,2012,7 (12):1165-1175.
    [80]Nielsen, Olsen, Podtelejnikov,et al. Proteomic mapping of brain plasma membrane proteins[J]. Mol Cell Proteomics,2005,4 (4):402-408.
    [81]Garcia-Campana, Gamiz-Gracia, Baeyens,et al. Derivatization of biomolecules for chemiluminescent detection in capillary electrophoresis[J]. J Chromatogr B Analyt Technol Biomed Life Sci,2003,793. (1):49-74.
    [82]Aebersold, Mann. Mass spectrometry-based proteomics[J]. Nature,2003,422 (6928):198-207.
    [83]成海平,钱小红.蛋白质组研究的技术体系及其进展[J].生物化学与生物物理进展,2000,27(6):584-588.
    [84]Zhang, Czernik, Yungwirth,et al. Matrix-assisted laser desorption mass spectrometric peptide mapping of proteins separated by two-dimensional gel electrophoresis:determination of phosphorylation in synapsin I[J]. Protein Sci, 1994,3 (4):677-686.
    [85]Chamrad, Korting, Stuhler,et al. Evaluation of algorithms for protein identification from sequence databases using mass spectrometry data[J]. Proteomics,2004,4 (3):619-628
    [86]Sethuraman, McComb, Huang,et al. Isotope-coded affinity tag (ICAT) approach to redox proteomics:identification and quantitation of oxidant-sensitive cysteine thiols in complex protein mixtures[J]. J Proteome Res,2004,3 (6):1228-1233.
    [87]Haynes, Gygi, Figeys,et al. Proteome analysis:biological assay or data archive?[J]. Electrophoresis,1998,19 (11):1862-1871.
    [88]Zhou, Liu, Zhao,et al. Viral proteomics:the emerging cutting-edge of virus research[J]. Sci China Life Sci,2011,54 (6):502-512.
    [89]Kutter, d'Acci, Drivdahl,et al. Identification of bacteriophage T4 prereplicative proteins on two-dimensional polyacrylamide gels[J]. J Bacteriol,1994,176 (6): 1647-1654.
    [90]Xie, Huang, Lei,et al. Proteomics annotation of lipid rafts modified by virus infection[J]. Comb Chem High Throughput Screen,2012,15 (3):253-265.
    [91]Chung, Chen, Ho,et al. Vaccinia virus proteome:identification of proteins in vaccinia virus intracellular mature virion particles[J]. J Virol,2006,80 (5): 2127-2140.
    [92]Resch, Hixson, Moore,et al. Protein composition of the vaccinia virus mature virion[J]. Virology,2007,358 (1):233-247.
    [93]Yoder, Chen, Gagnier,et al. Pox proteomics:mass spectrometry analysis and identification of Vaccinia virion proteins[J]. Virol J,2006,3:10.
    [94]Lam, Evans, Heesom,et al. Proteomics analysis of the nucleolus in adenovirus-infected cells[J]. Mol Cell Proteomics,2010,9 (1):117-130.
    [95]Wei, Wang, Cui,et al. Proteomic analysis of cervical cancer cells treated with adenovirus-mediated MDA-7[J]. Cancer Biol Ther,2008,7 (4):510-516.
    [96]Antrobus, Grant, Gangadharan,et al. Proteomic analysis of cells in the early stages of herpes simplex virus type-1 infection reveals widespread changes in the host cell proteome[J]. Proteomics,2009,9 (15):3913-3927.
    [97]Munday, Surtees, Emmott,et al. Using SILAC and quantitative proteomics to investigate the interactions between viral and host proteomes[J]. Proteomics, 2012,12 (4-5):666-672.
    [98]Wu, Peng, Xu,et al. Proteome dynamics in primary target organ of infectious bursal disease virus[J]. Proteomics,2012,12 (11):1844-1859.
    [99]Jiang, Tang, Dai,et al. Quantitative analysis of severe acute respiratory syndrome (SARS)-associated coronavirus-infected cells using proteomic approaches: implications for cellular responses to virus infection[J]. Mol Cell Proteomics, 2005,4 (7):902-913.
    [100]Chan, Qian, Diamond,et al. Quantitative analysis of human immunodeficiency virus type 1-infected CD4+ cell proteome:dysregulated cell cycle progression and nuclear transport coincide with robust virus production[J]. J Virol,2007,81 (14):7571-7583.
    [101]Dhingra, Li, Allison,et al. Proteomic profiling and neurodegeneration in West-Nile-virus-infected neurons[J]. J Biomed Biotechnol,2005,2005 (3): 271-279.
    [102]Martinus.Beijerinck. Concerning a contagium vivum fluidum as cause of the spot disease of tobacco leaves[J]. Verhandelingen der Koninkyke akademie Wettenschapppen te Amsterdam,1898,65:3-21.
    [103]Fields, Song. A novel genetic system to detect protein-protein interactions[J]. Nature,1989,340 (6230):245-246.
    [104]Fields. Interactive learning:lessons from two hybrids over two decades[J]. Proteomics,2009,9 (23):5209-5213.
    [105]McCraith, Holtzman, Moss,et al. Genome-wide analysis of vaccinia virus protein-protein interactions[J]. Proc Natl Acad Sci U S A,2000,97 (9): 4879-4884.
    [106]Jorba, Juarez, Torreira,et al. Analysis of the interaction of influenza virus polymerase complex with human cell factors[J]. Proteomics,2008,8 (10): 2077-2088.
    [107]Mendez-Rios, Uetz. Global approaches to study protein-protein interactions among viruses and hosts[J]. Future Microbiol,2010,5 (2):289-301.
    [108]Zeng, Ruan, Jiang,et al. Proteomic analysis of SARS associated coronavirus using two-dimensional liquid chromatography mass spectrometry and one-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by mass spectroemtric analysis[J]. J Proteome Res,2004,3 (3): 549-555.
    [109]Tom, Lewin-Koh, Ramani.et al. Protein microarrays for identification of novel extracellular protein-protein interactions [J]. Curr Protoc Protein Sci,2013, Chapter 27:Unit2723.
    [110]殷震,刘景华.动物病毒学第二版,科学出版社:北京1997.
    [111]Bolte, Meurer, Kaleta. Avian host spectrum of avipoxviruses[J]. Avian Pathology,1999,28 (5):415-432.
    [112]Afonso, Tulman, Lu,et al. The genome of fowlpox virus[J]. J Virol,2000,74 (8): 3815-3831.
    [113]Tulman, Afonso, Lu,et al. The genome of canarypox virus[J]. J Virol,2004,78 (1):353-366.
    [114]Bejon, Peshu, Gilbert,et al. Safety profile of the viral vectors of attenuated fowlpox strain FP9 and modified vaccinia virus Ankara recombinant for either of 2 preerythrocytic malaria antigens, ME-TRAP or the circumsporozoite protein, in children and adults in Kenya[J]. Clin Infect Dis,2006,42 (8): 1102-1110.
    [115]Boulanger, Smith, Skinner. Morphogenesis and release of fowlpox virus[J]. J Gen Virol,2000,81 (Pt 3):675-687.
    [116]Sadasiv, Chang, Gulka. Morphogenesis of canary poxvirus and its entrance into inclusion bodies[J]. Am J Vet Res,1985,46 (2):529-535.
    [117]Weli, Nilssen, Traavik. Avipoxvirus multiplication in a mammalian cell line[J]. Virus Res,2005,109 (1):39-49.
    [118]Weli, Tryland. Avipoxviruses:infection biology and their use as vaccine vectors[J]. Virol J,2011,8:49.
    [119]Hatano, Yoshida, Uno,et al. Budding of fowlpox and pigeonpox viruses at the surface of infected cells[J]. J Electron Microsc (Tokyo),2001,50 (2):113-124.
    [120]Smith, Law. The exit of vaccinia virus from infected cells[J]. Virus Res,2004, 106 (2):189-197.
    [121]Mayr.A, Mahnel.H. Charakterisierung eines vom Rhinozeros isolierten Huhnerpockenvirus[J]. Archives of Virology,1970,31 (1):51-60.
    [122]Somogyi, Frazier, Skinner. Fowlpox virus host range restriction:gene expression, DNA replication, and morphogenesis in nonpermissive mammalian cells[J]. Virology,1993,197 (1):439-444.
    [123]Baxby, Paoletti. Potential use of non-replicating vectors as recombinant vaccines[J]. Vaccine,1992,10 (1):8-9.
    [124]Stannard, Marais, Kow,et al. Evidence for incomplete replication of a penguin poxvirus in cells of mammalian origin[J]. J Gen Virol,1998,79 (Pt 7): 1637-1646.
    [125]FR. Twenty years of progress in immunization against virus diseases of birds [J]. JAmVetMedAssoc,1949,115 (234-244).
    [126]Hertig, Coupar, Gould,et al. Field and vaccine strains of fowlpox virus carry integrated sequences from the avian retrovirus, reticuloendotheliosis virus[J]. Virology,1997,235 (2):367-376.
    [127]Boyle, Heine. Recombinant fowlpox virus vaccines for poultry[J]. Immunol Cell Biol,1993,71 (Pt 5):391-397.
    [128]Taylor, Paoletti. Fowlpox virus as a vector in non-avian species[J]. Vaccine, 1988,6 (6):466-468.
    [129]Taylor, Tartaglia, Riviere,et al. Applications of canarypox (ALVAC) vectors in human and veterinary vaccination[J]. Dev Biol Stand,1994,82:131-135.
    [130]Taylor, Meignier, Tartaglia,et al. Biological and immunogenic properties of a canarypox-rabies recombinant, ALVAC-RG (vCP65) in non-avian species[J]. Vaccine,1995,13 (6):539-549.
    [131]Laidlaw, Skinner. Comparison of the genome sequence of FP9, an attenuated, tissue culture-adapted European strain of Fowlpox virus, with those of virulent American and European viruses[J]. J Gen Virol,2004,85 (Pt 2):305-322.
    [132]Pal, Venzon, Santra,et al. Systemic immunization with an ALVAC-HIV-1/protein boost vaccine strategy protects rhesus macaques from CD4+ T-cell loss and reduces both systemic and mucosal simian-human immunodeficiency virus SHIVKU2 RNA levels[J]. J Virol,2006,80 (8): 3732-3742.
    [133]Van Rompay, Abel, Lawson,et al. Attenuated poxvirus-based simian immunodeficiency virus (SIV) vaccines given in infancy partially protect infant and juvenile macaques against repeated oral challenge with virulent SIV[J]. J Acquir Immune Defic Syndr,2005,38 (2):124-134.
    [134]Marovich. ALVAC-HIV vaccines:clinical trial experience focusing on progress in vaccine development[J]. Expert Rev Vaccines,2004,3 (4 Suppl):S99-104.
    [135]Kumar, Boyle. A pox virus bidirectional promoter element with early/late and late functions[J]. Virology,1990,179 (1):151-158.
    [136]Srinivasan, Schnitzlein, Tripathy. A consideration of previously uncharacterized fowl poxvirus unidirectional and bidirectional late promoters for inclusion in homologous recombinant vaccines[J]. Avian Dis,2003,47 (2):286-295.
    [137]Zantinge, Krell, Derbyshire,et al. Partial transcriptional mapping of the fowlpox virus genome and analysis of the EcoRI L fragment[J]. J Gen Virol,1996,77 (Pt4):603-614.
    [138]Amano, Morikawa, Shimizu,et al. Identification of the canarypox virus thymidine kinase gene and insertion of foreign genes[J]. Virology,1999,256 (2): 280-290.
    [139]Letellier. Role of the TK+ phenotype in the stability of pigeonpox virus recombinant[J]. Arch Virol,1993,131 (3-4):431-439.
    [140]Scheiflinger, Falkner, Dorner. Role of the fowlpox virus thymidine kinase gene for the growth of FPV recombinants in cell culture[J]. Arch Virol,1997,142 (12):2421-2431.
    [141]Boursnell, Green, Campbell,et al. Insertion of the fusion gene from Newcastle disease virus into a non-essential region in the terminal repeats of fowlpox virus and demonstration of protective immunity induced by the recombinant[J]. J Gen Virol,1990,71 (Pt 3):621-628.
    [142]Boulanger, Green, Jones,et al. Identification and characterization of three immunodominant structural proteins of fowlpox virus[J]. J Virol,2002,76 (19): 9844-9855.
    [143]Ogawa, Calvert, Yanagida,et al. Insertional inactivation of a fowlpox virus homologue of the vaccinia virus F12L gene inhibits the release of enveloped virions[J]. J Gen Virol,1993,74 (Pt 1):55-64.
    [144]Laidlaw, Anwar, Thomas,et al. Fowlpox virus encodes nonessential homologs of cellular alpha-SNAP, PC-1, and an orphan human homolog of a secreted nematode protein[J]. J Virol,1998,72 (8):6742-6751.
    [145]Binns, Britton, Mason,et al. Analysis of the fowlpox virus genome region corresponding to the vaccinia virus D6 to Al region:location of, and variation in, non-essential genes in poxviruses[J]. J Gen Virol,1990,71 (Pt 12):2873-2881.
    [146]Srinivasan, Schnitzlein, Tripathy. Fowlpox virus encodes a novel DNA repair enzyme, CPD-photolyase, that restores infectivity of UV light-damaged virus[J]. J Virol,2001,75 (4):1681-1688.
    [147]Singh, Schnitzlein, Tripathy. Reticuloendotheliosis virus sequences within the genomes of field strains of fowlpox virus display variability[J]. J Virol,2003,77 (10):5855-5862.
    [148]Sun, Wang, Miao,et al. [Construction and characterization of a recombinant fowlpox virus co-expressing F, HN genes of Newcastle disease virus and gB gene of infectious laryngnotracheitis virus][J]. Sheng Wu Gong Cheng Xue Bao, 2006,22 (6):931-939.
    [149]Rice, Gray, Li,et al. An efficient method for generating poxvirus recombinants in the absence of selection[J]. Viruses,2011,3 (3):217-232.
    [150]Taracha, Bishop, Musoke,et al. Heterologous priming-boosting immunization of cattle with Mycobacterium tuberculosis 85A induces antigen-specific T-cell responses[J]. Infect Immun,2003,71 (12):6906-6914.
    [151]Gao, Wang, Huang,et al. Self-excising reporter gene in recombinant Fowlpox virus expressing H5 hemagglutinin gene of influenza A virus using Cre-loxp systerm[J]. Wei Sheng Wu Xue Bao,2007,47 (3):537-539.
    [152]Abdool Karim, Abdool Karim, Frohlich,et al. Effectiveness and safety of tenofovir gel, an antiretroviral microbicide, for the prevention of HIV infection in women[J]. Science,2010,329 (5996):1168-1174.
    [153]Donnell, Baeten, Kiarie,et al. Heterosexual HIV-1 transmission after initiation of antiretroviral therapy:a prospective cohort analysis[J]. Lancet,2010,375 (9731):2092-2098.
    [154]Grant, Lama, Anderson,et al. Preexposure chemoprophylaxis for HIV prevention in men who have sex with men[J]. N Engl J Med,2010,363 (27): 2587-2599.
    [155]Cohen, Chen, McCauley,et al. Prevention of HIV-1 infection with early antiretroviral therapy[J]. N Engl J Med,2011,365 (6):493-505.
    [156]Saunders, Rudicell, Nabel. The design and evaluation of HIV-1 vaccines[J]. AIDS,26 (10):1293-1302.
    [157]Forthal, Moog. Fc receptor-mediated antiviral antibodies[J]. Curr Opin HIV AIDS,2009,4 (5):388-393.
    [158]Overbaugh, Morris. The Antibody Response against HIV-1[J]. Cold Spring Harb Perspect Med,2012,2 (1):a007039.
    [159]Kelleher, Puls, Bebbington,et al. A randomized, placebo-controlled phase I trial of DNA prime, recombinant fowlpox virus boost prophylactic vaccine for HIV-1[J]. AIDS,2006,20 (2):294-297.
    [160]Santra, Sun, Parvani,et al. Heterologous prime/boost immunization of rhesus monkeys by using diverse poxvirus vectors[J], J Virol,2007,81 (16): 8563-8570.
    [161]Kannanganat, Nigam, Velu,et al. Preexisting vaccinia virus immunity decreases SIV-specific cellular immunity but does not diminish humoral immunity and efficacy of a DNA/MVA vaccine[J]. J Immunol,185 (12):7262-7273.
    [162]Pitisuttithum, Gilbert, Gurwith,et al. Randomized, double-blind, placebo-controlled efficacy trial of a bivalent recombinant glycoprotein 120 HIV-1 vaccine among injection drug users in Bangkok, Thailand[J]. J Infect Dis, 2006,194 (12):1661-1671.
    [163]Buchbinder, Mehrotra, Duerr,et al. Efficacy assessment of a cell-mediated immunity HIV-1 vaccine (the Step Study):a double-blind, randomised, placebo-controlled, test-of-concept trial[J]. Lancet,2008,372 (9653): 1881-1893.
    [164]McElrath, De Rosa, Moodie,et al. HIV-1 vaccine-induced immunity in the test-of-concept Step Study:a case-cohort analysis[J]. Lancet,2008,372 (9653): 1894-1905.
    [165]Rerks-Ngarm, Pitisuttithum, Nitayaphan,et al. Vaccination with ALVAC and AIDSVAX to prevent HIV-1 infection in Thailand[J]. N Engl J Med,2009,361 (23):2209-2220.
    [166]Boudet, Chevalier, Jourdier,et al. Modulation of the antibody response to the HIV envelope subunit by co-administration of infectious or heat-inactivated canarypoxvirus (ALVAC) preparations[J]. Vaccine,2001,19 (30):4267-4275.
    [167]Ryan, Harenberg, Burdin. The Canarypox-virus vaccine vector ALVAC triggers the release of IFN-gamma by Natural Killer (NK) cells enhancing Th1 polarization[J]. Vaccine,2007,25 (17):3380-3390.
    [168]Cottingham, van Maurik, Zago,et al. Different levels of immunogenicity of two strains of Fowlpox virus as recombinant vaccine vectors eliciting T-cell responses in heterologous prime-boost vaccination strategies[J]. Clin Vaccine Immunol,2006,13 (7):747-757.
    [169]Li, Shen, Li,et al. Protection against SHIV-KB9 infection by combining rDNA and rFPV vaccines based on HIV multiepitope and p24 protein in Chinese rhesus macaques[J]. Clin Dev Immunol,2012,2012:958404.
    [170]Kent, Zhao, Best,et al. Enhanced T-cell immunogenicity and protective efficacy of a human immunodeficiency virus type 1 vaccine regimen consisting of consecutive priming with DNA and boosting with recombinant fowlpox virus[J]. J Virol,1998,72 (12):10180-10188.
    [171]Zanotto, Pozzi, Pacchioni,et al. Canarypox and fowlpox viruses as recombinant vaccine vectors:a biological and immunological comparison[J]. Antiviral Res, 2010,88 (1):53-63.
    [172]Konishi, Pincus, Paoletti,et al. Avipox virus-vectored Japanese encephalitis virus vaccines:use as vaccine candidates in combination with purified subunit immunogens[J]. Vaccine,1994,12 (7):633-638.
    [173]Dale, De Rose, Stratov,et al. Efficacy of DNA and fowlpox virus priming/boosting vaccines for simian/human immunodeficiency virus[J]. J Virol, 2004,78 (24):13819-13828.
    [174]Diener, Lousberg, Beukema,et al. Recombinant fowlpox virus elicits transient cytotoxic T cell responses due to suboptimal innate recognition and recruitment of T cell help[J]. Vaccine,2008,26 (29-30):3566-3573.
    [175]Ma, Jin, Shen.et al. Immune responses of swine inoculated with a recombinant fowlpox virus co-expressing P12A and 3C of FMDV and swine IL-18[J]. Vet Immunol Immunopathol,2008,121 (1-2):1-7.
    [176]Radaelli, De Giuli Morghen, Zanotto,et al. A prime/boost strategy by DNA/fowlpox recombinants expressing a mutant E7 protein for the immunotherapy of HPV-associated cancers[J]. Virus Res,2012,170 (1-2): 44-52.
    [177]Bridge, Sharpe, Dennis.et al. Heterologous prime-boost-boost immunisation of Chinese cynomolgus macaques using DNA and recombinant poxvirus vectors expressing HIV-1 virus-like particles[J]. Virol J,2011,8:429.
    [178]Li, Jin, Mi.et al. Antitumor effects of a recombinant fowlpox virus expressing Apoptin in vivo and in vitro[J]. Int J Cancer,2006,119 (12):2948-2957.
    [179]Bertino, Panigada, Soprana,et al. Fowlpox-based survivin vaccination for malignant mesothelioma therapy[J]. Int J Cancer,2013.
    [180]Vasir, Zarwan, Ahmad,et al. Induction of antitumor immunity ex vivo using dendritic cells transduced with fowl pox vector expressing MUC1, CEA, and a triad of costimulatory molecules (rF-PANVAC)[J]. J Immunother,2012,35 (7): 555-569.
    [181]Odunsi, Matsuzaki, Karbach,et al. Efficacy of vaccination with recombinant vaccinia and fowlpox vectors expressing NY-ESO-1 antigen in ovarian cancer and melanoma patients[J]. Proc Natl Acad Sci U S A,2012,109 (15): 5797-5802.
    [182]Hodge, Grosenbach, Aarts,et al. Vaccine therapy of established tumors in the absence of autoimmunity[J]. Clin Cancer Res,2003,9 (5):1837-1849.
    [183]Rosenberg, Yang, Schwartzentruber,et al. Recombinant fowlpox viruses encoding the anchor-modified gp100 melanoma antigen can generate antitumor immune responses in patients with metastatic melanoma[J]. Clin Cancer Res, 2003,9 (8):2973-2980.
    [184]Mockett, Binns, Boursnell,et al. Comparison of the locations of homologous fowlpox and vaccinia virus genes reveals major genome reorganization[J]. J Gen Virol,1992,73 (Pt 10):2661-2668.
    [185]Luschow, Hoffmann, Hafez. Differentiation of avian poxvirus strains on the basis of nucleotide sequences of 4b gene fragment[J]. Avian Dis,2004,48 (3): 453-462.
    [186]Weli, Traavik, Tryland,et al. Analysis and comparison of the 4b core protein gene of avipoxviruses from wild birds:evidence for interspecies spatial phylogenetic variation[J]. Arch Virol,2004,149 (10):2035-2046.
    [187]Huw Lee, Hwa Lee. Application of the polymerase chain reaction for the diagnosis of fowl poxvirus infection[J]. J Virol Methods,1997,63 (1-2): 113-119.
    [188]Wilkins, Pasquali, Appel,et al. From proteins to proteomes:large scale protein identification by two-dimensional electrophoresis and amino acid analysis[J]. Biotechnology (N Y),1996,14 (1):61-65.
    [189]Perez-Tris, Williams, Abel-Fernandez,et al. A multiplex PCR for detection of poxvirus and papillomavirus in cutaneous warts from live birds and museum skins[J]. Avian Dis,2011,55 (4):545-553.
    [190]Jarmin, Manvell, Gough,et al. Avipoxvirus phylogenetics:identification of a PCR length polymorphism that discriminates between the two major clades[J]. J Gen Virol,2006,87 (Pt 8):2191-2201.
    [191]Manarolla, Pisoni, Sironi,et al. Molecular biological characterization of avian poxvirus strains isolated from different avian species[J]. Vet Microbiol,2010, 140 (1-2):1-8.
    [192]Carulei, Douglass, Williamson. Phylogenetic analysis of three genes of Penguinpox virus corresponding to Vaccinia virus G8R (VLTF-1), A3L (P4b) and H3L reveals that it is most closely related to Turkeypox virus, Ostrichpox virus and Pigeonpox virus[J]. Virol J,2009,6:52.
    [193]Brunetti, Amano, Ueda,et al. Complete genomic sequence and comparative analysis of the tumorigenic poxvirus Yaba monkey tumor virus[J]. J Virol,2003, 77 (24):13335-13347.
    [194]Brunetti, Paulose-Murphy, Singh,et al. A secreted high-affinity inhibitor of human TNF from Tanapox virus[J]. Proc Natl Acad Sci U S A,2003,100 (8): 4831-4836.
    [195]Amano, Ueda, Miyamura. Identification and characterization of the thymidine kinase gene of Yaba virus[J]. J Gen Virol,1995,76 (Pt 5):1109-1115.
    [196]Afonso, Delhon, Tulman,et al. Genome of deerpox virus[J]. J Virol,2005,79 (2):966-977
    [197]Afonso, Tulman, Lu,et al. The genome of Melanoplus sanguinipes entomopoxvirus[J]. J Virol,1999,73 (1):533-552.
    [198]Afonso, Silva, Schnellrath,et al. Biological characterization and next-generation genome sequencing of the unclassified Cotia virus SPAn232 (Poxviridae)[J]. J Virol,2012,86 (9):5039-5054.
    [199]Kumar, Boyle. Mapping of a major early/late gene of fowlpox virus[J]. Virus Res,1990,15(2):175-185.
    [200]Senkevich, Bugert, Sisler,et al. Genome sequence of a human tumorigenic poxvirus:prediction of specific host response-evasion genes[J]. Science,1996, 273 (5276):813-816.
    [201]Kim, Tripathy. Antigenic and genetic characterization of an avian poxvirus isolated from an endangered Hawaiian goose (Branta sandvicensis)[J]. Avian Dis,2006,50(1):15-21.
    [202]Safronov, Petrov, Riazankina,et al. [Genes of a circle of hosts for the cowpox virus][J]. Dokl Akad Nauk,1996,349 (6):829-833.
    [203]Tartaglia, Winslow, Goebel,et al. Nucleotide sequence analysis of a 10.5 kbp HindIII fragment of fowlpox virus:relatedness to the central portion of the vaccinia virus HindIII D region[J]. J Gen Virol,1990,71 (Pt 7):1517-1524.
    [204]Kim, Schnitzlein, McAloose,et al. Characterization of an avianpox virus isolated from an Andean condor (Vultur gryphus)[J]. Vet Microbiol,2003,96 (3):237-246.
    [205]Song, Lin, Joshi,et al. Proteomic studies of the Singapore grouper iridovirus[J]. Mol Cell Proteomics,2006,5 (2):256-264.
    [206]Jungblut, Muller, Mattow,et al. Proteomics reveals open reading frames in Mycobacterium tuberculosis H37Rv not predicted by genomics[J]. Infect Immun, 2001,69 (9):5905-5907.
    [207]Liang, Xu, Xu,et al. Quantitative proteomics for cancer biomarker discovery[J]. Comb Chem High Throughput Screen,2011,15 (3):221-231.
    [208]Kalkkinen, Jornvall, Soderlund,et al. Analysis of Semliki-Forest-virus structural proteins to illustrate polyprotein processing of alpha viruses[J]. Eur J Biochem, 1980,108(1):31-37.
    [209]Rozen, Sathish, Li,et al. Virion-wide protein interactions of Kaposi's sarcoma-associated herpesvirus[J]. J Virol,2008,82 (10):4742-4750.
    [210]Beukema, Brown, Hayball. The potential role of fowlpox virus in rational vaccine design[J]. Expert Rev Vaccines,2006,5 (4):565-577.
    [211]顾万钧,王淑敏,金宁一,等.鸡痘病毒282E-4株基因组BamH Ⅰ片段的克隆及酶切图谱分析[J].吉林农业大学学报,1995(03).
    [212]郭志儒,金宁一,方厚华,等.利用BrdU在CEF(TK+)细胞中筛选TK重组鸡痘病毒[J].中国兽医学报,2001(06).
    [213]孙明,刘东海,金宁一,等.鸡痘病毒282E_4弱毒株TK基因的定位与克隆[J].兽医大学学报,1992(02).
    [214]孙明,刘东海,金宁一,等.鸡痘病毒282E_4弱毒株TK基因限制性酶切图谱分析[J].中国兽医学报,1994(01).
    [215]金宁一,殷震.痘苗病毒高效表达载体的构建研究[J].中国兽医学报,1994(01).
    [216]江文正.共表达中国株HIV-1gp120与hIL-6的重组鸡痘病毒研究[J].中华微生物学和免疫学杂志,2003(06).
    [217]张立树HIV-2 Gp105基因重组鸡痘病毒的构建及鉴定[J].中国生物制品学杂志,2005(01).
    [218]Zanotto, Pozzi, Pacchioni,et al. Construction and characterisation of a recombinant fowlpox virus that expresses the human papilloma virus L1 protein[J]. J Transl Med,2011,9:190.
    [219]Skinner, Laidlaw, Eldaghayes,et al. Fowlpox virus as a recombinant vaccine vector for use in mammals and poultry[J]. Expert Rev Vaccines,2005,4 (1): 63-76.
    [220]Sambrook, Russell.分子克隆实验指南精编版.化学工业出版社2008.
    [221]胡乐鹏.狂犬病病毒SRV9株在小鼠原代神经细胞中的形态发生学研究.吉林农业大学:长春2012.
    [222]Kanwar, Kamalapuram, Kanwar. Targeting survivin in cancer:the cell-signalling perspective[J]. Drug Discov Today,2011,16 (11-12):485-494.
    [223]Kurth, Peremyslov, Prokhnevsky,et al. Virus-derived gene expression and RNA interference vector for grapevine[J]. J Virol,2012,86 (11):6002-6009.
    [224]Mac Gabhann, Annex, Popel. Gene therapy from the perspective of systems biology[J]. Curr Opin Mol Ther,2010,12 (5):570-577.
    [225]Edelstein, Abedi, Wixon. Gene therapy clinical trials worldwide to 2007--an update[J]. J Gene Med,2007,9 (10):833-842.
    [226]Rollier, Reyes-Sandoval, Cottingham,et al. Viral vectors as vaccine platforms: deployment in sight[J]. Curr Opin Immunol,2011,23 (3):377-382.
    [227]Chiuppesi, Vannucci, De Luca,et al. A lentiviral vector-based, herpes simplex virus 1 (HSV-1) glycoprotein B vaccine affords cross-protection against HSV-1 and HSV-2 genital infections [J]. J Virol,2012,86 (12):6563-6574.
    [228]Alexander, Ward, Mendy,et al. Pre-clinical evaluation of a replication-competent recombinant adenovirus serotype 4 vaccine expressing influenza H5 hemagglutinin[J]. PLoS One,2012,7 (2):e31177.
    [229]Wei, Boyington, McTamney,et al. Induction of broadly neutralizing H1N1 influenza antibodies by vaccination[J]. Science,2010,329 (5995):1060-1064.
    [230]Gomez, Najera, Krupa,et al. MVA and NYVAC as vaccines against emergent infectious diseases and cancer[J]. Curr Gene Ther,2011,11 (3):189-217.
    [231]Kim, Gulley. Poxviral vectors for cancer immunotherapy[J]. Expert Opin Biol Ther,2012,12 (4):463-478.
    [232]Walsh, Dolin. Vaccinia viruses:vaccines against smallpox and vectors against infectious diseases and tumors[J]. Expert Rev Vaccines,2011,10 (8): 1221-1240.
    [233]朱爱华.鸡痘病毒载体强启动子的构建和筛选[J].扬州大学学报(自然科学版),1999(02).
    [234]李子健,金宁一,江文正,等.HIV复合多表位DNA疫苗的设计及免疫研究[J].中华微生物学和免疫学杂志,2004,24(11):910-913.
    [235]张立树,金宁一,宋英今,等.HIV-1复合多表位-p24嵌合基因重组鸡痘病毒疫苗的构建及小鼠免疫原性[J].中国科学,2007,37(1):65-72.
    [236]杜寿文.HIV复合表位核酸和痘苗病毒载体疫苗构建及免疫原性研究.硕士学位论文.吉林大学:长春2012.
    [237]Zanotto, Pozzi, Pacchioni,et al. Canarypox and fowlpox viruses as recombinant vaccine vectors:a biological and immunological comparison[J]. Antiviral Res, 88(1):53-63.
    [238]Gomez, Perdiguero, Garcia-Arriaza,et al. Poxvirus vectors as HIV/AIDS vaccines in humans[J]. Hum Vaccin Immunother,8 (9):1192-1207.
    [239]Ranasinghe, Eyers, Stambas,et al. A comparative analysis of HIV-specific mucosal/systemic T cell immunity and avidity following rDNA/rFPV and poxvirus-poxvirus prime boost immunisations[J]. Vaccine,29 (16):3008-3020.
    [240]Oxenius, Martinic, Hengartner,et al. CpG-containing oligonucleotides are efficient adjuvants for induction of protective antiviral immune responses with T-cell peptide vaccines[J]. J Virol,1999,73 (5):4120-4126.
    [241]Gallichan, Woolstencroft, Guarasci,et al. Intranasal immunization with CpG oligodeoxynucleotides as an adjuvant dramatically increases IgA and protection against herpes simplex virus-2 in the genital tract[J]. J Immunol,2001,166 (5): 3451-3457.
    [242]Belyakov, Isakov, Zhu,et al. Enhancement of CD8+ T cell immunity in the lung by CpG oligodeoxynucleotides increases protective efficacy of a modified vaccinia Ankara vaccine against lethal poxvirus infection even in a CD4-deficient host[J]. J Immunol,2006,177 (9):6336-6343.
    [243]Pizza, Giuliani, Fontana,et al. Mucosal vaccines:non toxic derivatives of LT and CT as mucosal adjuvants[J]. Vaccine,2001,19 (17-19):2534-2541.
    [244]Sun, Raghavan, Sjoling,et al. Oral tolerance induction with antigen conjugated to cholera toxin B subunit generates both Foxp3+CD25+ and Foxp3-CD25-CD4+ regulatory T cells[J]. J Immunol,2006,177 (11):7634-7644.
    [245]Olvera-Gomez, Hamilton, Xiao,et al. Cholera toxin activates nonconventional adjuvant pathways that induce protective CD8 T-cell responses after epicutaneous vaccination[J]. Proc Natl Acad Sci U S A,2012,109 (6): 2072-2077.
    [246]Ramshaw, Ramsay. The prime-boost strategy:exciting prospects for improved vaccination[J]. Immunol Today,2000,21 (4):163-165.
    [247]Zinkernagel, Hengartner. On immunity against infections and vaccines:credo 2004[J]. Scand J Immunol,2004,60 (1-2):9-13.
    [248]Hutchings, Gilbert, Hill,et al. Novel protein and poxvirus-based vaccine combinations for simultaneous induction of humoral and cell-mediated immunity[J]. J Immunol,2005,175 (1):599-606.
    [249]Letvin. Progress toward an HIV vaccine[J]. Annu Rev Med,2005,-5.6:213-223.
    [250]Estcourt, Ramsay, Brooks,et al. Prime-boost immunization generates a high frequency, high-avidity CD8(+) cytotoxic T lymphocyte population[J].Int Immunol,2002,14 (1):31-37.
    [251]Anderson, Hannan, Gilbert,et al. Enhanced CD8+ T cell immune responses and protection elicited against Plasmodium berghei malaria by prime boost immunization regimens using a novel attenuated fowlpox virus[J]. J Immunol, 2004,172 (5):3094-3100.
    [252]Zhang, Fang, Chang,et al. Comparison of protection against H5N1 influenza virus in mouse offspring provided by maternal vaccination with HA DNA and inactivated vaccine[J]. Arch Virol,2013.
    [253]Huber, McKeon, Brackin,et al. Distinct contributions of vaccine-induced immunoglobulin G1 (IgG1) and IgG2a antibodies to protective immunity against influenza[J]. Clin Vaccine Immunol,2006,13 (9):981-990.
    [254]Neuberger, Rajewsky. Activation of mouse complement by monoclonal mouse antibodies[J]. Eur J Immunol,1981,11 (12):1012-1016.
    [255]Gessner, Heiken, Tamm,et al. The IgG Fc receptor family[J]. Ann Hematol, 1998,76 (6):231-248.
    [256]Heusser, Anderson, Grey. Receptors for IgG:subclass specificity of receptors on different mouse cell types and the definition of two distinct receptors on a macrophage cell line[J]. J Exp Med,1977,145 (5):1316-1327.
    [257]Kipps, Parham, Punt,et al. Importance of immunoglobulin isotype in human antibody-dependent, cell-mediated cytotoxicity directed by murine monoclonal antibodies[J]. J Exp Med,1985,161 (1):1-17.
    [258]Takai, Li, Sylvestre,et al. FcR gamma chain deletion results in pleiotrophic effector cell defects[J]. Cell,1994,76 (3):519-529.
    [259]Nimmerjahn, Bruhns, Horiuchi,et al. FcgammaRIV:a novel FcR with distinct IgG subclass specificity[J]. Immunity,2005,23 (1):41-51.
    [260]Nimmerjahn, Ravetch. Divergent immunoglobulin g subclass activity through selective Fc receptor binding[J]. Science,2005,310 (5753):1510-1512.
    [261]Gerhard, Mozdzanowska, Furchner,et al. Role of the B-cell response in recovery of mice from primary influenza virus infection[J]. Immunol Rev,1997, 159:95-103.
    [262]Wilson, Hevey, Bakken,et al. Epitopes involved in antibody-mediated protection from Ebola virus[J]. Science,2000,287 (5458):1664-1666.
    [263]Schlesinger, Chapman. Neutralizing F(ab')2 fragments of protective monoclonal antibodies to yellow fever virus (YF) envelope protein fail to protect mice against lethal YF encephalitis[J]. J Gen Virol,1995,76 (Pt 1):217-220.
    [264]Zheng, Jin, Zhang,et al. Construction and immunogenicity of a recombinant fowlpox virus containing the capsid and 3C protease coding regions of foot-and-mouth disease virus[J]. J Virol Methods,2006,136 (1-2):230-237.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700