用户名: 密码: 验证码:
电磁波在空间等离子体中传输与散射若干问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来随着航天科技的飞速发展,人类已将活动领域延伸到了星际空间,空间中的等离子体环境是人类开展空间探索活动的基本环境条件。空间等离子体环境包括电离层等离子体环境、星际和外空间等离子体环境等,其对航天通信系统的影响不容忽视。在探索未知空间的活动中,人们对通信系统提出了更高的要求,而电波传播环境是通信系统中不可忽略的重要组成部分。因此空间等离子体中的电波传播问题也越来越受到学者的关注。本文以等离子体中的电波传播和散射理论为出发点,主要围绕尘埃等离子体、电离层空间碎片、电离层加热及等离子鞘套等四个方面的电波传播与散射问题开展相关研究。本文主要工作如下:
     1.首先介绍有关电离层中等离子体环境的基本知识,分析空间等离子体对电磁波传输、散射特性产生影响的主要因素,最后根据空间等离子体中的电子密度、离子密度等经验模型,从等离子体中的电波传播理论出发,讨论了等离子体中电波传播的WKB、传输矩阵、FDTD、射线追踪等数值计算方法。
     2.电磁波在尘埃等离子体中的传播问题是一个越来越受到广泛关注的研究课题。本文首先从空间尘埃等离子体中尘埃颗粒的充放电模型出发,将充电尘埃粒子的电磁散射考虑为中心尘埃的散射及粒子外围德拜云的散射,分析充电尘埃系统的Mie-Debye散射,研究充电平衡条件下尘埃等离子体中的带电尘埃系统电磁散射特性。最后,根据尘埃系统的充放电方程和静电平衡条件计算尘埃粒子吸附电荷数随尘埃半径的变化关系。通过相关电离层模型模拟空间环境,采用输运理论计算得到高层大气环境中尘埃等离子体层对电磁波的反射、衰减特性。计算结果表明,当电磁波波频率一定时,尘埃对电磁波衰减与电子密度、尘埃粒子密度以及尘埃粒子半径成正比。
     3.空间碎片长期运行在空间轨道上,并随着人类航天活动的不断深入而日益增多,严重地威胁着航天器的安全。本文首先根据空间碎片增减的因素,研究空间碎片的分布模型。在电离层准抛物模型的基础上,计算扰动电离层的电子密度分布图,研究电离层不均匀体的散射特性。结合坐标的尺度变换理论分析了椭球碎片的电磁散射特性。最后,采用Born近似取不均匀体的内场为入射波,推导了扰动区域中不均匀体和空间危险碎片的双站雷达散射截面计算公式,计算结果表明,电离层不均匀体将雷达探测波的大部分能量散射到前向及其附近方向,对碎片的地基雷达探测造成极大的影响,且当电磁波频率增大时,不均匀体对碎片探测的影响将减小。
     4.电离层是一个巨大的天然等离子体物理实验室,是无线电波传播的承载体和通道,本文分析大功率无线电波注入电离层引起电离层的局部改变。在给定的加热条件下,低电离层可以根据电子的有效复合系数研究电子密度扰动模型。而对于电离层高层区域,考虑到电子和离子漂移的影响,加热机制与低层区域有很大不同。因此,需要通过电子、离子的动力学方程、连续性方程,分别建立低电离层和高电离层的电子密度扰动模型。分析表明地面发射大功率的高频电磁波注入电离层可以引起电离层中电子密度发生明显变化,且电磁波对电离层的加热作用具有饱和效应。最后,采用射线追踪方法,仿真分析了电磁波在加热电离层中不同路径传输的衰减。并基于以上加热电离层传播模型,建立了加热电离层多径信道模型,对仿真的信道模型进行了分析,表明加热电离层信道是一种时变色散衰落信道。
     5.飞行器在空间高速飞行时周围形成等离子体包覆流场,对无线通信系统造成不可忽视的影响。本文建立钝头锥体的飞行器模型,根据飞行器外围流场特性,采用轴对称热化学非平衡流动的无量纲化控制方程组模拟高速飞行器表面绕流流场。根据流场的旋转对称性质,求解飞行器外围流场的温度分布、各组分密度分布以及不同马赫数下的电子密度分布。
     6.根据飞行器流场仿真得出的电子密度分布参数,采用WKB等方法计算了等离子体鞘套中电磁波的衰减,通过分析鞘套的等离子体特性,计算了鞘套中电磁波传播产生的相移。并将钝头锥体飞行器模型进行三角面元剖分,采用PO方法计算了不同飞行速度下钝头锥体飞行器的RCS。在分析飞行器表面等离子体性质及其对通信信号的衰减等因素的基础上,构建了空间通信“黑障”预报模型。根据飞行器再入轨迹,对发生的“黑障”进行了预测。并针对黑障问题,建立了一种磁窗模型,仿真结果表明,该磁窗可以有效降低等离子体鞘套中的电子密度,减低“黑障”风险。
With the rapid development of space science and technology in recent years, people hasextended their exploration area to the interstellar space. While the space plasma environmentis the basic condition for people’s space exploration activity. The environment of spaceplasma includes ionospheric plasma environment, the star and the outer space plasmaenvironment, etc. At the same time, for the exploration activity of the unknown space isconcerned, people put forward a higher requirement on radio communication system, whileradio wave propagation environment is the significant component in communication systemwhich can not be neglected. So radio wave propagation in space plasma has attracted moreand more attention of the scholars. Based on the fundamental theory of the radio wavepropagation and scattering in plasma, emphasis is put on investigating on the related problemof dust plasma, space debris in ionosphere, ionospheric heating and plasma sheath. The mainworks are as follows:
     Firstly, the basic knowledge of plasma environment in ionosphere is introduced. Then themain factors of space plasma which have influence on the electromagnetic wave transmissionand scattering is analyzed. According to the empirical models of electron density and iondensity in plasma, the numerical methods of radio wave propagation in plasma which includeWKB of radio wave propagation, transmission matrix, FDTD and ray tracing is discussed.
     Secondly, the transmission of electromagnetic wave in dust plasma becomes a researchsubject which draws more and more attentions. The charge and discharge model of the dustparticles in space dust plasma is discussed. The electromagnetic scattering of the chargingdust is taken as the scattering from the central dust particle and the scattering from debyecloud out of the particle, the Mie-Debye scattering of the dust plasma is analyzed, theelectromagnetic scattering characteristics of the charged dust in dust plasma with equilibriumstate is examined. Finally, according to the charging equation and electrostatic equilibriumequation of dust particle, the relationship between the charge number of dust particle and dustparticle radius is calculated. On the basis of the space environment simulation, thecharacteristics of electromagnetic wave reflection and attenuation of dust plasma layer in theupper atmospheric environment is obtained with transport theory. It is found that theattenuation of electromagnetic wave by the dust for a fixing frequency of EM wave isproportional to electron density, dust particle density and dust particle radius.
     Thirdly, as we have already known, space debris keeps running in orbital space, and itwill increase with the development of human space activity, which is a heavy threaten to the safety of spacecraft operation. According to the increase and decrease factors of the spacedebris, the distribution model of space debris is studied. Then, on the basis of ionospherequasi parabolic model, the ionosphere electron density distribution is analyzed to get theelectron density distribution contour map of the interferential ionosphere, and scatteringcharacteristics of the ionospheric irregularity is investigated. The electromagnetic scatteringanalytic solution of ellipsoidal debris has been deduced by the scale transformation theory.Then, by using Born approximation and by taking the ionospheric irregular infield as theincident wave, the radar cross section of the irregularity and space debris is derived. Thenumerical results show that most of the energy of radar wave is scattered by the ionosphericirregularity to the forward direction and near around, which has a significant impact on theground based radar detection of the debris. When the frequency of electromagnetic waveincreases, the influence of irregularity on debris detection will reduce.
     Fourthly, ionosphere is a huge natural plasma physics laboratory. It is the carrier andchannel of the radio wave propagation. Based on the interaction mechanism of high-powerradio wave with the ionospheric plasma, the local change of the ionosphere is analyzed whenthe high-power radio wave is injected into the ionosphere. Under the given heating condition,electron density perturbation model is analyzed by electron's effective recombinationcoefficients for the low ionosphere. However, for the high ionosphere, the heating mechanismis different from that in the low ionosphere with considering the drift of the electrons and ions.According to the electron and ion’s kinetic equation and continuity equation, the low and highionosphere electron density perturbation model are given, respectively. It is shown that theinjection of electromagnetic wave with high-power and high-frequency transmitting from theground base into ionosphere can cause a significant change on the electron density in theionosphere. The pump wave has a saturation effects on ionospheric heating. Finally, theattenuation of electromagnetic wave propagation in the heating ionosphere are calculated byray tracing method. Based on the above transmission model, the multi-path model ofionospheric heating is established, which indicates that ionospheric heating channel is atime-varying channel with disperse fading.
     Fifthly, when the aircraft flying in the space with high speed, the plasma cladding flowfield will be formed, which will have affects on the radio communication system that can notbe neglected. The sphere cone aircraft model is built in this paper. According to thecharacteristics of aircraft peripheral flow field, high speed aircraft circumferential flow field issimulated by the dimensionless control equations of axisymmetric, thermal chemical andnon-equilibrium flow. Considering the rotational symmetry characteristics of flow field, the temperature distribution of the aircraft peripheral flow field, the density distribution of eachgroup and the electron density distribution in different mach number are calculated.
     Finally, according to electron density distribution parameters simulated by the aircraftflow field, WKB and other methods are utilized to calculate the attenuation ofelectromagnetic wave in plasma sheath. By analyzing the plasma characteristics of the sheath,the phase shift of electromagnetic wave propagation in sheath is computed. Then, the triangleelement method is used to meshing sphere cone aircraft model. Based on the PO method, theRCS of sphere cone aircraft in different flight velocity is calculated. On the basis of plasmasheath characteristics and it’s attenuation of communication signal,“Blackout” forecastingmodel for the space communication is constructed. According to the reentry trajectory of theaircraft,“Blackout”is forecasted. Aiming at this issue, the electromagnetic window model isestablished. It is shown that the electron density in plasma sheath is considerably reduced bythis electromagnetic window and this method could reduce the risk of “Blackout”.
引文
[1]Yeh K C,Liu C H. Theory of ionospheric waves. San Diego,Calif.Academic,1972.
    [2]熊年禄,唐存琛,李行健.电离层物理概论.武汉:武汉大学出版社,1999.
    [3]熊皓.无线电波传播.北京:电子工业出版社,2000.
    [4]D.A. Mendis. Dust in Cosmic Plasma Environments. Astrophysics and Space Science,1979,65(4):5-12.
    [5]P.K. Shukla. A survey of dusty plasma physics. Physics of Plasmas,2001,5(8):1791-1802.
    [6]Igor Alexeff,Marshall Pace. A Dust Plasma. IEEE Trans on Plasma Sci,1994,22(2):136-137.
    [7]R. Bingham, U. de Angelis, V.N. Tsytovich,Havnes O. Electromagnetic wave scattering industy plasmas. Phys Fluids B: Plasma Physics,1991,3(3):811-817.
    [8]Mendis D A. Progress in the study of dusty plasmas. Plasma Sources Sci. Technol.11,2002, A219-A228.
    [9]Gui-xin Wan. Influences of the dust size and the dust charge variations to thelow-frequency wave modes in a dusty plasma. Physics of Plasmas,2006,13(82107):1-7.
    [10]P.K. Shukla,I. Kourakis. Low-frequency electromagnetic waves in aHall-magnetohydrodynamic plasma with charged dust macroparticles.12,2005,24501(1-4).
    [11]Robert J,Vidmar. On the use of atmospheric pressure plasmas as electromagneticreflectors and absorbers. IEEE Trans on Plasma Sci,1990,18(4):733-741.
    [12]Markkanen J, Lehtinen M,Landgraf M. Real-time Space Debris Monitoring with EISCAT.Advances in Space Research,2005,35(7):1197-1209.
    [13]M. Horanyi,D. Mendis. Space debris: Electrodynamic effects. Advances in SpaceResearch,1986,6(7):127-130.
    [14]R. Walker, H. Klinkrad,H. Sdunnus. Update of the ESA space debris mitigation handbook.2001,821-826.
    [15]叶松,徐敏强.空间碎片质量分布模型建模方法研究.飞行力学,2003,21(1):62-65.
    [16]I. Molotov, V. Agapov,V. Titenko. International scientific optical network for spacedebris research. Advances in Space Research,2008,41(7):1022-1028.
    [17]朱毅麟. NASA空间碎片模型.上海航天,1999,3(24-30.
    [18]Sukharevsky O I, Zalevsky G S,Nechitaylo S V. Simulation of scattering characteristicsof aerial resonant-size objects in the VHF band. Radioelectronics and CommunicationsSystems,2010,53(4):213-218.
    [19]莫锦军,刘少斌,袁乃昌.非均匀等离子体覆盖目标隐身研究.电波科学学报,2002,17(1):69-73.
    [20]董维中.热化学非平衡效应对高超声速流动影响的数值计算与分析.北京:北京航空航天大学,1996.
    [21]黄华,瞿章华.飞船轴对称热化学非平衡流场数值求解.国防科技大学学报,1999,21(3):1-4.
    [22]柳军,乐嘉陵,杨辉.高超声速圆球模型飞行流场的数值模拟和实验验证.流体力学实验与测量,2002,16(1):67-73.
    [23]M. Rapp, F.J. Lubken,T.A. Blix. Small scale density variations of electrons and chargedparticles in the vicinity of polar mesosphere summer echoes. Atmos. Chem. Phys.,2003,3(1):1399.
    [24]D.A. Mendis,M. Rosenberg. Some aspects of dust-plasma interactions in the cosmicenvironment. IEEE Trans on Plasma Sci,1992,20(6):929-934.
    [25]Vidmar R.J. Generation and properties of tenuous plasma bodies at atmospheric pressure.Annual report AFOSR contract No.F49620-85-K-0013SRI,1988.
    [26]陈耀,李中元,李嘉巍,段素平.彗星中尘埃的带电特性和平衡电势的研究.空间科学学报,2003,23(5):329-333.
    [27]蒋成进,李芳.空间尘埃等离子体中的重力波特性.地球物理学报,2006,49(5):1250-1256.
    [28]Havnes O, Torsten A,Alvin B. Charged dust in the Earth's middle atmosphere. PhysicaScripta,2001, T89(1):133-137.
    [29]Klumov B A, Vladimirov S V,Morfill G E. Features of dusty structures in the upperearth's atmosphere. JETP Letters.,2005,82(10):632-637.
    [30]Grach V S, Demekhov A G,Trakhtengerts V Yu. Dissipative instability of chargedaerosol flows in the mesosphere. Radiophysics and Quantum Electronics,2006,49(11):942–957.
    [31]Karashtin A N,Shlyugaev Yu V. Angles of arrival of HF mesosphere radar echoes.Geomagnetism and Aeronomy,2007,47(2):260-266.
    [32]Guerra R,Medonca J T. Mie and Debye scattering in dusty plasmas. Phys Rev E,2000,62(1):1190-1201.
    [33]Bartos P, Blazek J,Jelinek P. Hybrid computer simulations: electrical charging of dustparticles in low-temperature plasma. The European Physical Journal D,2009,29(5):1140-1145.
    [34]莫嘉琪.一类非线性尘埃等离子体孤波解.物理学报,2011,60(3):030203-1-4.
    [35]仲生仁.尘埃等离子体中非线性波的叠加效应及稳定性问题.物理学报,2010,59(04):2178-2181.
    [36]段萍.等离子体鞘层中尘埃粒子的分布特性.物理学报,2007,56(12):7090-7099.
    [37]李嘉巍.空间尘埃的充电过程及与等离子体参数的关系.空间科学学报,2004,24(5):321-325.
    [38]Li Fang,Havnes O. Scatter spectrum of radio waves by a dusty plasma. Journal ofElectronics,1999,21(5):679-686.
    [39]Li Fang, LI Lian-Lin,SUI Qiang. Absorption of electromagnetic waves by the dustparticles in a plasma. Science in China series E engineering&materials science,2004,34(7):832-840.
    [40]Shi Yan-Xiang, Ge De-Biao,Wu Jian. Influence of charge and discharge processes of dustparticles on the dust plasma conductivity. Acta Physica Sinica,,2006,55(10):3290-3297.
    [41]Shi Yan-Xiang, Ge De-Biao,Wu Jian. Theoretical analysis of micro wave attenuationconstant of weakly ionized dusty plasma. Chinese J. Geophys,2007,50(4):1005-1011.
    [42]李林茜.弱电离尘埃等离子体层反射与透射的SO-FDTD方法分析.物理学报,2012,61(12):125201-1-5.
    [43]Zhang JC,Kessler DJ. Engineering model of the debris environment.IAA-96-IAA.6.3.04,The47th congress of IAF,1996.
    [44]Kessler DJ,Zhang JC. A computer based orbital debris environment model for spacecraftdesign and observations in low earth orbit. NASA Technical Memorandum104825,1996.
    [45]P. Yang,H. Shi. Discussion on operating frequency of ground-based radar for space debrisdetection. Modern radar,2008,30(7).
    [46]吕洁,吴季,孙波.利用天基雷达观测低地轨道上的危险空间碎片.遥感技术与应用,2006,21(2):103-108.
    [47]袁庆智,孙越强,王世金,王晶.天基微小空间碎片探测研究.空间科学学报,2005,25(3):212-217.
    [48]刘静,王荣兰,张宏博.空间碎片碰撞预警研究.空间科学学报,2004,24(6):462-469.
    [49]程陶,刘静,王荣兰,于有成.空间碎片预警中的碰撞概率方法研究.空间科学学报,2006,26(6):452-458.
    [50]Wang Rui, Guo Lixin,Yang Ge. Investigation on the Electromagnetic Scattering from theSpheroid Covered with Plasma. Journal of Xidian University,2008,35(5):903-909.
    [51]Stevenson A. Electromagnetic Scattering by an Ellipsoid in the Third Approximation.Journal of Applied Physics,2009,24(9):1143-1151.
    [52]Su S Y, Chen M Q,Chao C K. Global, Seasonal, and Local Time Variations of IonDensity Structure at the Low-latitude Ionosphere and their Relationship to the PostsunsetEquatorial Irregularity Occurrences. Journal of Geophysical Research,2010,115(A2):A02309.
    [53]Xu Z W, Wu J,Wu Z S. Second-order Statistics of Radio wave Propagation through theStructured Ionosphere. Journal of Atmospheric and Solar-Terrestrial Physics,2004,66(11):971-980.
    [54]Booker H. The Use of Radio Stars to Study Irregular Refraction of Radio Waves in theIonosphere. Proceedings of the IRE,2007,46(1):298-314.
    [55]Xu Jisheng, Luo Weihua,Cheng Guanghui. A Study of Global Ionospheric DisturbancesDuing A Strong Magnetic Storm. Chinese Journal of Radio Science,2008,23(4):606-610.
    [56]宁百齐,李钧.电离层不规则结构的多普勒谱特性.空间科学学报,1996,16(1):36-42.
    [57]陈艳红,黄文耿,龚建村,马冠一,孙传礼,沈华.海南地区电离层不规则体纬向漂移速度的观测和研究.空间科学学报,2008,28(4):295-300.
    [58]陈仲生,周勇.电离层不规则结构的等效厚度和漂移速度对闪烁功率谱的影响.空间科学学报,1994,14(2):109-115.
    [59]Litvak A G. Possibility of self-focusing of electromagnetic waves in the ionosphere. Izv.Vyssh. Uchebn. Zaved Radiofiz,11,1970,814-820.
    [60]Carroll J C, Violette E J,Utlaut W F. The Platteville high power facility. Radio Science,1974,9(11):889-894.
    [61]Meltz G,Perkins F W. Ionospheric modification theory: past present and future RadioScience,1974,9(11):885-888.
    [62]Utlaut W F,Violette E J. A summary of vertical incident radio observations of ionosphericmodifications. Radio Science,1974,9(11):895-903.
    [63]Frey A,Gordon W E. HF produced ionospheric electron density irregularities diagnosedby UHF radio star scintillations. J Atmos Solar Terr Phys,1982,44(12):84-93.
    [64]Vilenskii I.M. About a nonlinear effect during radio wave propagation in the ionosphere.Doklady Akademii Nauk SSSR,191,1970,1041-1043.
    [65]Vilenskii I M,Plotkin V V. About the reflection of powerful radio waves from the lowerionosphere. Izvestiya Vuzov Radiofizika,16,1973,886-891.
    [66]Belikovich V V, Benediktov E A, Getmantsev G G,Itkina M A. Ionospheric electrondensity measurement using radio wave scattering from artificial plasma inhomogeneitiesRadiophys. Quantum Electron,21,1979,853-854.
    [67]Belikovich V V, Benediktov E A, Gulyaeva T L,Terina G I. Determination of electrondensity profile by resonance scattering of radio waves and ionograms of verticalsounding. Geomagn Aeron,19,1979,681-683.
    [68]Utlaut W F, Violette E J,Paul A K. Some ionosonde observations of ionospheremodification by very high power high frequency ground based transmission. J Geophys.Res,1970,75(10):6424-6440.
    [69]Utlaut W F,Violette E J. Further obsercations of ionospheric modification by a highpowered HF transmitter. J. Geophys. Res,1972,77(11):6804-6818.
    [70]Thome G D,Blood D W. First observations of RF back scatter from field alignedirregularities produced by ionospheric heating. Radio Science,1974,9(11):915-922.
    [71]Bernhardt P A, Duncan L M,Tepley C A. Artificial air glow excited by high power radiowaves. Science1988,242(4881):1022-1027.
    [72]Shavart M M, Grach S M,Frolov V L. Modeling of wideband component of artificialradio emission of the ionosphere. Radio Physics and Quantum Electronics,1994,37(3):412-430.
    [73]Hussein A A,Scales W A. Simulation studies of parametric decay processes associatedwith ionospheric stimulated radiation. Radio Science,1997,32(5):2099-2107.
    [74]Vilenskii I M, Izraileva N P, Plotkin V V,Freiman M E. Artificial quasiperiodicinhomogeneities in the lower ionosphere. Nauka Novosibirsk,1987.
    [75]Seliga T N. Phenomena associated with very high power high frequency F-regionmodification below the critical frequency. J. Atmos. Terr. Phys.,34,1972,1827-1841.
    [76]Rietveld M T,Goncharov N P. Artificial periodic irregularities from the Troms heatingfacility. Advances in Space Research,21,1998,693-696.
    [77]Rietveld M T, Turunen E, Matveinen H, Goncharov N P,Pollari P. Artificial periodicirregularities in the auroral ionosphere. Annales Geophysicae,14,1996,1437-1453.
    [78]黄文耿,古士芬,龚建村.大功率高频无线电波加热电离层.电波科学学报,2004,19(3):296-301.
    [79]黄文耿,古士芬.大功率无线电波对高电离层的加热.空间科学学报,2003,23(5):343-351.
    [80]吴军,车海琴,吴健,陈玉莲.北极区低电离层加热效应的数值模拟研究.极地研究,2007,19(3):171-180.
    [81]吕立斌,李清亮,闫玉波.基于电离层加热的人工沿场散射RCS估计.空间科学学报,2009,29(6):558-562.
    [82]何昉,赵正予,倪彬彬,张援农.不同加热条件下加热电离层的效应研究.电波科学学报,2006,21(4):525-531.
    [83]邓峰,赵正予,张援农.高频电波加热电离层对波传播影响的研究.电波科学学报,2007,22(6):976-981.
    [84]邓峰,赵正予,石润,张援农.中低纬电离层加热大尺度场向不均匀体的二维数值模拟.物理学报,2009,58(10):7382-7391.
    [85]徐彬,吴振森,吴健,薛昆.电离层加热期间非相干散射谱的反演.电波科学学报,2008,23(4):713-716.
    [86]Zoby E V, Lee K P, Gupta R N, Thompson R A,Simmonds A L. Viscous shock-layersolutions with nonequilibrium chemistry for hypersonic flows past slender bodies. J.Spacecraft.26,1989,221-228.
    [87]Takizawa Y, Matsuda A,Sato S. Experiment on shock layer enhancement byelectromagnetic effect in reentry related high enthalpy flow.36th AIAAPlasmadynamics and Laser Conference,2005, Canada(1-11.
    [88]Eric D Gillman,John E Foster. Review of leading approaches for mitigating hypersonicvehicle communications blackout and a method of ceramic particulate injection.NASA/TM-2010-216220,2010.
    [89]Mather D E, Pasqual J M,Sillence J P. Radio frequency(RF) blackout during hypersonicreentry.13th International Space Planes and Hypersonic Systems and Technologies,2005,1-12.
    [90]Usui H, Mat sumoto H,Yamashita F. Computer experiment s on radio blackout of areentry vehicle.6th Spacecraft Charging Technology Conference,2000, AFRL-VS-TR-220001578(107-110.
    [91]Blottner F G. Prediction of electron density in the boundary layer on entry vehicles withablation. N71-21,1971.
    [92]Candler G V,Maccormack R W. The computation of hypersonic ionized flows inchemical and thermal nonequilibrium. AIAA Paper88-0511,1988.
    [93]Gupta R, Lee K, Moss J,Sutton K. Viscous shock-layer solution with coupled radiationand ablation injection for earth entry. AIAA91-1697.
    [94]Gupta R N,Simmonds A L. Stagnation flowfield analysis for an aeroassist flightexperiment vehicle. AAIA paper88-2613,1988.
    [95]Suzuki K,Abe T. Effects of wall conditions on chemically nonequilibrium shock-layerflow over hypersonic reentry bodies. Trans. Japan Soc. Aero. Space Sci.36,1993,21-35.
    [96]Bhutta B A,Lewis C H. A new technique for low to high altitude predictions of ablativehypersonic flowfields. AIAA91-1392.
    [97]Keenan J A,Candler G V. Simulation of ablation in earth atmospheric entry AIAA93-2789.
    [98]Keenan J A,Candler G V. Simulation of graphite ablation and oxidation under reentryconditions AIAA94-2083.
    [99]Harten A. High resolution schemes for hypersonic conservation laws. Journal ofComputational Physics,49,1983,357-393.
    [100]Yee H C, Klopfer G H,Montagne J I. High resolution shock capturing schemes forinviscid and viscous hypersonic flows. NASA-TM-100097,1988.
    [101]Roe P L. Approximate riemann solvers parameters vectors and difference schemesJournal of Computational Physics,1983,43(2):357-372.
    [102]Wada Y, Kubota H, Ogawa S,Ishiguro T A. Generalized Roe's approximate riemannsolver for chemically reacting flows AIAA89-0202.
    [103]Liou M S. Progress towards an improved CFD method:AUSM+. AIAA95-1701-CP.
    [104]Liou M S,Buning P G. Contribution of the recent AUSM schemes to the overflowcode:implementation and validation. AIAA2000-4404.
    [105]Kim K H, Lee J O,Rho O H. An improvement of AUSM schemes by introducing thepressure based weight functions. Computers and Fluids,1998,27(3):311-346.
    [106]Tannehill J C, Ievalts J O,Lawrence S L. An upwind parabolized Navier-Stokes code forreal gas flows. AIAA88-0713.
    [107]Bhutta B A,Lewis C H. Three-Dimensional hypersonic nonequilibrium flows at largeangles of attack. AIAA88-2568.
    [108]Kojiro suzuki,Takashi abe. Viscous shock-layer analysis on hypersonic flow overreentry capsule with nonequilibrium chemistry. The Institute of Space and AstronauticalScience,Report No.656.,1994.
    [109]Vidmar R J. On the use of atmospheric pressure plasma as electromagnetic reflectorsand absorbers. IEEE Trans on Plasma Sci,1990,18(4):733-741.
    [110]Andrei B,Petrin. Transmission of microwaves through magnetoactive plasma. IEEETransactions on Plasma Science,2001,29(3).
    [111]Eghlidi M H, Mehrany K,Rashidian Bizhan. Modified WKB method for solution ofwave propagation in inhomogeneous structures with arbitrary permittivity andpermeability profiles. Proceedings of the37th European Microwave Conference,Munich:Causal Productions Pty Ltd,2007,1373-1376.
    [112]Laroussi M,Roth J R. Numerical calculation of the reflection absorption andtransmission of microwaves by a nonuniform plasma slab. IEEE Trans. on Plasma Sci,1993,21(3):366-372.
    [113]Hu BinJie, Wei Gang,Sheng Lilai. SMM analysis of reflection absorption andtransmission from nonuniform magnetized plasma slab. IEEE Transactions on PlasmaScience,1999,27(4).
    [114]Helaly A, Soliman E A,Magahed A A. Electromagnetic waves scattering by nonuniformplasma cylinder. Proc. Inst. Elect. Eng.,1997,144(2):61-66.
    [115]阎玉波,董慧,李清亮.等离子体涂覆三维目标散射特性的PLRC-FDTD分析.电波科学学报,2007,22(4):563-566.
    [116]王飞,葛德彪,魏兵. SO-FDTD法计算磁化等离子体层的反射透射系数.电波科学学报,2008,23(4):704-708.
    [117]chadwick K M, Boyer D W,Andre S N. Plasma and flowfield induced effects on reentryvehicles for L-Band at near broadside aspect angles. PL-TR-962094,1996.
    [118]Takizawa Y, Matsuda A,et al Sato S. Experiment on shock layer enhancement byelectromagnetic effect in reentry related high enthalpy flow.36th AIAAPlasmadynamics and Laser Conference, Canada,2005.
    [119]Klement D,Stein V. Special problems in applying the physical optics method forbackscatter computions of complicated objects. IEEE Trans A.P.,1988,36(2):228-237.
    [120]Swamer W G,Peters L. Radar cross sections of dielectric or plasma coated conductingspheres and circular cylinders IEEE Trans A.P.,1963,558-568.
    [121]陈伟芳,常雨.高超声速半球绕流流场电磁散射特性分析.航空动力学报,2009,24(3):552-557.
    [122]常雨,陈伟芳,罗宁,吴其芬.基于物理光学法的再入等离子体包覆体空间散射特性分析.微波学报,2008,24(2):1-6.
    [123]赵汉章,吴是静,董乃涵.不均匀等离子体鞘套中电磁波的传播.地球物理学报,1985,28(2):117-126.
    [124]Schunk R W,Walker J C. Theoretical ion densities in the lower ionosphere. Plant. Sp.Sci.,1973,21(8):75-1896.
    [125]Dyson P,Bennett J. A Model of the Vertical Distribution of the Electron Concentrationin the Ionosphere and its Application to Oblique Propagation Studies. Journal ofAtmospheric and Terrestrial Physics,1988,50(3):251-262.
    [126]Booker H G,Miller D C. Weak scattering theory applied to equatorial ionosphericscintillation for a wide range of parametric values. Journal of Atmospheric and TerrestrialPhysics,1980,42(3):189-203.
    [127]金兹堡.电磁波在等离子体中的传播.北京:科学出版社,1978.
    [128]袁敬闳,莫怀德.等离子体中的波.成都:电子科技大学出版社,1990.
    [129]庄钊文,袁乃昌,刘少斌,莫锦军.等离子体隐身技术.北京:科学出版社,2006.
    [130]吴彬,林烈,吴承康,张澎,王永庆.垂直入射电磁波在大气压非平衡等离子体层中的传播特性.强激光与粒子束,2005,17(2):225-228.
    [131]葛德彪,闫玉波.电磁波时域有限差分方法.西安:西安电子科技大学出版社,2002.
    [132]Liu Shao-bin, Mo jin-jun,Yuan Nai-chang. FDTD analysis of electromagnetic reflectionby conductive plane covered with magnetized inhomogeneous plasmas. InternationalJournal of Infrared and millimeter waves,2002,23(12):1803-1815.
    [133]金莎莎.等离子体涂覆目标散射特性的FDTD方法.西安电子科技大学,2011.
    [134]Yee K S. Numerical solution of initial boundary value problems involving maxwell'sequations in isotropic media. IEEE Transactions on Aerospace and Electronic Systems,1966,302-307.
    [135]Chen Q, Katsurai M,Aoyagi P H. An FDTD formulation for dispersive media using acurrent density. IEEE Transactions on Antennas and Propagation,1998,46(11):1739-1746.
    [136]Liu shabin, Mo jinjun,Yuan naichang. A JEC-FDTD implementation for anisotropicmagnetized plasmas. Acta Physica Sinica,,2004,53(3):783-787.
    [137]李毅,徐利军,袁乃昌.磁化等离子体的并行三维JEC-FDTD算法及其应用.电子学报,2008,1119-1123.
    [138]柳文,焦培南,王俊江,张杭伟.利用射线追踪研究电离层扰动.地球物理学报,2005,48(3):465-470.
    [139]Thomas A Croft. Exact ray calculations in a quasiparabolic ionosphere with no magneticfield. Radio Science,1968,3(1):69-74.
    [140]R J Norman. A two dimensional analytic ray tracing technique accommodatinghorizontal gradients. Radio Science,1997,32(2):387-396.
    [141]柳文,焦培南,王世凯,王俊江.电离层短波三维射线追踪及其应用研究.电波科学学报,2008,23(1):41-48.
    [142]R M Jones. A three dimensional ray-tracing computer program. Radio Science,1968,3(1):93-94.
    [143]Whipple E C. Potentials of surfaces in space. Rep. Rrog. Phys.44,1981.
    [144]李芳,李廉林,隋强.等离子体中尘埃粒子对电磁波的吸收效应.中国科学E,2004,34(7):832-840.
    [145]Shukla P K,Mamun A A. Introduction to Dusty Plasma Physics. Institute of PhysicsPublishing Bristol and Philadelphia,2001.
    [146]袁忠才,时家明.非磁化等离子体中的电子碰撞频率.核聚变与等离子体物理,2004,24(2):157-160.
    [147]石志东,李中元.空间尘埃等离子体中尘粒电荷的相关涨落对尘埃磁声波的影响.空间科学学报,1997,17(4):303-310.
    [148]Ray P S. Broadband complex refractive indices of ice and water. Applied Optics,1972,11(8):1836-1844.
    [149]Havnes O,Tr im J. First detection of charged dust particles in the Earth’s mesosphere.J.Geophys. Res,1996,101(A5):10839-10847.
    [150]Chilson P B, Yu T Y,Palmer R D. Aspect sensitivity measurements of polar mesospheresummer echoes using coherent radar imaging. Annales Geophysicae,2002,20(2):213-223.
    [151]Ishimaru A. Wave Propagation and Scattering in Random Media. New York: AcademicPress,1978.
    [152]Savigny C V, Petelina S V,Karlsson B. Vertical variation of NLC particle sizes retrievedfrom ODIN/OSIRIS limb scattering observations. Geophys. Res. Lett,2005,32(7):7806-7818.
    [153]D.I. Talent. Analytic model for orbital debris environmental management. Journal ofSpacecraft and Rockers,1992,508-513.
    [154]H.Hata, T.Hiroe,K.Fujiwara. Development of the explosion breakup model for spacedebris. Japan Society of Aeronautical Space Sciences,57,2009,135-140.
    [155]C. Allen. Astrophysical quantities. University of London, The Athlone Press,1973.
    [156]周卓俊.空间碎片环境建模及其电磁散射特性研究.西安电子科技大学,2011.
    [157]Li Yingle,Huang Jiying. Scales Transformation Theory of Electromagnetic Field and ItsApplications. Xi’an: Xidian University Press,2006.
    [158]Bohren C,Huffman D. Absorption and Scattering of Light by Small Particles. New York:John Wiley&Sons Inc,1983.
    [159]Liu wen, Jiao peinan,Wang junjiang. A study of the disturbance in the ionosphere usingray tracing technology. Chinese Journal Geophysics,2005,48(3):465-470.
    [160]Jiao Peinan, Ma Tiehan,Xu Guoliang. Probing of the Artificial Hole in the Ionospherewith the HF Skywave Radar. IEEE Radar Conference,2004,588-592.
    [161]Khinchin A. Theory of Correlation of Stationary Stochastic Processes. UspekhiMatematicheskikh Nauk,1938,5):42-51.
    [162]Bennett J. Complex Rays for Radio Waves in an Absorbing Ionosphere. Proceedings ofthe IEEE,2005,62(11):1577-1585.
    [163]Zhang S J,Jin J M. Crandall. Computation of Special Functions. New York: John Wiley&Sonc Inc,1996.
    [164]Fejer J A. Ionospheric modification experiments with the arecibo heating facility. J.Atmos. Terr. Phys.,1985,47(12):1165-1179.
    [165]Bernhardt P A,Duncan L M. The feedback diffraction theory of ionospheric heating. J.Atmos. Terr. Phys.,1982,44(12):1061-1074.
    [166]Gurevich A V. Nonlinear phenomena in the ionosphere. Berlin:Springer-Verlag,1978.
    [167]黄文耿.强电磁场对电离层改变的计算机数值模拟研究.中国科学院空间科学与应用研究中心,2003.
    [168]Pashin A B, Belova E G,Lyatsky W B. Magnetic pulsation generation by a powerfulground-bases modulated HF radio transmitter. J. Atmos. Terr. Phys.,1995,57:245-252.
    [169]Stubbe P,Varnum W S. Electron energy transfer rates in the ionosphere. Planet SpaceSci,1972,20(20):1121-1126.
    [170]王龙.电离层的人工加热.物理学进展,1985,5(1):101-124.
    [171]徐彬.非相干散射谱研究及其在电离层加热中的应用.西安电子科技大学,2009.
    [172]Bemhardt P A,Duncan L M. The feedback-dffraction theory of ionospheric heating. JAtmos Solar Terr Phys,1982,44(12):1061-1074.
    [173]Showen R L,Behnke R A. The effect of HF induced plasma instabilities on ionosphericelectron temperatures. J Geophys. Res,1978,83(A1):207-209.
    [174]Robinson T R, Honary F,Stocker A J. First EISCAT observation of the modification ofF region electron temperatures during RF heating at harmonics of the electron gyrofrequency. J Atmos Solar Terr Phys,1996,58(1):385-395.
    [175]何昉,赵正予,陈绪元.加热电离层区域对高频波特性的影响研究.电波科学学报,2008,23(3):466-483.
    [176]Lawrence R S, Little C G,Chivers H J. A survey of ionospheric effects upon earth spaceradio propagation. Proc. IEEE,1964,52(4):4-27.
    [177]Budden K G. The Propagation of Radio Waves. Cambrigde:Cambrigde University Press,1985.
    [178]张瑜.电磁波空间传播.西安电子科技大学出版社,2007.
    [179]张明高.对流层散射传播.电子工业出版社,2004.
    [180]张尔扬.短波通信技术.北京:国防工业出版社,2002.
    [181]沈琦琦,朱德生.短波通信.西安:西安电子科技大学出版社,2001.
    [182]Liu Chiliang. QPSK modems for satellite sound/data broadcast systems. IEEE Trans onBroadcasting,1991,37(1):1-8.
    [183]Robert H, Zargaoza M,Shulin. QPSK block modulation codes of unequal errorprotection. IEEE Transaction on information theory,1995,576-581.
    [184]Mather D E, Pasqual J M,Sillence J P. Radio frequency(RF) blackout during hypersonicreentry. AIAA/CIRA13th International Space Planes and Hypersonic Systems andTechnologies,2005.
    [185]Usui H, Mat S H,et al Yamashita F. Computer experiment s on radio blackout of areentry vehicle.6th Spacecraft Charging Technology Conference, AFRL-VS-TR-220001578,2000,107-110.
    [186]James P, Rybak R J,Churchill. Progress in reentry communications. IEEE Transactionson Aerospace and Electronic Systems,1971,7(5):879-894.
    [187]LIU Jun. Experimental and numerical research on thermo chemical nonequilibrium flowwith radiation phenomenon. Changsha: National University of Defense Technology,2004.
    [188]Kim K H, Kim C,Rho O H. Methods for the Accurate Computations of HypersonicFlows I. AUSMPW+Scheme. Joumal of Computational Physics,2001,174(1):38.
    [189]Kim K H,Kim C. Accurate efficient and monotonic numerical methods formulti-dimensional compressible flows Part II: Multi-dimensional limiting process. Journal ofComputational Physics,2005,208(1):570.
    [190]Park C. Problems of rate chemistry in the flight regimes of aeroassisted orbital transfervehicles. Progress in Astronautics and Aeronautics,96,1985,511-537.
    [191]董维中.气体模型对高超声速再入钝体气动参数计算影响的研究.空气动力学报,2001,19(2).
    [192]乐嘉陵.再入物理.国防科研试验工程技术系列教材,国防工业出版社,2005.
    [193]Gnoffo P A, Gupta R N,Shinn J L. Conservation Equations and physical models forhypersonic air flows in thermal and chemical nonequilibrium. NASA TP-2867.
    [194]柳军,刘伟,曾明,乐嘉陵.高超声速三维热化学非平衡流场的数值模拟.力学学报,2003,35(6):730-734.
    [195]Gupta R N, Yos J M,Thompson R A. A review of reaction rates and thermodynamic andtransport properties for an11-species air model for chemical and thermal nonequilibriumcalculations to30000K. NASA-TM-101528,1989.
    [196]Hartunian R A, Stewart G E, Fergason S D, Curtiss J T,Seibold R W. Causes andmitigation of radio frequency blackout during reentry of reusable launch vehicles. Aerosp.Corporation, EI Segundo, CA, Aerosp. Rep. ATR-2007(5309)-1,2007.
    [197]D J Gregoire, J Santoru,R W Schumacher. Electromagnetic wave propagation inunmagnetized plasmas. AD-A250710,1992.
    [198]刘少斌,袁乃昌,莫锦军.斜入射到非磁化等离子体的电磁波的吸收.系统工程与电子技术,2003,25(11):1347-1350.
    [199]Petrin A B. Transmission of microwaves through magnetoactive plasma. IEEE Trans onPlasma Sci,2001,28(2):471-478.
    [200]Khorasani S,Mehrany K. Differential transfermatrix method for solution of onedimensional linear nonhomogeneous optical structures. J Opt Soc Amer B, Opt Phys,2003,20(1):91-96.
    [201]方宁,王宝发.基于改进WKB的非均匀等离子体中脉冲波型研究.电子学报,2010,38(3):706-709.
    [202]YUAN Zhongcai,SHI Jiaming. Electron collision frequency of the nonmagnetizedplasma. Nuclear Fusion and Plasma Physics,2004,24(2):157-160.
    [203]Andrei B,Petrin. Transmission of Microwaves Through Magnetoactive Plasma. IEEETrans on Plasma Sci,2000,29(3):471-478.
    [204]刘少斌,莫锦军,袁乃昌.电磁波在不均匀磁化等离子体中的吸收.电子学报,2003,31(3):372-375.
    [205]常雨,陈伟芳,曾学军,孟刚,吴其芬.再入钝锥体绕流流场电磁散射特性分析.宇航学报,2008,29(3):962-965.
    [206]Faghihi F,Heydari H. A combination of time domain finite element-boundary integraland with time domain physical optics for calculation of electromagnetic scattering of3-dstructures. Progress In Electromagnetics Research,2008,79,463-474.
    [207]庄钊文.军用目标雷达散射截面预估与测量.北京:科学出版社,2007.
    [208]W. Gordon. High frequency approximations to the physical optics scattering integral.IEEE Transactions on Antennas and Propagation,2002,42(3):427-432.
    [209]Bartlett E P,Kendall R M. An Analysis of the Coupled Chemically Reacting BoundaryLayer and Charring Ablator. Part III: Nonsimilar Solution of the MulticomponentLaminar Boundary Layer by an Integral Matrix Method. NASA CR-1062.
    [210]Klement D. Special Problem in Appling the Physical Optics Method for BackscatterComputatios of Complicated Objects. IEEE Trans. AP.,1988,36(2).
    [211]Morabito D D,Edquist K T. Communications blackout predictions for atmospheric entryof Mars Science Laboratory. in IEEE Aerospace Conference,2005,489-500.
    [212]Fujino T,Ishikawa M. Numerical simulation of control of plasma flow with magneticfield for thermal protection in earth reentry flight. IEEE Transactions on Plasma Science,2006,34(2):409-420.
    [213]Kim M, Keidar M,Iain D. Electrostatic manipulation of a hypersonic plasma layer:Images of the two-dimensional sheath. IEEE Trans on Plasma Sci,2008,36(4):1198-1199.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700